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ABSTRACT

In the present thesis we study the signatures of four alternative cosmological models
in the Cosmic Microwave Background: Massive Gravity, the Modified Fierz-Pauli
model (MFP), DBI inflation and Tachyacoustic Cosmology. The first two models
are studied as alternatives to the Friedmann-Robertson-Walker cosmology, and we
showed that both models lead to the same results for tensor perturbations, whereas
for vector modes the MFP model leads to non-decaying amplitudes, unlike Mas-
sive Gravity and General Relativity (GR), where such modes are washed out by
the expansion of the universe. We calculated the vector and tensor contributions to
the Sachs-Wolfe (SW) effect, and derived the corresponding Boltzmann equations,
arguing qualitatively that vector modes in the MFP model would leave a distinct
signature in CMB polarization. Also, we calculated the power spectrum for CMB
anisotropies induced by the tensor modes in Massive Gravity, and showed that such
massive modes would leave a clear signature for low multipoles, ` < 30. We derived
new solutions for DBI inflation, and showed that they encompass all the well-known
inflationary potentials found in the canonical model. We also worked out a particular
case, a non-canonical model with large-field potentials, and compared our predic-
tions with the current available data, showing that our solutions in DBI are in good
agreement with observations. A distinguishing feature of our solutions is the produc-
tion of large amplitudes of non-gaussianity, which can be a powerful observable to
discriminate among inflationary models. We also propose an alternative to inflation,
the tachyacoustic model, in which we do obtain a nearly scale-invariant spectrum of
primordial perturbations and solve the horizon problem in a decelerating universe.
These goals are achieved by a k-essence model with superluminal speed of sound,
which is causally self-consistent. The tachyacoustic model does not solve entirely the
flatness problem, but a work in progress is being conducted to tackle this issue.
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STUDYING SIGNATURES OF ALTERNATIVE COSMOLOGIES IN
THE COSMIC MICROWAVE BACKGROUND

RESUMO

Estudamos, na presente tese de doutoramento, assinaturas de quatro modelos cos-
mológicos alternativos na Radiação Cósmica de Fundo em Microondas (CMB), a
saber: Gravitação Massiva, Modelo de Fierz-Pauli modificado (MFP), inflação DBI
e cosmologia Taquiacústica. Os dois primeiros modelos foram estudados como alter-
nativas à cosmologia usual, descrita pela métrica de Friedmann-Robertson-Walker,
e demonstramos que ambos os modelos fornecem os mesmos resultados no tocante a
perturbações tensoriais, ao passo que o modelo MFP produz amplitudes de modos
vetoriais que não decaem com a expansão do universo, diferentemente da Gravi-
tação Massiva e da Relatividade Geral, onde tais modos simplesmente desapare-
cem com a respectiva expansão. Calculamos as contribuições dos modos vetoriais e
tensoriais para o efeito Sachs-Wolfe (SW), e derivamos as equações de Boltzmann
correspondentes, argumentando qualitativamente que os modos vetoriais deixariam
uma assinatura distinta na polarização da CMB. Também calculamos o espectro
de potências de anisotropias da CMB induzido por modos tensoriais na Gravitação
Massiva, e mostramos que tais modos massivos deixariam uma clara assinatura para
baixos multipolos, ou seja, ` < 30. Derivamos novas soluções para a inflação DBI, e
mostramos que as mesmas incluem todos os bem-conhecidos potenciais encontrados
na teoria de inflação canônica. Dentre as soluções encontradas, aprofundamos-nos
numa em particular, que consiste em um modelo não-canônico com potencial do tipo
“ large-field", e comparamos nossas predições com os dados disponíveis, mostrando
que nossas soluções no modelo DBI estão em pleno acordo com as observações.
Uma característica distinta de nossas soluções se refere à produção de largas ampli-
tudes de não-gaussianidade, que consiste em um observável eficiente para se testar
e selecionar diferentes modelos inflacionários. Propomos, também, um modelo al-
ternativo à inflação, que denominamos modelo taquiacústico, o qual fornece um
espectro quase-invariante de escala para perturbações escalares e soluciona o prob-
lema do horizonte no contexto de um universo deflacionário, ou seja, com expansão
desacelerada. Tais resultados são obtidos por meio de um modelo de k-essência cuja
velocidade de propagação de perturbações é superluminal, sem, no entanto, violar
qualquer princípio de causalidade. O modelo taquiacústico não soluciona totalmente
o problema da planura do universo, mas um trabalho em andamento visa remover
este obstáculo.
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1 INTRODUCTION

The best way to introduce a subject is through its title. If the author is fortunate
enough to come up with the right title, then it would guide us through the main
motivations of the work as the Sibyl guided Aeneas1 or Virgil guided Dante Alighieri2

in the deepest darkness of the underworld.

