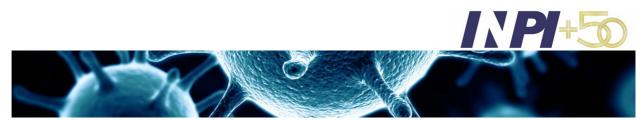


Página 1

09 de outubro de 2020

Acesse <u>o portal do OBTEC COVID-19</u> para o histórico de notícias e artigos científicos, estudos de PI e financiamentos relacionados ao novo coronavírus.



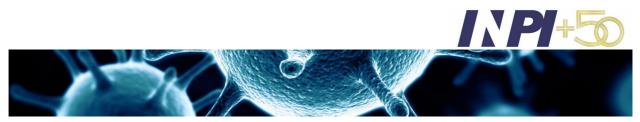
DESTAQUES

Estudo analisou amostras de sangue de 739 pessoas e de saliva de 247. Os níveis de IgG permaneciam estáveis durante um período de 115 dias após os primeiros sintomas. Este estudo confirma que os anticorpos IgG de soro e saliva para SARS-CoV-2 são mantidos na maioria dos pacientes COVID-19 por pelo menos 3 meses após os sintomas. As respostas do IgG na saliva podem servir como uma medida substituta da imunidade sistêmica ao SARS-CoV-2 com base em sua correlação com as respostas de IgG sérico (08/10/2020). Fonte: Science Immunology

Estudo analisou 343 pacientes durante um máximo de 122 dias após o aparecimento dos primeiros sintomas e comparou os seus níveis de anticorpos com os encontrados em amostras de sangue de 1.548 pessoas recolhidas antes da pandemia. Desta análise concluiu-se que as imunoglobulinas M (IgM) e A (IgA) permaneciam ativas por um curto período de tempo, mas o número de imunoglobulinas G contra a proteína *spike* do vírus apresentou uma queda lenta durante um período de 90 dias (08/10/2020). Fonte: <u>Science Immunology</u>

O diretor-geral da Organização Mundial da Saúde (OMS), Tedros Adhanom Ghebreyesus, afirmou que há a esperança de uma vacina contra a COVID-19 se viabilizar até o fim do ano. Foi apresentado um painel executivo, mas sem detalhar qual dos imunizantes testados em larga escala no mundo poderia ser comprovado como seguro e eficaz para bloquear a infecção pelo coronavírus (06/10/2020). Fonte: O Globo / WHO

Página 2

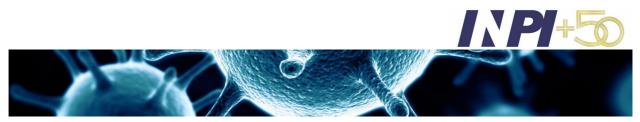

Vacina	Pré-clínico	Fase 1	Fase 2	Fase 3	Uso emergencial Aprovação
AstraZeneca/Oxford					
Moderna					
Pfizer/BioNTech					
Sinopharm					
Slnovac					
Inovio					
Novavax					
Johnson & Johnson					
Sanofi/GSK					
Anhui Zhifei					
Bharat Biotech					
CanSino Biologic					
Academia Chinesa de Ciências Médicas					
Imperial College London	•	•	•		
Kentucky Bioprocessing	•	•	•		
Sinopharm					
Takara					
Zydus			•		

Produtos inovadores desenvolvidos na rede de Institutos SENAI de Inovação vão ajudar os brasileiros a enfrentar a pandemia do novo coronavírus. A solução apresentada pela startup SII Technology é de luminárias de raio UV-C, instaladas dentro de ônibus ou vagões, acionadas por uma base móvel que funcionará fora do veículo, operada por um técnico. Uma unidade pode desinfetar até 40 ônibus por noite. O raio UV-C não deixa resquícios químicos, sendo mais seguro para as pessoas. Além disso é mais sustentável do que outras formas de desinfecção, pois não gera resíduos tóxicos para o meio ambiente (07/10/2020). Fonte: Portal da indústria

