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A B S T R A C T 

We propose a no v el approach to obtain the growth rate of cosmic structures, f ( z), from the evolution of the cosmic homogeneity 

scale, R H 

( z). Our methodology needs two ingredients in a specific functional form: R H 

( z) data and the matter two-point correlation 

function today, i.e. ξ ( r , z = 0). We use a Gaussian Process approach to reconstruct the function R H 

. In the absence of suitable 
observational information of the matter correlation function in the local Universe, z � 0, we assume a fiducial cosmology to 

obtain ξ ( r , z = 0). For this reason, our final result turns out to be a consistency test of the cosmological model assumed. Our 
results show a good agreement between: (i) the growth rate f 

R H ( z) obtained through our approach, (ii) the f � CDM ( z) expected 

in the fiducial model, and (iii) the best-fitting f ( z) from data compiled in the literature. Moreo v er, using this data compilation, 
we perform a Gaussian Process to reconstruct the growth rate function f data ( z) and compare it with the function f 

R H ( z) finding 

a concordance of < 2 σ , a good result considering the few data available for both reconstruction processes. With more accurate 
R H 

( z) data, from forthcoming surv e ys, the homogeneity scale function might be better determined and would have the potential 
to discriminate between � CDM and alternative scenarios as a new cosmological observable. 

K ey words: Cosmology: Observ ations – Cosmology: Large-Scale Structure of the Universe. 

1  I N T RO D U C T I O N  

There is an increasing interest in measurements of the growth rate 
of cosmic structures, f ( z), because this function behaves differently 
for cosmological models based on different theories of gravity (see 
e.g. Huterer et al. 2015 ; Kazantzidis & Perivolaropoulos 2018 ; Basi- 
lakos & Anagnostopoulos 2020 ; Linder 2020 ; Velasquez-Toribio & 

Fabris 2020 ); notoriously, the concordance cosmological model 
Lambda cold dark matter ( � CDM) is based on the theory of general 
relativity. In this scenario, precise measurements of f ( z) from diverse 
cosmological tracers measured at several redshifts would determine 
if the � CDM model correctly describes the evolution of the function 
f ( z) (Pezzotta et al. 2017 ; Aubert et al. 2020 ; Bautista et al. 2021 ; 
Avila et al. 2021 ), and to investigate classes of models based on 
modified gravity theory (Alam et al. 2020 ; Ntelis et al. 2020 ). But 
the interest in f ( z) is more fundamental. In fact, since the early works 
of Peebles ( 1965 ), Silk ( 1968 ), and Sunyaev & Zeldovich ( 1970 ), 
the theory of cosmological perturbations searches to describe the 
clustering evolution of the primordial density fluctuations, from the 
earliest times to the currently observed universe, where the growth 
rate of structures f ( z) represents a measurement of such clustering 
evolution. 

The measurements of f ( z) can be done with good precision using 
the Redshift Space Distortions (RSD) approach, that is, studying the 
peculiar velocities caused by local gravitational potentials that intro- 
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duce distortions in the two-point correlation function (2PCF; Kaiser 
1987 ). Calculating the 2PCF from a galaxy surv e y, more pre- 
cisely, the anisotropic correlation function, ξ ( s , μ) (Hamilton 1992 ; 
Hamilton & Culhane 1995 ), one can constrain the product f σ 8 , 
where σ 8 is the variance of the matter fluctuations at the scale of 
8 Mpc/ h (Juszkiewicz et al. 2009 ; Song & Percival 2009 ). For f σ 8 

data compilations, see e.g. Zhang & Li ( 2018 ), Sagredo, Nesseris & 

Sapone ( 2018 ), and Alam et al. ( 2021 ). 
The growth rate of cosmic structures, f , is defined as (Strauss & 

Willick 1995 ) 

f ( a ) ≡ d ln D( a ) 

d ln a 
, 

where D = D ( a ) is the linear growth function, and a is the scale 
factor in the Robertson–Walker metric, based on general relativity 
theory. Apply the abo v e equation to a catalogue of cosmic objects 
to measure f does not work, because what one can measure directly 
from the data surv e y is the density contrast δ( r , a ) and not the growth 
function D ( a ). In this work, we propose a solution for this problem: 
search for a cosmic observable function that depends only on cosmic 
time (equi v alently, on the redshift z or the scale factor a ) instead 
of D ( a ) in the abo v e equation, being able to quantify the clustering 
evolution to provide a measurement of the growth rate of cosmic 
structures. 

The Cosmological Principle is a fundamental piece in the con- 
cordance model of cosmology (Peebles 1980 ). It claims that, at 
sufficiently large scales, the universe is statistically homogeneous 
and isotropic (regarding the statistical isotropy of the universe, see 
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e.g. Bernui et al. 2007 ; Bernui, Oliveira & Pereira 2014 ; Pereira & 

Pitrou 2015 ; Bengaly et al. 2017 ; Tarnopolski 2017 ; Dainotti, Del 
Vecchio & Tarnopolski 2018 ; Marques et al. 2018 ; R̆ ́ıpa & Shafieloo 
2019 ). Several teams analysed galaxy surveys to calculate the scale 
where the transition from an inhomogeneous to a homogeneous 
distribution occurs, termed the homogeneity scale R H (Scrimgeour 
et al. 2012 ; Laurent et al. 2016 ; Ntelis et al. 2017 ). For recent 
analyses, see e.g. Ntelis et al. ( 2019 ), Heinesen ( 2020 ), P ande y 
( 2021a ), P ande y & Sarkar ( 2021b ), Gon c ¸alves et al. ( 2021 ), De 
Marzo, Labini & Pietronero ( 2021 ), and Camacho & Gazta ̃ naga 
( 2021 ). In addition, analyses of the angular scale homogeneity 
have also been done to find the angular scale of homogenenity, 
θH , (Alonso et al. 2015 ; Gon c ¸alves et al. 2018a ; Avila et al. 2018 , 
2019 ), considered model independent measurements because one 
does not assume a cosmological model, as in the analyses of R H , 
when one uses a fiducial cosmology to calculate 3D distances. At 
present, diverse deep astronomical surveys map large volumes of the 
universe, permitting to probe the evolution of R H , although it is not as 
accurate as desirable. The next generation of surveys foresees a large 
number of R H measurements with an impro v ed accurac y (Amendola 
et al. 2018 ; Ivezi ́c et al. 2019 ). 

