

Relatório técnico de

desenvolvimento da plataforma

web

BENCHMARKING DE

EDIFÍCIOS PÚBLICOS

Maio

2017

Relatório Técnico de Desenvolvimento da plataforma web

Projeto: Benchmarking de desempenho energético em edifícios públicos

CBCS - Conselho Brasileiro de Construção Sustentável
Olavo Kucker - Presidente do Conselho Deliberativo
Vanderley M. John e Orestes M. Gonçalves - Diretores

PNUD: Celena Souza e Willian Zanetti
MMA: Alexandra Maciel, Camila Vasconcelos e Alessandra Silva

Equipe:

Prof. Roberto Lamberts - Coordenador do CT Energia CBCS

Edward Borgstein

Alexandre Schinazi

Braúllio Nunes

Rosane Fukuoka

Maxine Jordan

Adriano Perez

Carolina Furlanetto Mendes

São Paulo – Maio, 2017

Observação:

A divulgação, cópia, publicação, reprodução e distribuição, todas sem fins comerciais, do

presente relatório pelo beneficiário do benchmarking é permitida, desde que seja feita referência

expressa ao PNUD, ao Ministério do Meio Ambiente e ao GEF.

Relatório de desenvolvimento de benchmarks

SUMÁRIO

PLATAFORMA ... 1

CONTEXTUALIZAÇÃO DO PROJETO .. 1

BENCHMARKING .. 1

PLATAFORMA ... 2

1. INTRODUÇÃO ... 2

2. FLUXO DE NAVEGAÇÃO .. 3

3. DESCRIÇÃO PLATAFORMA ... 8

4. AMBIENTES E SERVIDORES ... 8

4.1 REQUISITO MÍNIMO DE HARDWARE: .. 8

4.2 ESTRUTURAS E CÓDIGOS ... 9

4.3 FRONTEND E BACKEND ... 9

4.4 SERVICES .. 10

4.5 FOLHA DE ESTILOS .. 10

4.6 BOOTSTRAP .. 11

4.7 BANCO DE DADOS .. 11

4.8 RESTFUL API ... 12

5. INSTALAÇÃO DO SISTEMA - PACOTES E DEPENDÊNCIAS 13

6. DEFINIÇÃO DE SIGLAS E TERMOS .. 14

Relatório de desenvolvimento da plataforma web

1

PLATAFORMA
Ferramenta web operacional descrita em documento técnico contendo: a) especificação da

documentação do projeto; b) definição de siglas; c) busca de referências com especificações

técnicas voltadas à orientação de equipes de Tecnologia da Informação que por ventura venham

trabalhar com a calculadora e fazer ajustes futuros.

CONTEXTUALIZAÇÃO DO PROJETO
O Projeto 3E (Projeto PNUD BRA/09/G31 - “Transformação do mercado de eficiência energética

no Brasil”) compreende a construção de uma plataforma online que servirá para entrada de dados

de consumo energético e avaliação de edifícios através do benchmarking desenvolvido. Esta

plataforma tem como objetivos:

1) Avaliações de estoques de edifícios, comparando os níveis de eficiência entre os diferentes

edifícios da mesma organização, para determinar quais edifícios devem receber prioritariamente

trabalhos de retrofit e diagnóstico energético (avaliar diversos edifícios ao mesmo tempo);

2) Direcionamento das estratégias de gestão de energia, com avaliações periódicas para

identificação de problemas e potenciais de melhoria (avaliações regulares do mesmo edifício);

3) Medição e verificação de economias realizadas a partir de retrofits em determinados edifícios

(avaliações pós-retrofit).

