Função de crescimento de estruturas a partir da escala de homogeneidade

Felipe Avila Orientador: Armando Bernui Inovation Week - 13 a 16 de Janeiro de 2022

Observatório Nacional, RJ

1 INTRODUÇÃO

- 2 ESCALA DE HOMOGENEIDADE
- **3** RELAÇÃO ENTRE $f(z) \in R_{H}(z)$
- (4) APROXIMAÇÃO PARA A FUNÇÃO $\zeta(R_{\rm H})$
- 5 RESULTADOS
- 6 CONCLUSÕES E CONSIDERAÇÕES FINAIS

Introdução

Função de Crescimento

Na teoria linear das perturbações cosmológicas, podemos obter uma equação diferencial que descreve a evolução das perturbações na distribuição de matéria. A partir da solução dessa equação, D(a), pode-se definir a **função de crescimento das estruturas cósmicas** (Peebles 1980),

$$f(a) \equiv \frac{d\ln D(a)}{d\ln a},\tag{1}$$

onde a é o fator de escala na métrica de Robertson-Walker.

Uma boa aproximação para f(z) é (Linder 2005)

$$f(z) \simeq \Omega_{\rm m}(z)^{\gamma},$$
 (2)

sendo γ conhecido como índice de crescimento. O valor de γ depende da teoria usada para descrever a gravidade e do modelo cosmológico assumido.

Figura 1: Função de crescimento para três valores de γ : 0,45, 0,55 e 0,65.

Figura 2: Função de crescimento para três valores de γ : 0,45, 0,55 e 0,65. Os dados de f(z) foram compilados em Avila et al.(2021).

Motivação

Pode-se observar pela figura abaixo que, a medida que aumentamos a amplitude das flutuações de matéria, torna-se maior a escala em que o universo é observado estatisticamente **homogêneo e isotrópico**.

Figura 3: **Esquerda**: Crescimento de estruturas, D(a), para a cosmologia Λ CDM e Einstein-de Sitter. **Direita**: *snapshots* de simulações de N-corpos para as cosmologias da figura ao lado (Huterer & Kirkby, 2013).

Motivação

Scrimgeour et al.(2012) observa que a escala de homogeneidade aumenta monotonicamente em função de $\sigma_8^2(z) \equiv \sigma_8^2(z=0)D^2(z)$.

Figura 4: Escala de homogeneidade em função de $b^2 \sigma_8(z)^2$ para diferentes limiares que se aproximam da homogeneidade (Scrimgeour et al. 2012).

Scrimgeour et al. (2012)

"Since we expect $\sigma_8(z)$ in Λ CDM to grow over time due to growth of structure, we would therefore also expect the homogeneity scale to increase over time, for galaxies with fixed bias."

Escala de Homogeneidade

Escala de Homogeneidade

Definimos a **Escala de Homogeneidade**, $R_{\rm H}$, como a escala de transição para um certo valor na dimensão fractal, $\mathcal{D}_2(R_{\rm H})$, observado na distribuição de matéria (Scrimgeour et al. 2012).

Contagem normalizada em esferas

Define-se a escala de contagem normalizada em esferas como

$$\mathcal{N}(< r) \equiv \frac{N_{\mathsf{gal}}(< r)}{N_{\mathsf{ale}}(< r)} = 1 + \frac{3}{r^3} \int_0^r \xi(s) s^2 ds.$$
(3)

Figura 5: Contagem normalizada em esferas para o *survey* BOSS (Ntelis et al. 2017).

Dimensão fractal normalizada

Define-se a dimensão fractal normalizada como

$$\mathcal{D}_2(r) \equiv \frac{d\ln \mathcal{N}(< r)}{d\ln r} + 3 \tag{4}$$

Figura 6: Dimensão fractal normalizada para o survey BOSS (Ntelis et al. 2017).

Limite estatístico para a escala de homogeneidade

Para a escala de homogeneidade, a dimensão de correlação assume o valor

$$\mathcal{D}_2(R_{\mathsf{H}}) \equiv 3(1-\epsilon). \tag{5}$$

Desde 2012, com o trabalho de Scrimgeour et al. (2012), tem se assumido $\epsilon = 0,01$, ou seja, $\mathcal{D}_2(R_{\rm H}) = 2,97$.

Figura 7: Escala de homogeneidade, $R_{\rm H}(z)$, para o *survey* BOSS no intervalo 0, 43 < z < 0, 70 (Ntelis et al. 2017).

Obtendo a relação entre f(z) e $R_{H}(z)$

Lembrando a equação (3):

$$\mathcal{N}(< r) \equiv 1 + \frac{3}{r^3} \int_0^r \xi(s) s^2 ds$$

A partir da definição de $\xi(r)$ e da solução para a equação diferencial que descreve a evolução das perturbações, pode-se definir a função $\xi(r, z)$ como

$$\xi(r,z) \equiv D^2(z)\xi(r,z=0),$$
 (6)

onde $\xi(r, z = 0)$ é a função de correlação calculada em z = 0.

Já que $\mathcal{N}(< r)$ pode ser escrita em termos de $\xi(r)$, equação (3), podemos determinar $R_{\mathsf{H}}(z)$ em função de D(z).