In this work, we will show that it is possible to use information 
from R H , more precisely from the homogeneity scale evolution 
d R H /d z , to obtain the cosmic evolution of the growth rate of structures 
f ( z). From the theoretical point of view, the homogeneity scale can 
be related to the 2PCF, ξ ( r ) (Peebles 1980 ; Ntelis et al. 2017 ). 
From the linear perturbation theory, the redshift evolution of ξ ( r ) 
is proportional to D ( z ) 2 then, F [ R H ( z )] D ( z ) 2 ∝ cte, where F is a 
functional of the homogeneity scale function R H ( z). As we shall see, 
this proportionality leads to the growth rate f ( z) through the redshift 
deri v ati ve of ξ̄ ( R H ( z)), the v olume-a veraged 2PCF. The approach to 
know the functional F needs to assume parameters that we determine 
assuming a � CDM fiducial cosmology. In this sense, our analyses 
should be considered as a test of consistency for the � CDM model. 

The relationship between f and R H indicates that with precise 
homogeneity scale data, R H ( z), measured at several redshifts, one can 
determine with good accuracy the growth rate of cosmic structures 
f = f ( z), which in turn can be used to discriminate between the con- 
cordance � CDM and competing models based on modified gravity 
theories. Additionally, these data could be used in statistical analyses 
to find cosmological parameters. In other words, the homogeneity 
scale data, R H ( z), would indeed play the role of a no v el cosmological 
observable, as first discussed by Ntelis et al. ( 2019 ). 

This work is organized as follows. In Section 2, we review the 
main equations of the linear theory of matter perturbations. In 
Section 3, we explain the methodology to obtain the transition scale 
to homogeneity and, for the first time, the relation between R H ( z) and 
f ( z). In Section 4, we explain the reconstruction procedure to obtain 
a smooth curve of R H ( z), and d R H ( z)/d z , both used then to obtain f ( z) 
according to our procedure. In Sections 5, we show our results and 
discuss them, while in Section 6, we present our conclusions. 

2  G ROW T H  R AT E  O F  COSMIC  STRUCTURES  

To describe the structure formation in an isotropic and homogeneous 
universe we used a perturbation approach: small deviation in the 
early universe has a slow evolution that can be described by a linear 
perturbation theory (Mukhanov, Feldman & Brandenberger 1992 ). 
One defines the density contrast as 

δ( r , t) ≡ ρ( r , t) − ρ̄( t) 

ρ̄( t) 
, (1) 

where ρ( r , t ) is the matter density at the comoving vector position r 
at cosmic time t and ρ̄( t) is the average matter density measured in 
the hyper-surface of constant t . In the linear and Newtonian regime, 
the gravitational potentials are small and the perturbation scale is 
smaller than the Hubble radius, λ � c / H 0 , where c is the speed of 
light and H 0 is the Hubble constant. Over this condition, the structure 
formation is described with the fluid equations 

δ̇ = − 1 

a 
∇ · v , (2) 

v̇ + H v = − 1 

a ̄ρ
∇ δp − 1 

a 
∇ δ
 , (3) 

∇ 

2 δ
 = 4 πGa 2 ρ̄ δ , (4) 

which are the continuity, Euler, and Poisson equations, respectively, 
perturbed at first order in comoving space. The dot corresponds to a 
partial deri v ati ve in cosmic time. The physical quantities v , δp , and 
δ
 are the peculiar velocity, pressure, and the perturbed gravitational 
potential, respectively. 

Combining equations (2), (3), and (4), and assuming adiabatic 
perturbations condition, we obtain the well known equation that 
describes the linear density contrast evolution of the matter density 

δ̈m 

+ 2 
ȧ 

a 
δm 

− 4 πG ̄ρm 

δm 

= 0 . (5) 

In the linear approximation, the density contrast is a function of time 
only, that is, δm ∼ D ( t ). From this, one can define the growth rate of 
cosmic structures as 

f ( a) ≡ a 

D 

d D 

d a 
= 

d ln D 

d ln a 
. (6) 

In the � CDM model we have the following approximation (Lahav 
et al. 1991 ) 

f ( z) � �0 . 6 
m 

( z) + 

�� 

70 

(
1 + 

1 

2 
�m 

( z) 

)
, (7) 

where �m and �� 

are the matter and dark energy cosmological 
parameters, respecti vely. An alternati ve approximation is given 
by (Linder 2005 ; Linder & Cahn 2007 ) 

f ( z) = �γ
m 

( z) , (8) 

where γ is the growth index. In the � CDM model, γ = 6/11 
� 0.55. This parameter assumes distinct values beyond � CDM 

cosmology (Basilakos 2012 ). 

3  TRANSI TI ON  SCALE  TO  H O M O G E N E I T Y  

The most used methodology to study the homogeneity of galaxy 
or quasars distributions is to count the number of cosmic objects, 
N gal , inside a sphere of radius r , and divide for N rand , the equi v alent 
count but for a random distribution, that has the same features as 
the original one. Then, we can define the scaled counts-in-spheres , 
N ( < r) (Scrimgeour et al. 2012 ) 

N ( < r) ≡ N gal ( < r) 

N rand ( < r) 
, (9) 

where for a homogeneous distribution, at large scales, it goes to 1. 
It can be shown that N ( < r) is related to the two-point correlation 
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function ξ ( r ) 1 

N ( < r) = 1 + 

3 

r 3 

∫ r 

0 
ξ ( s ) s 2 d s . (10) 

From the function N ( < r), one can define the correlation dimension 
function D 2 ( r) (for details, see the appendix A in Ntelis et al. 2017 ), 

D 2 ( r) ≡ d ln N ( < r) 

rmd ln r 
+ 3 . (11) 

Despite the fact that most studies present both estimators, N ( < r) 
and D 2 ( r), the result from the correlation dimension is considered 
more robust, because it is less correlated for most scales (Scrimgeour 
et al. 2012 ; Ntelis et al. 2017 ). 