BENCHMARKING
A base do desenvolvimento do benchmark é a avaliação do comportamento do consumo

energético de edifícios em diferentes condições e situações, de forma que seja possível entender

os impactos de fatores externos e fatores de ocupação no seu desempenho. Para a captação de

dados de consumo energético em edifícios públicos, foi realizada uma chamada pública para

edifícios dos poderes executivo, legislativo e judiciário, nos planos municipal, estadual e federal,

com área total acima de 500m² e tipologia de escritórios, que submeteram dados sobre os

edifícios e contas de energia dos últimos 12 meses de operação. Dos edifícios que participaram

da chamada pública, foram selecionados 20 para receberem medidores de energia e diagnósticos

energéticos detalhados, identificando os seus níveis de desempenho, possíveis melhorias e

outras ações requeridas.

Os dados medidos de consumo e o desenvolvimento de modelos arquétipos para simulações

energéticas compõem a metodologia de desenvolvimento da equação de benchmarking.

O papel do benchmark é possibilitar comparações entre edifícios a fim de identificar seus níveis

de eficiência de infraestrutura física e operacional. De acordo com os resultados das avaliações

realizadas nos edifícios públicos selecionados, os fatores que precisam ser levados em

consideração para definição de um benchmark adequado são:

 Área útil do edifício;

 Temperatura externa real;

 Densidade de população no edifício;

Relatório de desenvolvimento da plataforma web

2

 Área do edifício que é condicionada;

 Consumo de energia em datacenters;

 Área de estacionamentos cobertos;

 Área de iluminação externa; e

 Uso de grupo gerador na hora de ponta.

PLATAFORMA
É uma ferramenta online que pode ser acessada de qualquer computador com acesso à internet,

sendo uma plataforma de cálculo de benchmarking para edifícios públicos, que pretende ser uma

ferramenta de fácil entendimento e de uso constante por gestores destes edifícios.

Com uma base de dados sólida, a plataforma oferece comparativos de consumo de energia que

consideram, dentre outros aspectos, a temperatura ambiente de cada localidade, a ocupação e

o uso de cada edifício.

Rodando em um browser (software para navegação na internet) o usuário não precisa de mais

nada além de acesso à internet. A partir do registro de um e-mail e senha o sistema gera um

cadastro simples para o gestor, que poderá incluir dados de múltiplos edifícios e comparar

variáveis de cada um deles, bem como utilizar os gráficos e relatórios gerados pela plataforma

para controlar o consumo energético anual comparando o consumo de cada edifício cadastrado

com a média de consumo de edificações similares.

O sistema prevê ainda a possibilidade de inclusão de outras variáveis como graus médios

calculados para cada cidade, bem como a geração de um histórico de consumo energético de

edificações públicas com base nos dados cadastrados pelos usuários.

1. INTRODUÇÃO
Esse documento tem o intuito de facilitar o entendimento do ponto de vista da construção técnica

da plataforma de cálculo de benchmarking para edifícios públicos, do conhecimento da estrutura,

linguagem de programação e banco de dados, além de plugins e outros itens que foram utilizados

na concepção, deixando transparente para qualquer profissional habilitado a desenvolver, manter

ou aprimorar os códigos e funções construídas nesta versão.

Relatório de desenvolvimento da plataforma web

3

2. FLUXO DE NAVEGAÇÃO

1. O usuário acessa a plataforma:

2. Realiza seu cadastro utilizando e-mail e senha:

Relatório de desenvolvimento da plataforma web

4

3. Cadastra um novo edifício, inserindo as informações estruturais

pertinentes:

Relatório de desenvolvimento da plataforma web

5

4. Insere os dados de consumo do edifício no período de 12 meses que deseja calcular:

Relatório de desenvolvimento da plataforma web

6

5. Após a inserção dos dados o usuário chega em um dashboard, que lhe

apresenta o resultado do cálculo realizado e lhe permite visualizar cálculos anteriores:

Relatório de desenvolvimento da plataforma web

7

6. A partir deste dashboard o usuário poderá realizar um novo cálculo,

visualizar diferentes edifícios e adicionar novos, bem como exportar para uma planilha em

excel os dados inseridos e os resultados obtidos:

Relatório de desenvolvimento da plataforma web

8

3. DESCRIÇÃO PLATAFORMA
Como todo sistema baseado na internet, a plataforma de cálculo de benchmarking foi concebida

com o pensamento 100% online, utilizando ambiente e servidores web em cloud (nuvem)

De forma macro, a plataforma é dividida em quatro camadas:

 FrontEnd: telas visuais acessadas pelo usuário que explicitam todas as regras de

negócio aplicadas e devem guiar o usuário final na utilização do sistema sem acesso

a códigos e sem a necessidade de conhecimento das técnicas de desenvolvimento.