Aplicando a definição (6) para a equação de $\mathcal{N}(< r)$ envolvendo $\xi(r)$ e fazendo aproximações quando necessário, podemos obter

$$f(z) = \frac{1+z}{2} \left(\frac{1}{R_{\rm H}} \frac{dR_{\rm H}}{dz} + \frac{1}{\zeta} \frac{d\zeta}{dz} \right),\tag{7}$$

onde

$$\zeta(r) \equiv \frac{d\xi(r)}{dr} \tag{8}$$

é a derivada da função $\bar{\xi}(r)$, definida como

$$\bar{\xi}(r) \equiv \frac{3}{r^3} \int_0^r \xi(s, z=0) s^2 ds.$$
 (9)

Aproximação para a função $\zeta(R_{\rm H})$

Pode-se aproximar $\zeta(R_{\rm H})$ para uma lei de potência dupla (DPL - *Double Power Law*), utilizada para descreve a função de luminosidade das AGNs (Kulkarni, Worseck & Hennawi 2019)

$$\zeta(R_{\rm H}) = -\frac{CR_{\rm H}^{-1}}{(R_{\rm H}/R_{\star})^{\alpha} + (R_{\rm H}/R_{\star})^{\beta}},$$
(10)

onde C, R_{\star} , α , e β são parâmetros livres.

Para o modelo Λ CDM, temos $[R_{\star}, \alpha, \beta, C] = [46.16, 2.76, 1.12, 0.19].$

Figura 8: Erro relativo para a funções $\zeta(R_{\rm H})$ e f(z) usando o modelo DPL. Figuras extraídas de Avila et al.(2021).

Resultados

0 Com o intuito de testar essa nova equação para f(z), coletamos dados de $R^m_{\rm H}(z)$ na literatura.

- Com o intuito de testar essa nova equação para f(z), coletamos dados de R_H^m(z) na literatura.
- ② No entanto, como são poucos dados, decidimos por aplicar o método de reconstrução para obter uma função contínua de $R_{\rm H}^m(z) \equiv R_{\rm H}$.

z	R _H [Mpc/h]		Reference
	NGC	SGC	
0.457	64.20 ± 1.30	66.70 ± 1.60	
0.511	65.40 ± 0.90	63.90 ± 1.50	
0.565	62.60 ± 0.80	65.20 ± 1.60	Ntelis et al. (2017)
0.619	60.40 ± 0.80	60.10 ± 1.10	
0.673	59.00 ± 0.80	60.10 ± 1.80	
	PH	LS	
0.985	48.78 ± 3.82	52.93 ± 7.55	•
1.350	40.56 ± 3.39	40.43 ± 5.64	Consolves at al. (2019b)
1.690	36.19 ± 3.45	36.66 ± 4.80	Gonçaives et al. (2018b)
2.075	27.91 ± 3.91	29.94 ± 3.35	

Figura 9: Tabela extraída de Avila et al.(2021).

Seguindo Ntelis et al.(2019), combinamos os dados da tabela 1 usando a definição

$$R_{\mathsf{H}}^{w}(z_{i}) \equiv \left(\frac{1}{\sigma_{j}^{2}(z_{i})} + \frac{1}{\sigma_{k}^{2}(z_{i})}\right) \times \left(\frac{R_{\mathsf{H}}^{j}(z_{i})}{\sigma_{j}^{2}(z_{i})} + \frac{R_{\mathsf{H}}^{k}(z_{i})}{\sigma_{k}^{2}(z_{i})}\right), \qquad (11)$$

onde σ_j , σ_k , e $R_{\rm H}^j$, $R_{\rm H}^k$ são, respectivamente, erros e dados para duas medidas independentes, $j \in k$, no mesmo redshift, z_i .

Figura 10: Reconstrução da escala de homogeneidade $R_{\rm H}(z)$ usando o Processo Gaussiano (linha tracejada) e as medidas de $R_{\rm H}(z)$ apresentadas na Tabela 1; a sombra representa 95 % CL. Figura extraída de Avila et al.(2021).

Figura 11: Função de crescimento, f(z), usando a reconstrução de $R_{\rm H}(z)$. Foi assumido a aproximação DPL durante o processo. Figura extraída de Avila et al.(2021).

Conclusões e considerações finais

 A partir da teoria de perturbações cosmológicas e do estudo da distribuição fractal em catálogos de galáxias, é possível obter uma relação entre f(z) e R_H(z).

- A partir da teoria de perturbações cosmológicas e do estudo da distribuição fractal em catálogos de galáxias, é possível obter uma relação entre f(z) e R_H(z).
- Nossos resultados mostram que a função f(z) obtida a partir da escala de homogeneidade concorda com o modelo cosmológico vigente, ΛCDM, e com os dados de f(z) obtidos da literatura.

- A partir da teoria de perturbações cosmológicas e do estudo da distribuição fractal em catálogos de galáxias, é possível obter uma relação entre f(z) e R_H(z).
- **2** Nossos resultados mostram que a função f(z) obtida a partir da escala de homogeneidade concorda com o modelo cosmológico vigente, Λ CDM, e com os dados de f(z) obtidos da literatura.
- No entanto, tal concordância é esperada, já que a função ζ(R_H) (modelo DPL) foi ajustada ao modelo ΛCDM.

- A partir da teoria de perturbações cosmológicas e do estudo da distribuição fractal em catálogos de galáxias, é possível obter uma relação entre f(z) e R_H(z).
- **2** Nossos resultados mostram que a função f(z) obtida a partir da escala de homogeneidade concorda com o modelo cosmológico vigente, Λ CDM, e com os dados de f(z) obtidos da literatura.
- No entanto, tal concordância é esperada, já que a função ζ(R_H) (modelo DPL) foi ajustada ao modelo ΛCDM.
- Tal relação, entre f(z) e R_H(z), é universal? A partir de uma definição geral de R_H(z), pode-se obter a mesma relação?