To finish this section, we discuss the arbitrary criterion used to 
determine the scale where the transition to homogeneity occurs, R H . 
Consider the following equation 

D 2 ( R H ) = 3(1 − ε) . (12) 

In an ideal situation, one expects ε = 0, that is, when the homogeneity 
scale is attained the value of ε should be ε = 0, such that the transition 
to homogeneity occurs on the scale at which D 2 calculated from data 
achieve the value 3. However, due to systematic effects present in 
the galaxy surv e ys, Scrimgeour et al. ( 2012 ) suggested to fix the 
value of ε at, for example, 0.01, which gives us D 2 ( R H ) = 2 . 97, 
that is, 1 per cent below 3. We assume this value because it is 
commonly adopted in the literature, and allow us to study the scale 
of homogeneity for different tracers in a large range of redshift. 
Anyhow, as we will show next, our methodology is independent of 
ε, due to the redshift deri v ati ve. 

3.1 The growth rate of cosmic structures from the homogeneity 
scale 

As mentioned abo v e, the scaled counts-in-spheres, N ( < r), is related 
to the two-point correlation function, ξ ( r ; z), at redshift z 

ξ ( r = | x − y | ; z) = 〈 δ( x ; z) δ( y ; z) 〉 , (13) 

that is, is the spatial average of the product of the density contrasts 
e v aluated at the arbitrary positions of a pair of galaxies, x , y , at 
redshift z. The redshift evolution of ξ can be obtained assuming for 
the equation (5) the solution δ( r ; z) = δ( r ; z = 0) D ( z) (Schneider 
2006 ). This leads to 

ξ ( r = | x − y | ; z) = 〈 δ( x ; z) δ( y ; z) 〉 
= D 

2 ( z) 〈 δ( x ; z = 0) δ( y ; z = 0) 〉 
= D 

2 ( z) ξ ( r; z = 0) , (14) 

where ξ ( r ; z = 0) is the two-point correlation function at z = 0. From 

equation (14), one can rewrite the scaled counts-in-spheres as 

N ( < r, z) = 1 + D 

2 ( z) ̄ξ ( r) , (15) 

where 

ξ̄ ( r ) ≡ 3 

r 3 

∫ r 

0 
ξ ( s , z = 0) s 2 d s (16) 

is the volume average of the correlation function. From the equa- 
tion (11), one has 

D 2 ( r , z) = 

r D 

2 ( z) 

1 + D 

2 ( z) ̄ξ ( r) 

d ̄ξ ( r ) 

d r 
+ 3 . (17) 

1 For applications of the two-point correlation function in clustering analyses, 
see e.g. de Carvalho et al. ( 2018 , 2021 ) and Carvalho et al. ( 2020 ). 

It is useful to define the following quantity: 

ζ ( r ) ≡ d ̄ξ ( r ) 

d r 
. (18) 

For the scale where the transition to homogeneity occurs, r = R H , 
equation (17) becomes 

R H ( z ) D 

2 ( z ) ζ [ R H ( z )] = −3 ε (1 + D 

2 ( z ) ̄ξ [ R H ( z )]) � −3 ε , (19) 

where we consider only the first-order term. Now, taking the redshift 
deri v ati ve of equation (19) we have 

d 

d z 

(
R H D 

2 ζ
) = 0 . (20) 

This differential equation relates in a simple way R H ( z) and D ( z). 
Finally, separating each term of equation (20), we have 

− 2 

D 

d D 

d z 
= 

1 

R H 

d R H 

d z 
+ 

1 

ζ

d ζ

d z 
. (21) 

Using the equation (6) in equation (21), we have 

f ( z) = 

1 + z 

2 

(
1 

R H 

d R H 

d z 
+ 

1 

ζ

d ζ

d z 

)
, (22) 

which, explicitly, is independent of ε. To obtain f ( z), in addition to 
R H data, we must obtain ζ [ R H ( z)] from a correlation function in z = 

0. Or, in a model dependent way, use an approximation, as we will 
describe in the next section. 

4  TESTING  T H E  M O D E L  

In this section, we describe our methodology, aimed to solve 
equation (22), and apply it to a set of R H data to obtain the growth 
function f ( z). First, we present the data, and secondly, we detail 
the approximation used to define ζ ( R H ). By last, we describe the 
Gaussian Process methodology used to reconstruct R H and d R H /d z . 

4.1 Data 

Here, we use two sets of R H measurements. The first one is provided 
by Ntelis et al. ( 2017 ), through the study of the CMASS galaxy 
sample of the BOSS surv e y, the y calculated the transition to ho- 
mogeneity for 5 uncorrelated redshift bins in the interval 0.43 −0.70. 
The authors analysed separately the North (NGC) and South Galactic 
Caps (SGC), at the same redshift bins, obtaining five independent 
measurements for each of them (i.e. a total of 10 R H data). The second 
R H data set comes from Gon c ¸alves et al. ( 2018b ), who analysed the 
quasars sample from the fourteenth data release of the Sloan Digital 
Sk y Surv e y (SDSS-IV DR14) in the redshift interval 0.80 −2.24. 
They measured R H in each one of four uncorrelated redshift bins (i.e. 
4 R H data) studied employing two estimators to calculate N ( < r): 
Landy-Szalay (LS) and Peebles–Hauser (PH) estimators, obtaining 
similar results in both cases. In Table 1 , we list these R H ( z) data with 
their respective redshifts. 