Estudo realizado com 5.683 pacientes da América Latina com confirmação por PCR para COVID-19 avaliaram o tratamento hidroxicloroquina (200), ivermectina (203), azitromicina (1600), hidroxicloroquina e azitromicina (692), ivermectina e azitromicina (358) e tratamento padrão (2630). Dos resultados os pesquisadores verificaram que não houve efeitos benéficos da hidroxicloroquina, ivermectina, azitromicina ou suas combinações e o tratamento com azitromicina e hidroxicloriquina ainda apresentou risco aumentado de mortalidade por todas as causas (08/10/2020). Fonte: medRxiv

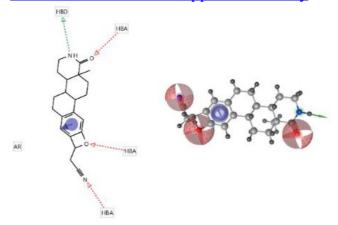
MEDICAMENTOS

Usando a estrutura cristalina da PLpro de SARS-CoV-2 como modelo, pesquisadores desenvolveram um modelo de grupo farmacofórico de centros funcionais de ligação de inibidores de PLpro. Com este modelo, conduziram a busca em banco de dados conformacional de medicamentos aprovados pela FDA. Esta pesquisa identificou 147 compostos que podem ser inibidores potenciais de PLpro de SARS-CoV-2. As conformações desses compostos passaram por agrupamento de similaridade de impressão digital 3D,


Página 3

seguido por acoplamento molecular de possíveis conformadores para o local de ligação de PLpro. A lista de medicamentos obtida inclui inibidores de HIV, hepatite C e citomegalovírus (CMV), bem como um conjunto de medicamentos que demonstraram alguma atividade na terapia de MERS, SARS-CoV e SARS-CoV-2. Os autores recomendam o teste dos compostos selecionados para o tratamento da COVID-19 (18/09/2020). Fonte: PeerI

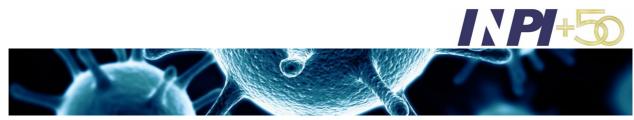
List of docked compounds sorted by their energies of interaction with COVID-19 papain-like protease in the docked positions.


Drug name	DFE* energy	Cluster	Drug name	DFE* energy	Cluster
Nilotinib	-9.3	В	Losartan	-7.3	aa
Irinotecan	-8.5	S	Tolvaptan	-7.3	S
Levomefolic acid	-8.4	s	Darifenacin	-7.3	С
Enasidenib	-8.1	В	Flunisolide	-7.3	А
Siponimod	-8.0	S	Alvimopan	-7.2	hh
Sorafenib	-8.0	s	lloperidone	-7.2	С
Dihydroergocryptine	-8.0	Α	Indacaterol	-7.2	S
Abemaciclib	-7.9	В	Mirabegron	-7.2	S
Ziprasidone	-7.9	С	Ximelagatran	-7.2	S
Pemetrexed	-7.8	hh	Droperidol	-7.2	С
Doxazosin	-7.8	В	Ertapenem	-7.2	Ü
Axitinib	-7.7	S	Ivacaftor	-7.1	S
Indinavir	-7.7	S	Loperamide	-7.1	С
Lymecycline	-7.7	S	Flibanserin	-7.1	S
Methysergide	-7.7	I	Brexpiprazole	-7.0	С
Rutin	-7.7	s	Cefmenoxime	-7.0	В
Vemurafenib	-7.7	В	Latamoxef	-7.0	В
Glyburide	-7.7	dd	Olmesartan	-7.0	aa
Trabectedin	-7.6	S	Bilastine	-6.9	С
Dasatinib	-7.6	В	Bosentan	-6.9	С
Methylergonovine	-7.5	1	Cefdinir	-6.9	С
Riociguat	-7.5	В	Cefotaxime	-6.9	В
Fluocinolone	-7.5	Α	Prazosin	-6.9	В
Fluspirilene	-7.5	С	Retapamulin	-6.9	А
Isavuconazole	-7.4	S	Ritonavir	-6.9	A
Manidipine	-7.4	ii	Sulfasalazine	-6.9	s
Regadenoson	-7.4	s	Topotecan	-6.9	н
Glimepiride	-7.4	dd	Copanlisib	-6.9	В
Canagliflozin	-7.3	bb	Diflorasone	-6.9	А
			Gemifloxacin	-6.9	Н