 BackEnd: telas visuais acessadas pelo administrador do sistema, que possibilita e

configuração de variáveis e outras informações necessárias para o funcionamento do

sistema de forma visual sem a necessidade de acesso a códigos ou técnicas de

desenvolvimento.

 Servidor ou Server: Sistema que recebe todos os inputs do FrontEnd e BackEnd e

processa a informação conforme as regras de negócio e rotinas especiais criadas

para tal.

 Banco de Dados: Onde o sistema grava e armazena os dados, tanto de configuração

do sistema como dos inputs e resultados dos usuários. O banco de dados tem uma

modelagem lógica criada especialmente para a plataforma de cálculo de

benchmarking e é explicada detalhadamente nas seções posteriores.

4. AMBIENTES E SERVIDORES
Para manter os sistemas em operação, é utilizado um cloud (servidores interligados na nuvem de

dados) na versão atual. Atualmente o sistema está hospedado no Cloud Amazon EC2 da empresa

desenvolvedora, mas pode ser instalado em qualquer ambiente compatível conforme descrito

abaixo:

4.1 REQUISITO MÍNIMO DE HARDWARE:

• 4 Gb de memória RAM;

• 500 Gb de espaço físico (HD);

• Acesso a internet moderado;

• Firewall para controle de acesso a portas nota 1;

• Espelhamento ou rotinas de backup real-time;

• Sistema operacional Linux Ubuntu de 64Bits versão 14.6 ou compatível;

• Servidor Node.js com pacotes especiais descritos nos próximos capítulos;

• Servidor Apache2;

• Banco de dados Mongo DB versão 4.0 ou superior.

Relatório de desenvolvimento da plataforma web

9

4.2 ESTRUTURAS E CÓDIGOS

O sistema utiliza um MVC (model, view, controller) para a aplicação FrontEnd e BackEnd, além

de um RESTful API para receber as chamadas no lado do servidor.

A aplicação BackEnd e FrontEnd foi desenvolvida 100% em Angular JS e utiliza uma estrutura

de pastas descrita nos próximos capítulos.

Ainda no FrontEnd e BackEnd, foram utilizados plugins e frameworks para facilitar o

desenvolvimento das interfaces e melhorar o UX (user experience), esses plugins serão descritos

nos próximos capítulos.

O Server foi construído em Node.js utilizando Express e outros pacotes que também serão

descritos nos próximos capítulos.

4.3 FRONTEND E BACKEND

Construído em Angular JS, utiliza um MVC (module, view, controller) além de diretivas e

componentes construídos de forma estruturada para fácil manutenção e evolução do código,

conforme exemplificado nas pastas abaixo:

Com isso os HTMLs são criados na pasta “views”, os controllers na pasta “controllers” e assim

por diante.

Importante atentar para o fato de que foram utilizados os componentes para as views, assim o

código estruturado para os HTMLs ficaram componentizados conforme imagem abaixo:

Relatório de desenvolvimento da plataforma web

10

Os controllers utilizam nomenclatura clara, o que facilita o entendimento. Cada seção do sistema

tem um controller próprio e a URL deixa explícito o controller a ser utilizado.

4.4 SERVICES

Os services, responsáveis pela conexão ao ServerSide (lado do servidor), são configurados para

cada EndingPoint de forma explícita, e enviam parâmetros conforme a descrição da API.