Following Ntelis et al. ( 2019 ), we combine the R H data from NGC 

( j ) and SGC ( k ) using a weighted average, defined as 

R 

w 
H ( z i ) ≡

( 

1 

σ 2 
j ( z i ) 

+ 

1 

σ 2 
k ( z i ) 

) −1 

×
( 

R 

j 

H ( z i ) 

σ 2 
j ( z i ) 

+ 

R 

k 
H ( z i ) 

σ 2 
k ( z i ) 

) 

, (23) 

where σ j , σ k , and R 

j 

H , R 

k 
H are, respectively, the errors and data for 

two independent measurements, j and k , in the same redshift, z i . At 
first order, we can neglect the covariance between redshift bins. For 
the Gon c ¸alves et al. ( 2018b ) data, we choose the data from the PH 

estimator to optimize our analyses. 
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Figure 1. Left-hand panel: Relative error between ζ [ R H ] as fitted using the DPL approximation (equation 24) and the expectation from the � CDM model. 
Right-hand panel: Relative error of the cosmic growth rate f ( z) calculated using equation (26) with respect to f ( z) obtained using the equation (6) assuming the 
same � CDM fiducial cosmology; one also observes the noisy pattern caused by the numerical deri v ati ve. 

Notice that the R H we use here are already corrected by the 
corresponding bias factor. The bias for each redshift bin have been 
determined by the respective authors, which provided the bias- 
corrected measurements. This is important because each homo- 
geneity scale measurement is calculated for a specific tracer and 
a proper combination of these data requires their conversion to the 
corresponding transition scale for the underlying matter distribution. 

4.2 Double power-law approximation for ζ ( R H 

) 

In order to use the selected R H data sample to calculate f R H ( z) = 

f ( z), using equation (22), we need to define ζ ( R H ). For this we ap- 
proximate ζ ( R H ) by a Double Power Law (DPL) function, similar to 
that one used in the study of the AGN luminosity function (Kulkarni, 
Worseck & Hennawi 2019 ) 

ζ ( R H ) = − CR 

−1 
H 

( R H /R � ) α + ( R H /R � ) β
, (24) 

where C , R � , α, and β are the parameters to be adjusted. Taking its 
redshift deri v ati ve 

1 

ζ

d ζ

d z 
= − (1 + α)( R H /R � ) α + (1 + β)( R H /R � ) β

( R H /R � ) α + ( R H /R � ) β
1 

R H 

d R H 

d z 
, (25) 

the growth rate can be written as 

f R H ( z) = 

1 + z 

2 

⎡ 

⎢ ⎣ 

1 −
(1 + α) 

(
R H 
R � 

)α

+ (1 + β) 
(

R H 
R � 

)β

(
R H 
R � 

)α

+ 

(
R H 
R � 

)β

⎤ 

⎥ ⎦ 

1 

R H 

d R H 

d z 
, 

(26) 

where R H = R H ( z). 
We fit the four free parameters of the DPL approximation to 

the theoretical expectation for ζ ( R H ), for R H corresponding the 
redshift range 0 < z < 2, considering the � CDM model baseline 
obtained from Planck Collaboration ( 2020 ), that is, h = 0.6727, 
�c h 2 = 0.1202, �b h 2 = 0.02236, �m ν = 0.0600, n s = 0.9649, 
σ 8 = 0.8120, and ln (10 10 A s ) = 3.045. For this we employ the 
public code cosmopit 2 (Ntelis et al. 2017 , 2018 ) to produce 
ζ ( R H ) � CDM , which uses the public code CLASS 3 (Lesgourgues 2011 ; 
Blas, Lesgourgues & Tram 2011 ) as a background. We obtain for 
these parameters [ R � , α, β, C ] = [46.16, 2.76, 1.12, 0.19], whose 

2 https:// github.com/lontelis/ cosmopit
3 https:// github.com/lesgourg/ class public 

Table 1. The R H ( z) data used in the analyses. 

z R H (Mpc h −1 ) Reference 

NGC SGC 

0.457 64.20 ± 1.30 66.70 ± 1.60 Ntelis et al. ( 2017 ) 
0.511 65.40 ± 0.90 63.90 ± 1.50 
0.565 62.60 ± 0.80 65.20 ± 1.60 
0.619 60.40 ± 0.80 60.10 ± 1.10 
0.673 59.00 ± 0.80 60.10 ± 1.80 

PH LS 

0.985 48.78 ± 3.82 52.93 ± 7.55 Gon c ¸alves et al. ( 2018b ) 
1.350 40.56 ± 3.39 40.43 ± 5.64 
1.690 36.19 ± 3.45 36.66 ± 4.80 
2.075 27.91 ± 3.91 29.94 ± 3.35 

error for each of them is less than 1 per cent . The plot on the left- 
hand panel of Fig. 1 shows the relative error between the input 
� CDM expectation and the fitted DPL approximation, where we 
observe a good agreement on all scales. The maximum discrepancy 
of 0.3 per cent appears at the largest R H scales considered here. 
This occurs due to the effect introduced in ζ ( R H ) by the presence 
of the BAO feature at ∼100 h −1 Mpc in the correlation function, 
then the DPL approximation fails to model the large scales. See 
Appendix A for more details. Notice that, although the methodology 
does not depend on ε explicitly, as shown in equation (22), we 
follow Scrimgeour et al. ( 2012 ) and fix this value to ε = 0.01 to 
obtain the ζ [ R H ( z)] � CDM function and then calculate the best-fitting 
parameters for the DPL approximation. In Appendix B, we test the 
criterion for ε and the dependence of our methodology on some 
cosmological parameters. Additionally, the right panel of Fig. 1 
sho ws the relati ve error between the cosmic growth rate f R H ( z) 
calculated using the DPL approximation equation (26) and that 
obtained from equation (6) assuming the � CDM fiducial model. 
As observed, for almost the whole redshift interval, we observe a 
maximum deviation of ∼ 0 . 5 per cent , again at low redshifts, where 
we also notice the noisy pattern caused by the numerical deri v ati ve. 
Note that, since we have a small set of R H data, we use a reconstructed 
function from them to be able to appropriately calculate the deri v ati ve 
d R H /d z in equation (26), a procedure detailed in the following section. 