In our case, the title says Studying Signatures of Alternative Cosmologies in the
Cosmic Microwave Background. As scientists, we must ask questions, and the
following ones seem to be the most appropriate:

• Why Alternative Cosmologies?

• Why look for Signatures in the CMB?

A sketch of the answers is provided below. We hope they suffice!

1.1 Why Alternative Cosmologies?

The flat homogeneous and isotropic universe became the most successful cosmo-
logical paradigm proposed so far. The great success of this model lays on three
fundamental predictions: the expansion of the universe, as shown by Edwin Hub-
ble, the primordial nucleosynthesis, which establishes the abundances of light nuclei
formed in the first three minutes of the universe (ALPHER et al., 1948)3, and the gen-
eration of the Cosmic Microwave Background, a relic radiation emerging from the
formation process of the first neutral atoms of the universe, which took place around
380.000 years after the Big Bang (DICKE et al., 1965; PEEBLES, 1968). All such pre-
dictions had been successfully borne out by high-precision experiments thanks to
the great technological leaps achieved in the past three decades. However, the same
experiments that endorsed the homogeneous and isotropic universe also uncovered
another problems; among them, it is worth mentioning the problems of the cosmo-
logical horizon and flatness, of the “missing matter", and the problem of present-day
acceleration of the universe. To tackle these issues, three main theoretical ideas have
been pushed forward to a certain degree of success: the mechanism of Cosmologi-
cal Inflation to provide the answers to the problems of the early universe (GUTH,

1See The Aeneid, one of the jewels of Ancient Literature.
2See Dante Alighieri’s The Divine Comedy, the monument of the Pre-Renaissance Literature.
3See reference (IOCCO et al., 2009) for an updated account of this subject.
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1981; LINDE, 1982; ALBRECHT; STEINHARDT, 1982), the existence of Dark Matter
(DM) 4 and Dark Energy (DE)5 as components in the cosmic inventory. These three
ingredients (with the cosmological constant Λ playing the role of DE), associated
with a flat, isotropic and homogeneous description of the universe make up what we
call today the Standard Cosmological Model (SCM, also called inflation plus ΛCDM
model), the most widely accepted paradigm to understand the universe as a whole.

However, even being supported by the current experiments, there is a plethora of
open questions which still “haunts" the standard paradigm:

1. Cosmological Inflation, in its current form, does not solve the key problem
of the initial singularity. Also, it predicts density perturbations with nearly
Gaussian correlations, which might not be true: WMAP5 results suggest that such
correlations are likely non-Gaussian (KOMATSU et al., 2009).

2. What is the nature of DM? Is the missing mass problem an indication
that GR needs some modification on cosmological scales?

3. What is the nature of DE? Is the present-day acceleration of the universe
driven by this exotic component, or does GR fail on large scales, demanding a
modification?

These unanswered questions in the SCM framework clearly indicate that our
current cosmological paradigm cannot be the ultimate model of the whole universe
(or the best possible approximation to). The SCM provides a good starting point,
but further steps should be taken. The quest for such additional steps motivates
the study of Alternative Cosmologies. However, how would such modified models
look like?

Our starting point is the SCM itself. It starts with the inflationary phase after the
Big Bang, whose end is characterized by the decay of its scalar field (the inflaton)
into ultra-relativistic particles (the reheating process - see (BASSETT et al., 2006) for
a review), and hence initiating the radiation-dominated phase. From this point on,

4See (EINASTO, 2009) for the astrophysical evidence of DM, (BERTONE et al., 2005) for a review
of Particle DM and (TAOSO et al., 2008) for the requirements that must be fulfilled by the DM
candidates.

5See (COPELAND et al., 2006) and (FRIEMAN et al., 2008) for a review of the problems and the
candidates for DE.
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the standard FRWmodel with DM and DE comes into play and drives the expansion
of the universe. Therefore, the structure of the SCM model is composed of an initial
phase at the early universe (canonical inflation), then followed by a transition epoch
(reheating), which bridges the first with the third phase characterized, among other
well-known phenomena, by the primordial nucleosynthesis, recombination, and the
present-day acceleration. We summarize this structure in Table 1.1.