Pesquisadores sintetizaram um derivado esteróide-lactâmico e avaliam sua interação teórica com o SARS-CoV-2 usando a proteína 6LU7 como modelo teórico. Além disso, essa interação foi realizada em um modelo de acoplamento usando hidroxicloroquina e favipiravir como controles. Os resultados mostraram que a energia de ligação envolvida na interação do derivado esteróide-lactâmico com a superfície da proteína 6LU7 foi menor em comparação com a hidroxicloroquina e o favipiravir. Em conclusão, o derivado esteróide-

Página 4

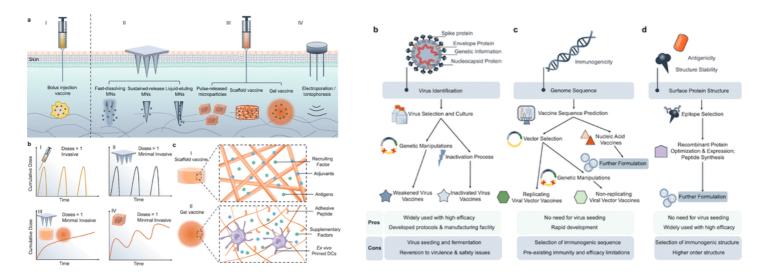
lactâmico pode ser uma alternativa terapêutica para o tratamento do SARS-CoV-2 (03/07/2020). Fonte: Biointerface Research in Applied Chemistry



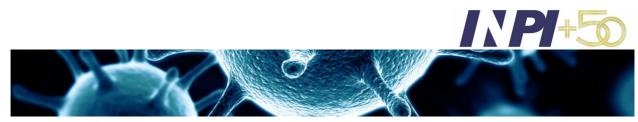
Estudo retrospectivo com duas amostras de 30 pacientes cada compara a eficácia da metilprednisolona e da dexametasona na redução da inflamação e na melhora da pressão parcial de oxigênio arterial e da proporção da fração inspirada de oxigênio (PaO_2 / FiO_2 ou P/ F) em pacientes com COVID-19. Dos resultados os pesquisadores citam que os esteróides têm a capacidade de reduzir a inflamação e suprimir a resposta imune, tornando-os uma ferramenta eficaz no tratamento da COVID-19 e, especificamente, a dexametasona é eficaz na melhora da relação P/F em pacientes com COVID-19 (08/10/2020). Fonte: medRxiv

Estudo realizado com 5.683 pacientes da América Latina com confirmação por PCR para COVID-19 avaliaram o tratamento hidroxicloroquina (200), ivermectina (203), azitromicina (1600), hidroxicloroquina e azitromicina (692), ivermectina e azitromicina (358) e tratamento padrão (2630). Dos resultados os pesquisadores verificaram que não houve efeitos benéficos da hidroxicloroquina, ivermectina, azitromicina ou suas combinações e o tratamento com azitromicina e hidroxicloriquina ainda apresentou risco aumentado de mortalidade por todas as causas (08/10/2020). Fonte: medRxiv

VACINAS


O diretor-geral da Organização Mundial da Saúde (OMS), Tedros Adhanom Ghebreyesus, afirmou que há a esperança de uma vacina contra a COVID-19 se viabilizar até o fim do ano. Foi apresentado um painel executivo, mas sem detalhar qual dos imunizantes testados em larga escala no mundo poderia ser comprovado como seguro e eficaz para bloquear a infecção pelo coronavírus (06/10/2020). Fonte: O Globo / WHO

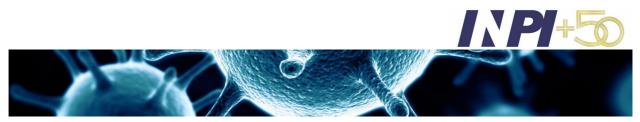
Página 5


Vacina	Pré-clínico	Fase 1	Fase 2	Fase 3	Uso emergencial Aprovação
AstraZeneca/Oxford					
Moderna					
Pfizer/BioNTech					
Sinopharm					
Slnovac					
Inovio					
Novavax					
Johnson & Johnson					
Sanofi/GSK			•		
Anhui Zhifei					
Bharat Biotech					
CanSino Biologic					
Academia Chinesa de Ciências Médicas	•		•		
Imperial College London	•		•		
Kentucky Bioprocessing	•		•		
Sinopharm					
Takara					
Zydus		•	•		

Em artigo de revisão, pesquisadores apresentam avanços recentes no desenvolvimento de vacinas, com foco na descoberta, formulação e dispositivos de carreamento de vacinas habilitados por abordagens alternativas de administração. Destacam o desenvolvimento das melhores soluções para estratégias mais rápidas e melhores de desenvolvimento de vacinas por meio do uso de biomateriais, engenharia biomolecular, nanotecnologia e técnicas de microfabricação (01/10/2020). Fonte: ACS Nano

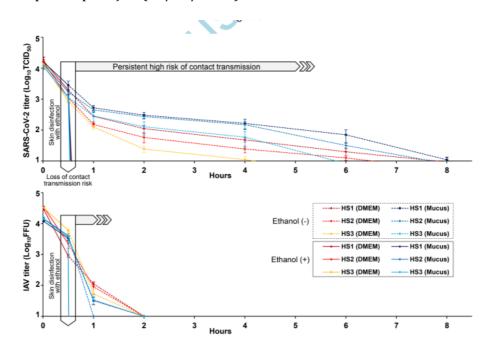
CIÊNCIA

Estudo analisou 343 pacientes durante um máximo de 122 dias após o aparecimento dos primeiros sintomas e comparou os seus níveis de anticorpos com os encontrados em amostras de sangue de 1.548 pessoas recolhidas antes da pandemia. Desta análise concluiu-se que as imunoglobulinas M (IgM) e A (IgA) permaneciam ativas por um curto período de tempo, mas o número de imunoglobulinas G contra a proteína *spike* do vírus apresentou uma queda lenta durante um período de 90 dias (08/10/2020). Fonte: <u>Science Immunology</u>


Página 6

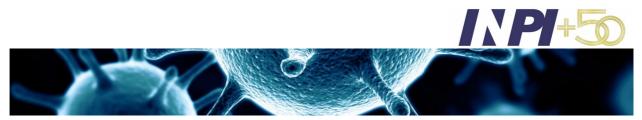
Estudo analisou amostras de sangue de 739 pessoas e de saliva de 247. Os níveis de IgG permaneciam estáveis durante um período de 115 dias após os primeiros sintomas. Este estudo confirma que os anticorpos IgG de soro e saliva para SARS-CoV-2 são mantidos na maioria dos pacientes COVID-19 por pelo menos 3 meses após os sintomas. As respostas do IgG na saliva podem servir como uma medida substituta da imunidade sistêmica ao SARS-CoV-2 com base em sua correlação com as respostas de IgG sérico (08/10/2020). Fonte: Science Immunology

Os autores formularam a hipótese de que a infecção por SARS-CoV-2 estaria associada à eliminação de ECA2 das membranas celulares e aumento da atividade plasmática de ECA2. Avaliaram a atividade catalítica de ECA2 no plasma em uma coorte de australianos que se recuperaram de infecção por SARS-CoV-2 leve, moderada ou grave (n = 66) e controles não infectados pareados por idade e sexo (n = 70). Houve uma diferença significativa na atividade plasmática de ECA2 de acordo com a gravidade da doença. Posteriormente, avaliaram se um nível elevado de atividade de ECA2 no plasma persistiu após a infecção por SARS-CoV-2 em indivíduos com amostras de sangue aos 63 e 114 dias após a infecção. A atividade plasmática da ECA2 permaneceu persistentemente elevada em quase todos os indivíduos. Segundo os autores, esta é a primeira descrição de que a atividade plasmática da ECA2 é elevada após a infecção por COVID-19, e a primeira com dados longitudinais indicando que a atividade plasmática da ECA2 permanece elevada para uma mediana de 114 dias após a infecção (08/10/2020).Fonte: MedRxiv


O estudo apresenta um modelo específico de transmissão de COVID-19 considerando compartimento subdivididos em diferentes faixas etárias e gêneros. Padrões de contato estimados, com base em outros estudos, são incorporados para dar conta do comportamento social específico de idade e sexo. Os resultados sublinham a grande importância das medidas de mitigação não farmacêuticas na fase atual da pandemia para evitar que um aumento nas taxas de contato leve a uma maior mortalidade entre os idosos. Bem como que diferenças de gênero nas taxas de contato, além de mecanismos biológicos relacionados a o sistema imunológico, podem contribuir para as taxas de infecção específicas do sexo e seu resultado de mortalidade (06/10/2020). Fonte: MedRxiv

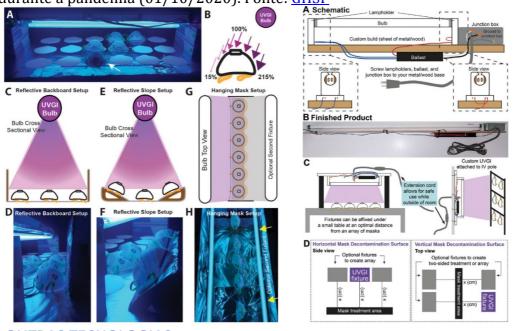
Em nota técnica produzida por pesquisadores em parceria com diversas universidades brasileiras apontou como impraticável o alcance da chamada imunidade de rebanho no Brasil, quando uma parcela elevada da população já contrai o vírus da COVID-19, minimizando sua circulação e seus potenciais efeitos. A taxa considerada mínima para o alcance desse tipo de imunização é de 60% da população local. Hoje, de acordo com os pesquisadores, os estados que apresentam maiores estimativas do percentual de infectados pelo vírus SARS-CoV-2, incluindo casos assintomáticos, são: Roraima (27%), Rio de Janeiro (23%) e Distrito Federal (20%). O Estado de São Paulo possui índice estimado de 15%. Os estados de Santa Catarina e Paraná apresentam as estimativas mais baixas (7%), seguidos por Minas Gerais e Rio Grande do Sul (8%); e Mato Grosso do Sul (9%) (05/10/2020). Fonte: UNIFESP

Página 7


Pesquisadores do Japão em estudo verificaram que o vírus influenza permanece vivo na pele por cerca de duas horas, o vírus SARS-CoV-2 pode resistir por até nove horas, o que reforça a higienização constante das mãos e braços. Eles também verificaram que após o uso de um desinfetante com etanol a 80%, o vírus foi inativado na pele em questão de 15 segundos após a aplicação (03/10/2020). Fonte: Clinical Infectious Diseases

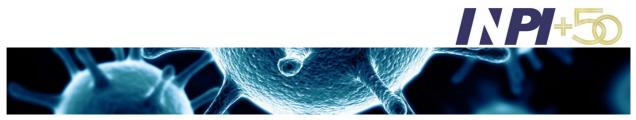
Estudo prospectivo, observacional e unicêntrico incluiu pacientes ambulatoriais revisados 12 semanas após uma infecção aguda com SARS-CoV-2. Os pesquisadores concluiram que todos os pacientes desenvolveram anticorpos após 12 semanas do episódio agudo da COVID-19 e que há persistência dos sintomas, especialmente em pacientes <65 anos e profissionais de saúde (08/10/2020). Fonte: medRxiv

