Post Graduation Geophysics
Physics
2/2019

Name:

Date:
Time: $\quad 90$ minutes
Please, write down your name in all the solution pages
Please read the information carefully

1. In the charge system shown in Figure $1, q_{1}=+8 q$ and $q_{2}=-2 q$. Determine (2,0 points)
(a) The electrical forces acting on q_{2}.
(b) The position on the x-axis for which the net-forces on a third charge $q_{3}=+1 q$ is zero.
(c) The net force acting on q_{3} in the position shown on Figure 2

Figure 1

Figure 2
2. (2,0 points) Two spherical cavities, of radii $10,0 \mathrm{~cm}$ e $15,0 \mathrm{~cm}$ are charged with $4,0 \times 10^{-8} \mathrm{C}$ and $2,0 \times 10^{-8} \mathrm{C}$, respectively. What is the electrical field in (a) r $=12,0 \mathrm{~cm}$; (b) $r=20 \mathrm{~cm}$.
3. (2,0 points) Determine the electromotive force around a rectangular loop shown on Figure 3 ($L=40 \mathrm{~cm}$ e $W=25 \mathrm{~cm}$) when the magnetic field \mathbf{B}, is
(a) $\vec{B}_{1}=4,0 \times 10^{-2} y \hat{z}[\mathrm{~T} / \mathrm{m}]$
(b) $\vec{B}_{2}=6,0 \times 10^{-2} t \hat{k}[\mathrm{~T} / \mathrm{s}]$

Figure 3
4. (2,0 points) A uniform magnetic field $B=1,2 \mathrm{mT}$ is oriented in z-axis direction. A $5,3 \mathrm{MeV}$ energetic proton moving in the y-axis direction enter into the B -field region. Determine the net force acting on the proton motion. The proton mass is $1,67 \times 10^{-27} \mathrm{~kg}$ (Considerer in this problem non-relativistic kinetic energy and the Earth's magnetic field equal to zero)
5. (2,0 points) Uses the Ampère Law to calculate the magnetic field \mathbf{B} at the distance (a) $d=1,0 \mathrm{~cm}$ and (b) $d=8,0 \mathrm{~cm}$ produced by a wire conducting an electrical current $i=30$.