TABLE 1.1 - The structure of the SCM.

Model Initial phase Transition epoch Final phase
(Prelude) (Interlude) (Postlude)

SCM Canonical Inflation Reheating FRW model with DM and DE

Following the structure shown above, we could knit together different models to
build up an alternative cosmology. In Table 1.2 we summarize all the possibilities
obtained by changing the structure delineated in Table 1.1.

TABLE 1.2 - The structure of the Alternative Cosmologies.

Alternative Prelude Interlude Postlude
Model
1. Canonical Reheating Modified FRW model

Inflation to mimic DM and/or DE
2. Modified Field FRW model

Inflation decay
3. Non-inflationary Field FRW model

phase decay
4. Non-inflationary Field Modified FRW model

phase decay to mimic DM and/or DE

We could have set up other structures for the alternative cosmologies, but the four
ones introduced seem to be the simplest to start with, in particular the first three.
By the way, analogy with well grounded theories and simplicity will be the guiding
principles of this work. They will be also leading principles to choose among the the
models to be studied in this thesis, which we briefly outline below.
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1.1.1 A modified model for gravitation: Massive Gravity

Let us take a deeper look at the possible constructions proposed in Table 1.2. The
first class of models preserves canonical inflation, but requests a modified FRW
model. This model should, in turn, be a cosmological solution to a modified theory
of gravitation, in the same way as the usual FRW model is a particular solution to
the Einstein equations. Then, what is the simplest modification that can be made
to GR in order to derive such cosmological model? Quantum Field Theory (QFT)
provides a precious clue.

In QFT the simplest models are related to massless and neutral free fields. The
next degree of complexity is implemented by adding mass and charge to the field.
Then, more complex constructions can be made by adding interactions, and so forth.
Since GR deals with classical gravitational fields, whose “quanta" are massless spin-2
particles (the gravitons), the next natural step toward a modified version of gravity
is the inclusion of massive spin-2 particles into the theory, analogously to what is
done in the realm of QFT. Therefore, it seems that the simplest generalization of
GR is a theory of gravitation with massive gravitons. There are several attempts to
introduce massive gravitons in GR, but in this thesis we will address two particular
models: the modified Fierz-Pauli model, as studied in (FINN; SUTTON, 2002), and
Massive Gravity, as developed in (RUBAKOV, 2004) and (DUBOVSKY, 2004). We shall
investigate the cosmological consequences of massive gravitons (BESSADA; MIRANDA,
2009b; BESSADA; MIRANDA, 2009a) as representatives of the alternative cosmologies
in the Class 1 of Table 1.2.

1.1.2 A non-canonical model of inflation: DBI Inflation

The second class of models presented in Table 1.2 includes models with modified
inflationary phases and the standard FRW cosmology. What would be the simplest
modification to be done in the canonical inflationary model? As we shall discuss later
on, the kinetic term of the canonical inflaton is proportional to the time derivative of
the field squared; then, what makes a single-field inflationary model differ from any
other is its potential term, for different potentials lead to different inflationary pic-
tures (DODELSON et al., 1997). Then, an interesting option left for modification is the
mathematical form of the kinetic term, which gives rise to the so-called k-inflation
(ARMENDARIZ-PICON et al., 1999). A particular form of k-inflation, called DBI in-
flation (SILVERSTEIN; TONG, 2004), (ALISHAHIHA et al., 2004) (see (MCALLISTER;
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SILVERSTEIN, 2008) for a review), where DBI stands for Dirac, Born and Infeld,
may give answers that canonical inflation cannot do 6. As an example, canonical
inflation is phenomenological in character, and a fundamental explanation of it is
still missing; in other words, canonical inflation was simply “put by hand" to solve
the cosmological puzzles at the early universe, and does not seem to be derived from
any fundamental physical theory. DBI inflation, on the other hand, is a low-energy
solution in String theory, which is one of the candidates to be such fundamental the-
ory of the Nature. String theory predicts a broad class of scalar fields associated with
the compactification of extra dimensions and the configuration of lower-dimensional
branes moving in a higher-dimensional bulk space. This fact gave rise to some phe-
nomenologically viable inflation models, such as the KKLMMT scenario (KACHRU

et al., 2003), Racetrack Inflation (BLANCO-PILLADO et al., 2004), Roulette Inflation
(BOND et al., 2007), alongside with DBI scenario. But why DBI inflation, and not
any other of the models mentioned above?