Veja exemplo de acesso ao servidor via REST, utilizando um service:

“cbcs.service(“edificioAPI”, function(con g, $http){ this.getEdi cios = function (){

 return $http.get(con g.baseUrlAPI+”api/edi cios”);

});”

Nesse caso, o service devolverá um Escopo contendo dados dos edifícios cadastrados no

sistema, permitindo o acesso aos dados no controller, possibilitando a livre manipulação na View.

O sistema utiliza um arquivo de configuração, onde as variáveis como “config.baseUrlAPI” são

configuradas e podem ser utilizadas em todos os serviços. Este arquivo fica na pasta:

/config/configValue.js

4.5 FOLHA DE ESTILOS

O CSS (cascade stylesheet system) está localizado na pasta “assets/css” conforme figura abaixo,

sendo utilizado em um formato minimizado. A versão completa do CSS pode ser encontrada na

mesma pasta:

Relatório de desenvolvimento da plataforma web

11

4.6 BOOTSTRAP

Ainda no quesito visual, foi utilizado o bootstrap framework do Twitter para agilizar o processo de

desenvolvimento do FrontEnd, sendo empregada a versão 3 CDN.

4.7 BANCO DE DADOS

O banco utilizado é um banco de dados não relacional MONGO DB, o banco não relacional mais

utilizado no mundo. A modelagem está explícita dentro da pasta apps/models, possuindo cada

coleção de dados seu próprio arquivo .js.

Para a conexão foi utilizado o Mongoose e cada model com seu respectivo formato de dados

como por exemplo:

“var mongoose = require(‘mongoose’);

var Schema = mongoose.Schema;

module.exports = mongoose.model(‘Edificios’, new Schema({

nome id_cidade : String,

endereco :String,

area_util

O MongoDB utiliza basicamente entradas e saídas de dados em formato JSON e todo o sistema

também utiliza este formato em todos os scripts de manipulação de dados.

Exemplo de saída de dados após consulta ao REST por edifícios cadastrados:

Relatório de desenvolvimento da plataforma web

12

 “[

{ “_id”: “58af9f565858e521fc0a823d”,

“grupo_gerador”: 1,

“area_util_iluminada”: 28,

“area_acondicionada”: 3333.33,

 “potencia_cpd”: 0,

 “consumo_cpd”: 240128,

“numero_elevadores”: null,

“numero_ocupantes”: 287,

“sistema_ar_condicionado”:

“Chiller a água e fancoils”, “numero_andares”: 9, “area_estacionamento_coberto”: 259,

 “area_util”: 3333.33,

“endereco”: “Av Brigadeiro Faria Lima, 1793”,

“id_cidade”: “58af6d94af0e31154050e133”,

“nome”: “Edi cio novo”,

“__v”: 0,

... “

4.8 RESTFUL API

Representational State Transfer (REST) ou RESTful Web Services são uma forma de fornecer

interoperabilidade entre sistemas de computadores na Internet1.

O Servidor foi todo construído para gerar um RESTful com todos os endingpoints (url de acesso

a dados do RESTful) necessários para o funcionamento completo do sistema.

A segurança está na “Tokenização”, geração de conjuntos de caracteres criptografados, que

possuem validade de 2 horas.

A cada acesso feito pelo usuário, na versão final, o sistema valida no banco de dados do usuário

e a senha fornecida para o login. Estando estas informações corretas, retorna com um conjunto

de caracteres criptografados (token) que servirá de chave de acesso ao RESTfull. A partir daí o

1 https://en.wikipedia.org/wiki/Representational_state_transfer

https://en.wikipedia.org/wiki/Representational_state_transfer

Relatório de desenvolvimento da plataforma web

13

FrontEnd e o BackEnd passam a acessar os métodos de consulta, informando

sempre esse token, que garantirá a veracidade da origem e a criptografia dos dados de acesso.