4.3 Gaussian process regression 

To extract maximum cosmological information from the R H data 
listed in Table 1 we perform a Gaussian Process (GP) Regression 
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Figure 2. Left-hand panel: Reconstruction of the homogeneity scale function R H ( z) using Gaussian Process (dashed line) and the R H measurements (red 
squares) presented in Table 1 (see the text for details about the data set); the shadow represents the 95 per cent CL. Right-hand panel: Deri v ation of the growth 
rate of structures f R H ( z) (dashed line) using the reconstructed function R H ( z), shown in the left-hand panel plot, and the equation (26), where the shadow 

represents the 95 per cent CL. The solid line represents the expression expected in the � CDM model, f � CDM ( z), obtained from equation (6) with �Planck 
m = 0 . 315; 

instead, the dot–dashed line shows the expected growth rate using equation (6) but with �m = 0 . 270 + 0 . 079 
−0 . 073 , a value obtained from the best-fitting analyses of 

the f ( z) data as shown in Fig. 4 (the red squares are the data listed in Table D1 ). Comparing the f R H ( z) (dashed line) and the best-fitting f ( z) (dot–dashed line) 
functions we found an agreement of < 2 σ (considering the corresponding uncertainties, not shown in the figure to a v oid excess of information). 

method, obtaining in this way a smooth curve for R H ( z) and, by 
numerical deri v ation, for d R H /d z ; this information is then used in 
equation (26) to obtain the f R H ( z) function. The GP consists of 
generic supervised learning method designed to solve regression 
and probabilistic classification problems, where we can interpolate 
the observations and compute empirical confidence intervals and a 
prediction in some region of interest (Rasmussen 2003 ; Pezzotta et al. 
2017 ). The GP method design from machine learning techniques 
is the state of the art to obtain statistical information and model 
prediction from some previously known information or data. In the 
cosmological context, GP techniques has been used to reconstruct 
cosmological parameters, like the dark energy equation of state, ω( z), 
the expansion rate of the universe, the cosmic growth rate, and other 
cosmological functions (see e.g. Seikel, Clarkson & Smith 2012 ; 
Shafieloo, Kim & Linder 2012 ; Zhang & Li 2018 ; Marques et al. 
2019 ; 2020 ; ; Nunes et al. 2020a ; Nunes & Bernui 2020b ; Renzi & 

Silv estri 2020 ; Bonilla, K umar & Nunes 2021a ; Bonilla et al. 2021b ; 
Colg ́ain & Sheikh-Jabbari 2021 ; Escamilla-Rivera, Said & Mifsud 
2021 ; Sun, Jiao & Zhang 2021 for a short list of references). 

The main advantage in this procedure is that it is able to make a 
non-parametric inference using only a few physical considerations 
and minimal cosmological assumptions. Our aim is to reconstruct a 
function F ( x i ) from a set of its measured values F ( x i ) ± σ i , where x i 
represent our data sample. It assumes that the value of the function 
at any point x i follows a Gaussian distribution. The value of the 
function at x i is correlated with the value at other point x ′ i . Thus, a 
GP is defined as 

F ( x i ) = GP ( μ( x i ) , cov [ F ( x i ) , F ( x i )]) , (27) 

where μ( x i ) and cov[ F ( x i ), F ( x i )] are the mean and the variance of 
the variable at x i , respectiv ely. F or the reconstruction of the function 
F ( x i ), the covariance between the values of this function at different 
positions x i can be modeled as 

cov [ F ( x) , F ( x ′ )] = k( x, x ′ ) , (28) 

where k ( x , x 
′ 
) is known as the kernel function. The kernel choice is 

often crucial for obtaining good results regarding the reconstruction 
of the function of interest. 

The kernel most commonly used is the standard Gaussian Squared- 
Exponential approach, which is defined as 

k 
(
x , x ′ 

) = σ 2 
F exp 

(
−| x − x ′ | 2 

2 l 2 

)
, (29) 

where σ 2 
F is the signal variance, which controls the strength of the 

correlation of the function F , and l is the length scale that determines 
the capacity to model the main characteristics (global and local) 
in the e v aluation region to be predicted (or coherence length of 
the correlation in x ). These two parameters are often called hyper- 
parameters. 

It is well known that depending on the data set in analysis, the 
kernel choice is an important point. We verify that our data set is 
well modelled by the choice abo v e, and that other kernels do not 
produce major changes in our main results (see Appendix B). In 
what follows, we discuss our results. 

5  RESULTS  A N D  DI SCUSSI ONS  

In this section, we present our main results. We performed a GP to 
reconstruct the homogeneity scale, R H ( z). From this, using the DPL 

model, we can obtain f R H ( z). Also, we perform the GP to our f ( z) 
data compilation. Finally, we study the parameter space H 0 – �m 

from the same data compilation. 

5.1 Results of the reconstruction of f R H ( z) and f ( z) 

In obtaining the results to be described in this section, we use 
the Scikit-learn code (Pedregosa et al. 2011 ), which is a PYTHON 

module integrating a wide range of state-of-the-art machine learning 
algorithms, to model the GP described in the previous section. 
The hyperparameters σ 2 

F and l are optimized during the fitting by 
maximizing the log-marginal-likelihood. 

The left-hand panel of Fig. 2 shows the best-fitting prediction of 
the reconstruction GP of the homogeneity scale function R H ( z), at 
95 per cent CL, from the data sample listed in Table 1 (represented by 
red squares in this plot). As verified in this plot, the R H ( z) data reveals 
the expected behaviour in the evolution of the matter clustering in 
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Figure 3. Comparison of the growth rate f R H ( z) obtained from equation (26) 
(dashed line) and the GP reconstructed function f data ( z) (dot–dashed line) 
using the data compilation given in Table D1 . Both reconstructed functions 
show a significant o v erlapping of the respective 2 σ regions (shaded areas). 