First of all, DBI inflation is a particular case of a wider class of scalar-field models,
the so-called k-inflation, which is characterized by a far-reaching feature: they possess
a varying speed of sound. General k-inflationary models possess a complex flow
hierarchy (AFSHORDI et al., 2007b), which depends on the derivatives with respect
to the number of e-folds N of the Hubble parameter H, of the speed of sound cs,
and of LX , the derivative of the k-essence Lagrangian with respect to the canonical
kinetic term X. In the case of DBI inflation, the flow hierarchy is simplified due to the
property that LX ≡ c−1

s ; also, DBI inflation admits several exact solutions to the flow
equations (SPALINSKI, 2007a; CHIMENTO; LAZKOZ, 2008; SPALINSKI, 2008; KINNEY;

TZIRAKIS, 2008; TZIRAKIS; KINNEY, 2009). Another important feature is connected
to the fact that a low sound speed leads to substantial non-Gaussianity (ALISHAHIHA
et al., 2004; CHEN et al., 2007; SPALINSKI, 2007a; BEAN et al., 2008a; LOVERDE et al.,
2008), which would be a distinguishing signature of such non-canonical inflationary
model.

Therefore, due to this wealth of possible solutions and results, DBI inflation is a
potential candidate to provide better responses to the current open questions in
the canonical inflationary scenario. We shall investigate the consequences of new

6The original work of Born and Infeld is related to a non-linear extension of classical electro-
dynamics (BORN; INFELD, 1934), which was later reformulated by Dirac (DIRAC, 1960). It became
convenient to dub DBI the low-energy version of the string model due to the similarities between
its Lagrangian and the original one.
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solutions of DBI inflation (BESSADA et al., 2009) as representatives of the alternative
cosmologies in the Class 2 of Table 1.2.

1.1.3 A non-inflationary model: Tachyacoustic Cosmology

Last, but not least, let us say some words about the third class of models presented in
Table 1.2. They have a non-inflationary model to drive the cosmological phenomena
at the very early universe. But, why should we look for non-inflationary models?
The answer is quite simple: inflation is not the unique way to solve the cosmological
puzzles of the very early universe. Also, it is not the only mechanism to generate
a nearly scale-invariant spectrum as observed today. Actually, any model in which
the comoving Hubble radius shrinks will not only solve the horizon problem, but
will generate the desired spectrum of perturbations. Another alternatives are the
models with a contracting phase, like the Bouncing cosmologies (see (NOVELLO;

BERGLIAFFA, 2008) for a review) and the Ekpyrotic scenario (GRATTON et al., 2004)
to construct a cosmology consistent with observations. It is also possible to decouple
the horizon and flatness problems, for example in theories with a varying speed of
light, so that the causal horizon is much larger than the Hubble length (ALBRECHT;
MAGUEIJO, 1999). It is also possible to solve the horizon problem by a universe which
is much older than a Hubble time as in string gas cosmology (BRANDENBERGER,
2009) or island cosmology (DUTTA; VACHASPATI, 2005; DUTTA, 2006), or by the
inclusion of extra dimensions (STARKMAN et al., 2001b; STARKMAN et al., 2001a).
However, it has been argued that inflation, ekpyrosis and some bouncing models
are the only mechanisms for generating a scale-invariant spectrum of perturbations
(GRATTON et al., 2004; KHOURY; PIAZZA, 2009; PETER et al., 2007).

Therefore, there is enough room for more alternative non-inflationary models. We
propose a new alternative, the Tachyacoustic Cosmology (BESSADA et al., 2009), in
which we solve the horizon problem and generate a nearly scale-invariant spectrum
of the fluctuations. The flatness problem is not yet solved, but a work in progress is
striving for tackling this issue. We shall investigate the cosmological consequences
of the Tachyacoustic model as a representative of the alternative cosmologies in the
Class 3 of Table 1.2.
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1.2 Why look for Signatures in the CMB?

In the paragraphs above we have outlined some possible theoretical alternatives to
tackle the problems found in the SCM. However, it seems quite natural to expect
that the laws of Nature emerge from a single theory, not from many. How can we
distinguish among the candidates? At this point it is quite appropriate to quote
Feynman’s words:

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong".