Na figura abaixo, demonstramos como realizar uma chamada ao RESTfull pelo POSTMAN

(programa altamente difundido e conhecido para realizar chamadas via JSON) incluindo o token:

5. INSTALAÇÃO DO SISTEMA - PACOTES E DEPENDÊNCIAS
O servidor tem alguns pacotes necessários para seu funcionamento, além dos pré-requisitos de

hardware e software já descritos nos capítulos anteriores. É necessária também a instalação dos

pacotes especiais descritos abaixo, sendo que para facilitar sua instalação, sugerimos a utilização

do NPM, que gerencia pacotes e pode ser utilizado via SSH.

Com o NPM instalado, utilize para a instalação o “package.json”, o qual está na raiz da plataforma.

REFERÊNCIAS DE PACOTES E PLUGINS NECESSÁRIOS

Os pacotes necessários e suas referências estão listados abaixo, devendo sempre ser utilizadas

suas versões mais recentes.

SERVIDOR:

body-parser V. 1.15.0 - https://www.npmjs.com/package/body-parser-json

express V 4.13.4 - http://expressjs.com/

jsonwebtoken V ^5.7.0 - https://jwt.io/introduction/

mongoose V 4.4.5 - http://mongoosejs.com/

morgan V 1.7.0 https://github.com/expressjs/morgan

Relatório de desenvolvimento da plataforma web

14

BANCO DE DADOS

Mongo Db - https://www.mongodb.com/

FRONTEND E BACKEND

ANGULAR JS - https://angularjs.org/

JQUERY - https://jquery.com/

MOMENT.JS - https://momentjs.com/

BOOTSTRAP - http://getbootstrap.com/

24

6. DEFINIÇÃO DE SIGLAS E TERMOS

As siglas utilizadas em todos os documentos são de controle universal pela comunidade mundial

de desenvolvedores WEB, abaixo estão descritas as mais utilizadas:

CSS: Cascading Style Sheets (CSS) é uma linguagem de folhas de estilo utilizada para definir a

apresentação de documentos escritos em uma linguagem de marcação, como HTML ou XML.

HTML: (abreviação para a expressão inglesa HyperText Markup Language, que significa

Linguagem de Marcação de Hipertexto) é uma linguagem de marcação utilizada na construção

de páginas na Web. Documentos HTML podem ser interpretados por navegadores. A tecnologia

é fruto da junção entre os padrões HyTime e SGML.

RESTful: A Representational State Transfer (REST), em português Transferência de Estado

Representacional. Pode-se caracterizar os web services como “RESTful” se eles estiverem em

conformidade com as restrições descritas na seção restrições arquiteturais.

QUERY: Processo de extração de dados de um banco de dados e sua apresentação em uma

forma adequada ao uso.

ROOT: O processo de rooting permite ao usuário:

• Remover, alterar ou substituir aplicativos de sistema ou pré-instalados de fábrica -

liberando, desta forma, espaço na memória interna do dispositivo;

• Utilizar aplicativos especializados que requerem permissões administrativas

• Realizar operações de outra forma inacessíveis a um usuário comum.

• Substituição do sistema operacional original do dispositivo por outro.

SSH: Secure Shell (SSH) é um protocolo de rede criptográfico para operação de serviços de rede

de forma segura sobre uma rede insegura. O exemplo de aplicação mais conhecido é para login

remoto a sistemas de computadores pelos usuários.

Relatório de desenvolvimento da plataforma web

15

PING: Ping ou latência como podemos chamar, é um utilitário que usa o protocolo

ICMP para testar a conectividade entre equipamentos. É um comando disponível praticamente

em todos os sistemas operacionais. Seu funcionamento consiste no envio de pacotes para o

equipamento de destino e na “escuta” das respostas. Se o equipamento de destino estiver ativo,

uma “resposta” (o “pong”, uma analogia ao famoso jogo de ping-pong) é devolvida ao computador

solicitante.

FRONTEND: O frontend é responsável por coletar a entrada do usuário em várias formas e

processá-la para adequá-la a uma especificação em que o backend possa utilizar.

Comitê Temático de Energia – CBCS

energia.benchmarking@cbcs.org.br

Coordenação:

Implementação: Financiamento:

Realização:

