Post Graduation Geophysics Physics 2/2019

Name:		
Date:		
Time:	90 minutes	
Please, write down your name in all the solution pages		
Please read the information carefully		

1. In the charge system shown in Figure 1, $q_1 = + 8q$ and $q_2 = -2q$. Determine (2,0 points)

(a) The electrical forces acting on q_2 .

(b) The position on the x-axis for which the net-forces on a third charge $q_3 = +1q$ is zero.

(c) The net force acting on q_3 in the position shown on Figure 2

2. (2,0 points) Two spherical cavities, of radii 10,0 cm e 15,0 cm are charged with 4,0 x 10^{-8} C and 2,0 x 10^{-8} C, respectively. What is the electrical field in (a) r = 12,0 cm; (b) r = 20 cm.

3. (2,0 points) Determine the electromotive force around a rectangular loop shown on Figure 3 (L = 40 cm e W = 25 cm) when the magnetic field **B**, is

4. (2,0 points) A uniform magnetic field B = 1,2 mT is oriented in z-axis direction. A 5,3 MeV energetic proton moving in the y-axis direction enter into the B-field region. Determine the net force acting on the proton motion. The proton mass is 1,67 x 10⁻²⁷ kg (Considerer in this problem non-relativistic kinetic energy and the Earth's magnetic field equal to zero)

5. (2,0 points) Uses the Ampère Law to calculate the magnetic field **B** at the distance (a) d = 1,0 cm and (b) d = 8,0 cm produced by a wire conducting an electrical current i = 30.