Then, we must find some “laboratory" in the universe to probe the predictions made
by such alternative cosmologies. Since we are interested in the physical processes that
took place in the very early universe, it is quite natural to search for signatures of
such alternative cosmologies in some observable that has been generated back then.
But what is the cosmological observable that has been generated so far in the past?
Primordial gravity waves (PGW) are by far the best, since they could probe the Big
Bang (or whatever model that claims to replace it) itself. However, this task has
been not yet accomplished experimentally (see (SATHYAPRAKASH; SCHUTZ, 2009)
for the current status of GW Astronomy), and only in the near future PGW could
be used as a probe of the very early universe.

The next candidate is CMB. This relic radiation, released around 380.000 after
the Big Bang, after the physical processes called recombination and decoupling, is
the oldest “snapshot" of the early universe available. Although recombination took
place a long time after inflation (or whatever drove the very early stages of the
universe), CMB anisotropies and polarization encode the imprints of the very early
universe since classical density perturbations at recombination grew out of quantum
fluctuations produced during this period. Such imprints are so powerful that even
with the current technological limitations, WMAP5 data acted as a “razor" on the
inflationary models, ruling out many of them (KINNEY et al., 2008). Then, future
measurements are promising, and the satellite Planck7, launched in 2009, is likely
to bring great news in the upcoming months.

These are the points that motivate us to look for signatures of alternative cosmologies
in the CMB.

7http://www.rssd.esa.int/index.php?project=planck
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1.3 Organization of the present thesis

In order to achieve the goals mentioned in the former two sections, the present
thesis is organized as follows: in Chapter 2 we discuss the basic ideas underlying the
homogeneous and isotropic universe, whereas in Chapter 3 we introduce the theory of
cosmological perturbations. In Chapter 4 we review the main ideas of the inflationary
universe, and in Chapter 5 we discuss the generation of CMB anisotropies and
polarization in the realm of GR, which concludes the introductory part of the text. In
Chapter 6 we start our analysis of alternative cosmologies, focussing the signatures
of massive gravitons in the CMB. In Chapter 7 we discuss our solutions in DBI
inflation, and study their signatures. In Chapter 8 we introduce the main ideas of
the tachyacoustic model, and in the Conclusions we summarize the results obtained
throughout this work.

8



2 THE HOMOGENEOUS AND ISOTROPIC UNIVERSE

In this chapter we summarize the key features of the homogeneous, isotropic and
expanding universe as first proposed by Alexander Friedmann in 1922 and 1924. We
follow closely (MUKHANOV, 2005), (WEINBERG, 2008), (KINNEY, 2009) and (BAU-
MANN, 2009).

2.1 The Friedmann-Robertson-Walker Metric

The first ingredient to build a cosmological model rests on the so-called Cosmological
Principle, which states that the universe is homogeneous (i.e., looks the same in
every point) and isotropic (that is, looks the same in all directions) on the largest
scales (larger than 100 or 200 Mpc). In addition to this assumption, which is in
agreement with observations, we also consider the fact that the universe is expanding,
as discovered by Edwin Hubble in the late 1920s. Given such empirical facts, let us
now consider a spacetime characterized by a manifold M and a metric gαβ, whose
line element is expressed as

ds2 = g00dt2 + 2g0idtdxi + gijdxidxj (2.1)

for some coordinate chart {xα}. The Cosmological Principle demands an isotropic
spatial section of M, which implies that the displacements +dxi and −dxi give ex-
actly the same contribution; hence, the terms dtdxi cannot appear in (2.1), which is
consistent only if g0i = 0. The vanishing of g0i allows for a foliation of the manifold
into spatial 3-surfaces Σ of constant time; as a result, any observer sitting on Σ

measures the same time t, the so-called cosmic time. If we demand that Σ be homo-
geneous, the component g00 must be constant, otherwise two points on two spatial
sections Σ1 and Σ2 at times t1 and t2 would be distinguishable, which violates the
requirement of homogeneity. Since we can get rid of g00 by a time redefinition, we
simply take the normalization g00 = 1 for the sake of simplicity. It can be proved
(WEINBERG, 1972) that isotropy at all points of Σ implies homogeneity, so that Σ

is a maximally symmetric subspace of M, and then

ds2 = dt2 − a(t)2

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (2.2)

where a(t) is the scale factor, which characterizes the relative size of the spacelike
hypersurfaces Σ at different times, and we have adopted the spherical coordinates
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r, θ, ϕ to characterize this spatial section. The curvature parameter K takes the
values −1, 0 or +1, for a negatively, flat or positively curved Σ, respectively. The
quantity defined by

H (t) ≡ ȧ (t)

a (t)
, (2.3)

also called Hubble parameter, measures the expansion rate of the universe, and it
is one of the key cosmological parameters. The metric (2.2) is called Friedmann-
Robertson-Walker (FRW) metric.