Figure 4. The 68 per cent (dark shaded area) and 95 per cent (light shaded 
area) CLs re gions, respectiv ely, on the parametric space H 0 − �m from f ( z) 
+ Planck- H 0 prior and f ( z) + BAO joint analyses. The parameter H 0 is 
measured in the units of km s −1 Mpc −1 . 

the Universe, going from a nearly homogeneous situation at high 
redshift to a non-linear clustered matter at low redshift where the 
homogeneity scale is attained only at large scales. 

We use these R H ( z) data to obtain the evolution of the growth rate 
of cosmic structures, f R H ( z), according to equation (26) following 
the procedure described in Section 3.1. Our result can be observed on 
the right panel of Fig. 2 , where f R H ( z) is plotted as a dashed line and 
the current measurements of f ( z), listed in the Table D1 in appendix 
D, as red squares. It is important to mention that f R H obtained 
through our procedure does not represent a direct f ( z) measurement, 
but a non-parametric inference that can describe the evolution of the 
growth rate function from minimal cosmological assumptions. We 
also show for comparison the � CDM expected growth rate using 
equation (6) in two cases: using �Planck 

m 

= 0 . 315 (continuous line) 
from the Planck cosmological parameters, and using �m = 0.26 
(dot–dashed line) from the best-fitting data analyses shown in Fig. 4 . 

On the other hand, it is interesting to compare the growth rate of 
cosmic structures f R H ( z) from the evolution of the cosmic homo- 
geneity scale, with the f data ( z) resulting from a GP reconstruction 
using the current f ( z) data listed in Table D1 . Notice that, the 
reconstruction procedure of f R H ( z) is performed in the redshift 
interval with R H ( z) data, namely z ∈ [0.457, 2.075], while the 
reconstruction procedure of f data ( z) is done with f ( z) data in the 
interval z ∈ [0.013, 1.4]. Then, for the comparative analysis we 
consider the common redshift interval: z ∈ [0.457, 1.4] shown in 
Fig. 3 , where we observe that both functions agree well ( < 2 σ level), 
o v erlapping significantly. 

One should notice that a plausible systematic present in the R H 

data, listed in Table 1 , is sourced by the necessity to assume a 
fiducial cosmology to calculate the 3D distances to the cosmic objects 
(galaxies or quasars), so that one can determine the 3D separation 
distance between each pair of them, information used to measure R H . 
As a matter of fact, the R H ( z) measurements are model dependent 
and one should be cautious with this. For instance, the analyses done 
by Ntelis et al. ( 2017 ) assumed a fiducial cosmology different to that 
assumed by Gon c ¸alves et al. ( 2018b ), a fact that helps to explain why 
in the left panel of Fig. 2 one data set appear slightly o v er and the 
other slightly under the reconstructed function (dashed line). 

5.2 Validation test of H 0 – �m 

plane estimates from the current 
compilation of growth rate data 

As a final discussion of this section, we will check what our 
compilation of f ( z) data, shown in Table D1 , can tell us about the 
� CDM baseline. Let us perform an analysis in three steps: 

(i) To constrain �m we consider f ( z) data (see Table D1 ) only. 
(ii) A combination f ( z) data plus a Gaussian prior on H 0 using the 

Planck-CMB best fit. Note that we are within a � CDM baseline, so 
to use Planck-CMB information in � CDM itself context is just to 
impro v e the constraint on �m . 

(iii) We consider the joint analysis f ( z) + BAO. In this work, we 
consider the most recent BAO data compilation comprised of the 
D V ( z )/ r d , D M 

( z )/ r d , and D H ( z )/ r d measurements compiled in Table 3 
in Alam et al. ( 2021 ). 

We use the Metropolis-Hastings mode in CLASS + Mon- 
tePython code (Lesgourgues 2011 ; Blas et al. 2011 ; Audren et al. 
2013 ; Brinckmann & Lesgourgues 2019 ) to derive the constraints 
on cosmological parameters from the data sets described abo v e, 
ensuring a Gelman–Rubin convergence criterion of R − 1 < 10 −3 . 

Fig. 4 shows the parameter space in the H 0 −�m plane at 68 per cent 
and 95 per cent CL from f ( z) + Planck- H 0 prior and f ( z) + BAO 

joint analyses, where f ( z) data refers to the measurements presented 
in Table D1 . The summary of the main results of our statistical 
analyses at 68 per cent CL are: �m 

= 0 . 27 + 0 . 079 
−0 . 073 ( f ( z) data only), 

�m 

= 0 . 279 + 0 . 066 
−0 . 067 ( f ( z) + H 0 -Planck) and �m 

= 0 . 291 + 0 . 033 
−0 . 030 and 

H 0 = 67 . 4 + 2 . 1 
−2 . 0 km s −1 Mpc −1 from f ( z) + BAO combination. 

As well known, there is a growing tension for low z measurements 
of f ( z) and it is weaker than the Planck- � CDM predictions (see Di 
Valentino et al. 2021 ; Perivolaropoulos & Skara 2021 and reference 
therein for a re vie w and the recent discussion presented in Nunes & 

Vagnozzi 2021 ). Our results here also confirm that growth rate data 
based on the measurements in Table D1 predict a suppression on the 
amplitude of the matter density perturbation at low z due the low �m 

estimation in comparison with that from the Planck- � CDM, �m = 

0.315 ± 0.007 (Planck Collaboration 2020 ). On the right-hand panel 
of Fig. 2 , we also show the theoretical curve assuming our constraint 
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on �m . Despite predicting a lo w �m best-fitting v alue in our analysis, 
the error bar estimates are in agreement with Planck CMB at < 1 σ . 

6  C O N C L U S I O N S  

Measurements of the growth rate of cosmic structures, f , have the 
potential to differentiate between the theory of general relativity, that 
supports the concordance model � CDM, from alternative scenarios 
based on modified gravity models. Besides the efforts, the current 
uncertainties in such measurements do not allow to discern between 
competing models of modified gravity. 