TESTES PARA DIAGNÓSTICO


Pesquisadores desenvolvem teste de diagnóstico em que o RNA do SARS-CoV-2 é detectado a partir de amostras nasofaríngeas por meio de um ensaio direto RT-qPCR que omite completamente a etapa de extração de RNA. A abordagem direta de RT-qPCR identificou corretamente 92% de um conjunto de referência de amostras cegas de NP (n = 155) que demonstrou ser positivo para RNA de SARS-CoV-2 por diagnóstico clínico tradicional RT-qPCR que incluiu uma extração de RNA. É importante ressaltar que o método direto teve sensibilidade suficiente para detectar com segurança os pacientes com cargas virais que se correlacionam com a presença de vírus infecciosos. Portanto, essa estratégia tem o potencial de expandir substancialmente a capacidade de teste e triagem da COVID-19 e deve ser aplicável em todo o mundo (02/10/2020). Fonte: <u>PLOS Biology</u>

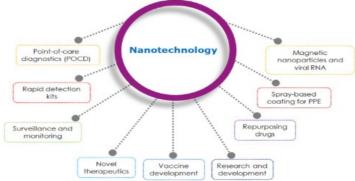
Página 8

MÁSCARAS DE PROTEÇÃO


A irradiação germicida ultravioleta (UVGI) foi validada anteriormente como um método para descontaminar efetivamente as máscaras entre o uso de profissionais de saúde que estão lidando com a COVID-19. No entanto, nem todas as instalações têm acesso ao caro equipamento comercial de descontaminação de lâmpadas ultravioleta C (UV-C) necessário para UVGI. Neste estudo, pesquisadores desenvolveram um método para modificar as luminárias existentes ou criar luminárias personalizadas que são compatíveis com lâmpadas UV-C novas ou existentes. Este sistema é escalonável; pode ser criado por menos de US\$ 50, no local e no ponto de necessidade; e aproveita os recursos que atualmente não são explorados e permanecem sem uso em instalações de pesquisa públicas e privadas durante a pandemia (01/10/2020). Fonte: GHSP

OUTRAS TECNOLOGIAS

Produtos inovadores desenvolvidos na rede de Institutos SENAI de Inovação vão ajudar os brasileiros a enfrentar a pandemia do novo coronavírus. A solução apresentada pela startup SII Technology é de luminárias de raio UV-C, instaladas dentro de ônibus ou vagões, acionadas por uma base móvel que funcionará fora do veículo, operada por um técnico. Uma unidade pode desinfetar até 40 ônibus por noite. O raio UV-C não deixa resquícios químicos, sendo mais seguro para as pessoas. Além disso é mais sustentável do que outras formas de desinfecção, pois não gera resíduos tóxicos para o meio ambiente (07/10/2020). Fonte: Portal da indústria


Membros da comunidade de nanotecnologia sugerem alguns novos alvos de pesquisa que podem ser projetados e melhorados, otimizados e desenvolvidos para a utilização de materiais existentes ou novos no subcampo de diagnóstico e saúde. Os alvos de pesquisa potenciais para lutar contra a COVID-19 incluem diagnóstico de ponto de atendimento (POCD), vigilância e monitoramento, novas terapêuticas, desenvolvimento de vacinas,

Página 9

pesquisa e desenvolvimento, reaproveitamento de medicamentos existentes com aplicações terapêuticas potenciais, desenvolvimento de nanorrevestimento antiviral e spray antimicrobiano de revestimento baseados em PPE, nanopartículas magnéticas e RNA viral e kits de detecção rápida (22/07/2020). Fonte: Biointerface Research in Applied Chemistry

Nanotechnology Vs. COVID-19 pandemic

TELEMEDICINA E INTELIGÊNCIA ARTIFICIAL

Artigo descreve como a integração da telemedicina e dos locais de teste pode otimizar o gerenciamento relacionado à COVID-19 no ambiente comunitário. Neste estudo, 4663 pacientes foram selecionados usando telemedicina, 1521 foram enviados para locais de teste móveis e acompanhados por telefone para os resultados. Dos pacientes testados, quase 20% (301) tiveram um resultado positivo. Os autores concluíram que o modelo desenvolvido demonstra como o uso da telemedicina para encaminhamento dos pacientes a locais centrais de teste pode aumentar o acesso a cuidados, diminuir a exposição do médico e minimizar a demanda por equipamentos de proteção individual. Essa inovação pode permitir que os sistemas de saúde se concentrem na preparação e no atendimento das necessidades de cuidados hospitalares (02/10/2020). Fonte: JMIR