It is convenient to cast the FRW metric into a more symmetric form, which can be
done by means of cartesian coordinates; the result is

ds2 = dt2 − a(t)2

[
dx2 + dy2 + dz2

(1 + Kr2/4)2

]
, (2.4)

where
r2 = x2 + y2 + z2. (2.5)

Also, we can write the FRW metric (2.4) as

ds2 = dt2 − a(t)2γijdxidxj, (2.6)

where γij is the metric of the hypersurface Σ, given by

γij =
1

(1 + Kr2/4)2 δij. (2.7)

Since every hypersurface Σ is described by a static spatial metric γij, we can set up a
very convenient coordinate system to describe the physical variables in an expanding
universe. This static property establishes that every distance ∆x measured by means
of the spatial metric (2.7) on a given hypersurface is constant, not evolving with
time; this would correspond to the coordinate system attached to an observer at
rest relative to expansion. A physical separation xphys between such points evolves
in time, so that it is clear from (2.2) that it obeys

∆xphys = a(t)∆x. (2.8)

The coordinate system (t,x) attached to an observer at rest relative to expansion
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is called a comoving coordinate system. The same idea can be applied to the time
coordinate; defining the conformal time τ as

dτ ≡ dt

a(t)
, (2.9)

the FRW metric becomes

ds2 = a(τ)2
[
dτ 2 − γijdxidxj

]
, (2.10)

that is, the introduction of a conformal time factorizes the FRW metric into a static
metric multiplied by a conformal factor a(τ).

Conformal time is a “clock" that slows down with the expansion of the universe, and
it is specially useful in measuring cosmological distances, which we address in the
next section.

2.2 Cosmological Distances and Horizons

Once we are given a metric that describes the cosmological spacetime, we can now
take a further step and use it to measure cosmological distances. To do so, let us
first rewrite the spatial section of the FRW metric in spherical coordinates,

d`2 ≡ dχ2 + ΦK

(
χ2

) (
dθ2 + sin2 θdϕ2

)
, (2.11)

where

r2 ≡ ΦK

(
χ2

)
=





sinh2 χ K = −1

χ2 K = 0

sin2 χ K = +1,

(2.12)

so that
ds2 = a(τ)2

(
dτ 2 − d`2

)
. (2.13)

If a photon is emitted from a given source at a time ti, and an observer detects it
at the instant t, we have, along the line of sight (that is, with θ, ϕ constant), that

dχ = ±dτ, (2.14)

since photons travel on null geodesics, ds2 = 0. Equation (2.13) has a twofold im-
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portance; first, its integration gives

χ (τ) = ±τ + const., (2.15)

which, in a τ − χ plane, correspond to straight lines, preserving the light cone
structure of a Minkowski spacetime (but notice that the FRW spacetime is curved).
Second, integrating equation (2.14) using (2.9), we see that the quantity

dcom
p (t) ≡ τ − τi =

∫ t

ti

dt̃

a
(
t̃
) (2.16)

represents the maximum comoving distance that a photon can propagate from its
emission at a time ti up to its detection at the time t. The physical or proper distance
dp between such two points comes from (2.8), that is,

dp = a(t)dcom
p . (2.17)

If we take ti = 0, equation (2.16) gives the maximum comoving distance that a
photon can travel from the ‘initial time’ (assuming that the universe had one) up
to a given time t. This defines the comoving cosmological horizon as the conformal
time lapse between 0 and t:

τ =

∫ t

0

dt̃

a
(
t̃
) . (2.18)

Using the definition of the Hubble parameter (2.3), we can rewrite the definition
(2.18) in terms of the scale factor a,

τ =

∫ t

0

d ln ã dH (ã) , (2.19)

where
dH(a) ≡ 1

aH
(2.20)

is the so-called comoving Hubble radius. The difference between the comoving hori-
zon and the comoving Hubble radius is the following (quoting (DODELSON, 2003)):
if the particles are separated by distances greater than τ , they never could have com-
municated with one another; if they are separated by distances greater than (aH)−1,
they cannot talk to each other now!
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Therefore, if any comoving scale λ is larger than dH , it is outside the horizon, that
is, cannot be in causal contact with a given observed scale, whereas if λ is smaller
than dH it is inside the horizon. Since we normally deal with wavenumbers k ∝ λ−1

rather than λ itself, we can say whether a scale is inside or outside the horizon by
means of the following rule:

k

aH
¿ 1 =⇒ Scale λ is outside the horizon (Superhorizon Scale) (2.21)

k

aH
À 1 =⇒ Scale λ is inside the horizon (Subhorizon Scale) (2.22)

These concepts play a crucial in the discussion on quantum fluctuations generated
by inflation, as we shall see in Section 4.5.

Along with the notion of cosmological horizons to discuss physical scales in the very
early universe, there is another way to accomplish this goal, by means of the so-
called curvature scale (MUKHANOV, 2005), specially useful for analyzing bouncing
models.

2.3 Cosmological Dynamics: The Friedmann and Raychaudhuri Equa-
tions

Once we have discussed the basic features of the FRW metric, let us now derive the
dynamical equations that rule the Friedmann cosmological model. We first discuss
the Hubble parameter in terms of the conformal time, which is simply given by

H =
a′

a2
, (2.23)

where a prime denotes a derivative with respect to the conformal time, and we have
used

d

dτ
= a

d

dt
. (2.24)

Defining

H ≡ a′

a
, (2.25)

it follows that
H =

H
a

. (2.26)

Using the definition of conformal time (2.9) and the metric (2.10), it follows that
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the Christoffel symbol of the second kind is given by

Γ0
αβ = H

(
1 0

0 γij

)
, Γk

αβ =

(
0 Hδk

i

Hδk
i −Kf

2

[
x(iδ

k
j) − xkγij

]
)

, (2.27)

where we have defined
f =

1

(1 + Kr2/4)2 . (2.28)

From (2.27) and using (A.7) we calculate the Ricci tensor, whose components are

R0
0 = −3a−2H′, R0

i = 0, Ri
j = −a−2

(H′ + 2H2 + 2K
)
δi

j, (2.29)

and the scalar curvature, given by (A.8)

R = −6a−2
(H′ +H2 + K

)
. (2.30)

Substituting expressions (2.29) and (2.30) into (A.9) we find the components of the
Einstein tensor,

G0
0 = 3a−2

(H2 + K
)
, G0

i = 0, Gi
j = −a−2

(
2H′ +H2 + K

)
δi

j. (2.31)

Since the Einstein equation relates the geometry to the energy-matter content, let
us now drop a few words on the stress energy-tensor to source this geometry. The
assumption of a homogeneous and isotropic universe demands that its energy and
matter content also be homogeneous and isotropic; hence, we can approximate them
as perfect fluids. We first consider a family of fundamental observers whose worldlines
are tangent to the timelike four-vector

uα ≡ dxα

dτ̄
, (2.32)

where τ̄ is the proper time of the observer, and satisfies

gαβuαuβ = 1. (2.33)

The fluid is then written as

Tαβ = (ρ + P ) uαuβ − Pgαβ, (2.34)

14



where P is the pressure of the fluid and ρ is its energy density in the rest frame.
Since the cosmic time is measured by the observers’ clocks at rest with respect to
the matter content of the universe, we take the four-velocity in the comoving frame
uα = (1, 0, 0, 0), so that

T 0
0 (x) = ρ (t) , T 0

i (x) = 0, T i
j (x) = −P (t) δi

j, (2.35)

(homogeneity implies that the pressure and density are functions of the cosmic time
only).

The energy or matter content of the universe is also assumed to satisfy an equation
of state of the form

P (ρ) = wρ, (2.36)

where w is the equation of state parameter.