This moti v ated us to search for a cosmological observable that 
depends only on the cosmic time t , or equi v alently on the redshift 
z. We propose to use the transition scale to homogeneity, R H ( z), to 
know the evolution of the growth rate f = f ( z). As shown in the 
Section 3.1, the relation between R H and f is not direct and one needs 
two ingredients: (i) a set of { R H ( z i ) } data – in the redshift interval of 
interest – to reconstruct the continuous function R H ( z) and to perform 

its redshift deri v ati ve; and (ii) the matter two-point correlation 
function at z = 0, ξ ( r , z = 0), that analyses distance scales of the order 
of the homogeneity scale. Ho we ver, there is no observational data to 
construct ξ ( r , z = 0), and one has to assume a fiducial cosmology 
to obtain it. For this reason, our analyses and results are actually 
consistency tests of the cosmological model assumed. 

Using GP, our reconstruction of the homogeneity scale function 
R H ( z) done in Section 5 shows the expected behaviour, although the 
current data set is small and with large errors (see Table 1 ). With the 
functions R H ( z) and ξ ( r , z = 0), and following our procedure, we use 
them in equation (26) to obtain the growth rate of cosmic structures 
f R H ( z). Our results, displayed in the right-hand panel of fig. 2 , show a 
good agreement between: (i) the growth rate f R H ( z) obtained through 
our approach, (ii) the f � CDM ( z) expected in the fiducial model, and 
(iii) the best-fit f ( z) from the set of { f ( z i ) } measurements available in 
the literature. Moreo v er, using this compilation of { f ( z i ) } data (see 
Appendix D), we perform a GP to reconstruct the growth rate function 
f data ( z) and compare it with the function f R H ( z) obtained from our 
approach, finding a concordance of < 2 σ as observed in Fig. 3 (notice 
the significant o v erlapping of their 2 σ re gions). This is a good result 
considering the few data available for both reconstruction processes. 

It is worth to note that our approach to find the growth rate of 
cosmic structures, f ( z), from the evolution of the cosmic homogeneity 
scale, R H ( z), relies on the definition of the homogeneity scale which 
is not unique (see e.g. P ande y 2021a ; P ande y & Sarkar 2021b ); in 
our approach, the homogeneity scale is provided by the estimator D 2 

through the analyses of the universe fractal structure (Scrimgeour 
et al. 2012 ). 

The relationship found between f and R H indicates that with precise 
homogeneity scale data, R H ( z), measured at several redshifts from 

forthcoming surv e ys (see e.g. Amendola et al. 2018 ; Iv ezi ́c et al. 
2019 ), one can determine with good accuracy the growth rate of 
cosmic structures f = f ( z), which in turn can be used to discriminate 
between the concordance � CDM and competing models based on 
modified gravity theories. Moreo v er, these data could be used in 
statistical analyses to find cosmological parameters. In summary, the 
homogeneity scale data, R H ( z), would indeed play the role of a no v el 
cosmological observable, as first discussed by Ntelis et al. ( 2019 ). 
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APPENDIX  A :  BA R  Y  O N  AC OUSTIC  

OSCILLATIONS  INFLUENCE  O N  T H E  DPL  

APPROX IMATION  

In Section 4.2, we have seen a discrepancy of 0.3 per cent between 
the fiducial model and the DPL model for R H � 80 Mpc h −1 . This 
small deviation in the fit can be attributed to the Baryon Acoustic 
Oscillations (BAO) signature, present around the scale 100 Mpc h −1 . 
To test this hypothesis, we perform our fit for the DPL approximation 
considering two estimates of the correlation function: one from the 
CLASS code and another for the case of absence of the BAO feature. 
For the last case, we use the fitting model given by Eisenstein & Hu 
( 1998 ) and implemented in the code nbodykit 4 to obtain ξ ( r ). 

Fig. A1 shows the relative difference ζ DPL / ζ� CDM 

− 1 obtained 
calculating the correlation function with and without the BAO 

feature. It is evident the impro v ement in the fitting of ζ obtained 

4 ht tps://nbodykit .readt hedocs.io/en/lat est/
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Figure A1. The relative difference ζDPL / ζ� CDM 

− 1 obtained calculating 
the correlation function with and without the BAO feature. 

from the correlation function without the BAO feature for R H < 40 
Mpc h −1 , with more significant effect for R H � 55 Mpc h −1 when 
compared to the correlation function with BAO. 

APPENDI X  B:  STUDYI NG  T H E  PARAMETER  

D E P E N D E N C E  O F  T H E  G ROW T H  R AT E  

In Section 3.1, we found a relation between f ( z) and R H ( z) that is, in 
principle, explicitly independent of the ε parameter. Ho we ver, when 
measuring R H ( z), one needs to fix ε. Then, it is important to check if 
this criterion affects the f ( z) estimate. Here, we investigate the impact 
of fixing ε, as well as whether our choice of cosmological parameters 
might affect the f ( z) obtained. 

We compare the result obtained from our fiducial model, f fiducial ( z), 
using the input parameters {

ε, ln 
(
10 10 A s 

)
, �K 

, �c h 

2 
} = { 0 . 01 , 3 . 045 , 0 . 0 , 0 . 1202 } , (B1) 

with the f ( z) resulting from the same fitting procedure but now 

varying these four parameters one at a time. The comparison is 
performed through the relative difference f ( z )/ f fiducial ( z ) − 1. 

Fig. B1 displays the relative difference between our input model 
and the 3 cases studied where ε = { 0.02, 0.05, 0.001 } . These 
values correspond to different definitions of the homogeneity scale, 
R H , where this scale is obtained when the data in analysis reaches 
2 per cent, 0.5 per cent, and 0.1 per cent below the limit value 3, 
respectively (Scrimgeour et al. 2012 ). We show that for the redshift 
interval of interest, 0 < z < 2, the error is below 0 . 5 per cent , which 
makes our approach robust with respect to ε. For the case ε = 0.001, a 
divergent behaviour is observed around z ∼ 1.4, where the function 
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Figure B1. The relative difference for f ( z) between our fiducial model, i.e. 
ε = 0.01, and the cases investigated with ε = { 0.02, 0.005, 0.001 } . 
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Figure B2. The relati ve dif ference, f ( z )/ f fiducial ( z ) − 1, considering the variations, one at a time, of three cosmological parameters: ln (10 10 A s ), �K , and �c h 2 . 
The left-hand panel shows the results for A s , which is basically noise. The middle panel shows the outcomes for �K where the relati ve dif ference is less than 
6 per cent for the whole interval of interest. The right-hand panel shows the dependence on �c h 2 which is � 4 per cent , with the largest values for low z. 

explodes up and come back from belo w. Ho we ver, we notice that 
such small ε is unpractical when investigating R H due to the statistical 
errors (and other systematics) inherent to the data analyses. 

Fig. B2 shows f ( z )/ f fiducial ( z ) − 1 for analyses obtained with the 
variation of three cosmological parameters one at a time: ln (10 10 A s ), 
�K , and �c h 2 . For ln (10 10 A s ) we use { 2.9, 3.1, 3.2 } , which is a large 
enough interval when we compare with the Planck best fit, namely, 
ln (10 10 A s ) = 3.045 ± 0.016. Our results, displayed in the left-hand 
panel of Fig. B2 , show nothing but statistical noise, indicating that 
our model is independent of ln (10 10 A s ) values. For �K , we consider 
{ − 0.1, −0.01, 0.1 } (see Fig. B2 , middle panel). Also well beyond 
2 σ uncertainty for the Planck best fit �K = −0.044 ± 0.0165. For all 
these cases, we observe a maximum of 6 per cent deviation, for the 
whole redshift interval. For all purposes, our approach has a small 
dependence on �K considering a large interval of possible values. 

For the analyses of the last parameter, �c h 2 , we consider { 0.11, 
0.125, 0.13 } . In these cases, we also find a slight dependence in 
our results, � 4 per cent , and decreasing for high z (see the right- 
hand panel of Fig. B2 ). As in the previous analyses, this result was 
somehow expected, because we are not modifying the meaning of 
f ( z), we just found an alternative way to find it. We already knew 

that the growth rate has a strong dependence in the matter density 
parameter, as seen in the parametrization f ( z) = �m ( z) γ , where γ
depends only on the constant of the equation of state, ω = −1, for the 
� CDM case, or modifications according to the gravity model used. 

APPENDIX  C :  CONSISTENCY  TEST  F O R  

DIFFERENT  K E R N E L S  

Our main result, i.e. the reconstruction of the homogeneity scale 
function, which, in turn, we use to deri ve the gro wth rate of structures, 
is based on the SE kernel. The SE kernel is a smooth covariance func- 
tion that can reproduce global characteristics, although sometimes it 
cannot reproduce local characteristics. 

As our data sample is nicely distributed, this kernel works 
smoothly. In order to test for possible systematic effects on the kernel 
choice, we examine our main results using this time the Mat ́ern class 
kernels. The Mat ́ern kernel can be written as 

K M ν
( τ ) = σ 2 

f 

2 1 −ν

�( ν) 

( √ 

2 ν τ

l 

) ν

K ν

( √ 

2 ν τ

l 

) 

, (C1) 

where K ν is the modified Bessel function of second kind, �( ν) is 
the standard Gamma function and ν is a strictly positive parameter. 
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Figure C1. The reconstruction of the growth rate of structures f R H ( z) using 
tw o different k ernels, namely, k ernel 1 (the SE kernel) and kernel 2 (the 
Mat ́ern kernel). 

Here, the hyper-parameters σ f and l are also optimized during the 
fitting. 

Fig. C1 shows the best-fitting prediction and the GP reconstruction 
of the f R H ( z) function using the SE and the Mat ́ern kernels. We do not 
find significant differences between both reconstructions; therefore, 
we conclude that they are statistically equi v alent. 

APPENDI X  D :  MEASUREMENTS  O F  T H E  

G ROW T H  R AT E  F U N C T I O N  

The literature reports diverse compilations of measurements of the 
growth rate of cosmic structures, f ( z) (see e.g. Basilakos 2012 ; 
Nunes et al. 2016 ; Sagredo et al. 2018 ), which we update here. 
Our compilation, shown in Table D1 , follows three criteria in order 
to a v oid or minimize possible data correlations, we consider: (i) f ( z) 
measurements obtained with cosmic tracers from different astronom- 
ical surv e ys or from disjoint redshift bins; (ii) direct measurements 
of f , and not measurements of f σ 8 that use a fiducial cosmological 
model to eliminate the σ 8 -dependence; (iii) the latest measurement 
of f when the same astronomical surv e y performed two or more 
measurements corresponding to several data releases. 
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Table D1. Data compilation of f ( z) measurements that shares important features, as explained in the Appendix D. 

Surv e y z f Reference Cosmological tracer 

ALF ALF A 0.013 0.56 ± 0.07 Avila et al. ( 2021 ) H I extragalactic sources 

2dFGRS 0.15 0.49 ± 0.14 Hawkins et al. ( 2003 ), Guzzo et al. ( 2008 ) Galaxies 

GAMA 0.18 0.49 ± 0.12 Blake et al. ( 2013 ) Multiple-tracer: blue & red gals. 

WiggleZ 0.22 0.60 ± 0.10 Blake et al. ( 2011 ) galaxies 

SDSS 0.35 0.70 ± 0.18 Tegmark et al. ( 2006 ) Luminous red galaxies (LRG) 

GAMA 0.38 0.66 ± 0.09 Blake et al. ( 2013 ) Multiple-tracer: blue & red gals. 

WiggleZ 0.41 0.70 ± 0.07 Blake et al. ( 2011 ) Galaxies 

2SLAQ 0.55 0.75 ± 0.18 Ross et al. ( 2007 ) LRG & QSO 

WiggleZ 0.60 0.73 ± 0.07 Blake et al. ( 2011 ) Galaxies 

VIMOS-VLT Deep Surv e y 0.77 0.91 ± 0.36 Guzzo et al. ( 2008 ) Faint galaxies 

2QZ & 2SLAQ 1.40 0.90 ± 0.24 Da ˆ Angela et al. ( 2008 ) QSO 
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