Since the stress energy-momentum energy tensor is conserved, T αβ
;α = 0, it follows

from (2.35) the continuity equation

ρ̇ = −3H (ρ + P ) , (2.37)

or, in terms of the conformal time,

ρ′ = −3H (ρ + P ) . (2.38)

The dynamical equations for the scale factor can be obtained by plugging (2.31) and
(2.35) into (A.10), yielding

(
a′

a

)2

=
a2

3M2
P

ρ−K, (2.39)

where
M2

P ≡
1

8πG
(2.40)

is the so-called reduced Planck mass, and G is Newton’s gravitational constant. In
terms of the conformal time τ we have

a′′

a
=

1

6M2
P

(ρ− 3P ) a2, (2.41)
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whereas in terms of the cosmic time t, equations (2.39) and (2.41) become

(
ȧ

a

)2

=
1

3M2
P

ρ− K

a2
, (2.42)

and
ä

a
= − 1

6M2
P

(ρ + 3P ) . (2.43)

Expressions (2.39) and (2.42) are two versions of the Friedmann equation, whereas
expressions (2.41) and (2.43) are two versions of the Raychaudhuri equation. There
is a third version of each of the above equations, which encompasses the so-called
cosmological constant, denoted by Λ, and can be understood as follows. We know
from tensor calculus that the Einstein tensor satisfies the contracted Bianchi identity
∇αGαβ = 0; in addition to that, the stress-energy tensor also satisfies a conservation
law, ∇αTαβ = 0. Since the covariant derivative of the metric tensor also vanishes,
∇αgαβ = 0, we see that a modified Einstein equation like

Gαβ − Λgαβ =
1

M2
P

Tαβ (2.44)

also satisfies the Bianchi and energy conservation constraints. In this case, in terms
of the Hubble parameter defined as functions of the cosmic (2.3) and of the conformal
(2.25) times, the Friedmann and Raychaudhuri equations read:

H2 =
1

3M2
P

ρ +
Λ

3
− K

a2
, (2.45)

Ḣ + H2 = − 1

6M2
P

(ρ + 3P ) + Λ. (2.46)

H2 =
a2

3M2
P

ρ +
a2Λ

3
−K, (2.47)

H′ +H2 =
1

3M2
P

(ρ− 3P ) a2 + a2Λ, (2.48)

where
ä

a
= Ḣ + H2, (2.49)

a′′

a
= H′ +H2. (2.50)
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2.4 The Energy and Matter Content of the Universe

The simplest equation to be solved in cosmology is the continuity equation, (2.37).
It relates the energy or matter content of the universe, given by their density ρ,
with its expansion, given by the scale factor a. To solve this equation for a given
component, we simply substitute (2.36) into (2.37), which gives

ρ (a) = ρ0

(
a

a0

)−3(1+w)

. (2.51)

For the sake of simplicity, let us consider for a moment that the universe has a single
component characterized by an equation of state parameter w; then, substituting
(2.51) into the Friedmann equation (2.42) for K = 0, we find

a(t) = a0

(
t

t0

)2/3(1+w)

(2.52)

for w 6= −1. a0 and t0 are integration constants; we shall always take these quantities
at present time (unless otherwise stated), and reserve the subscript “0" to denote
them. For the rest of this chapter we normalize the present time value of the scale
factor as a0 = 1; however, other normalizations can be adopted, as we shall see in
Section 5.2.

The solution w = −1 is of special interest, since it is related to the cosmological
constant. To see this, let us solve the Friedmann equation (2.45) in the vacuum
(ρ = 0): in this case, the Hubble parameter is constant, and given by

H2 =
Λ

3
, (2.53)

so that the dynamical evolution of the scale factor in the presence of a cosmological
constant is given by

a(t) = a0e
H(t−t0). (2.54)

Also, from (2.53), we see that Λ plays the role of an energy density, for, defining

ρΛ ≡ M2
P Λ, (2.55)

we see that equation (2.45) is equivalent to the Friedmann equation without a cos-
mological constant, (2.42). Since ρΛ is constant, as defined in expression (6.15), from
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the continuity equation (2.37) we see that ρ′Λ = 0 implies ρΛ + PΛ = 0, which is
satisfied only if

ρΛ = −PΛ =⇒ w = −1. (2.56)

This empty spacetime filled with a cosmological constant is called de Sitter space.

The three usual values for the equation of state parameter, as well as the corre-
sponding solutions for ρ, a and H are summarized in Table 2.1.

TABLE 2.1 - The basic constituents of the universe.

Component w ρ(a) a(t) a(τ) H(t)

Photons 1/3 a−4 t1/2 τ 1/t

Matter 0 a−3 t2/3 τ 2 1/t
Λ −1 const. eHt −τ−1 const.

It is obvious that a single-component universe is just an idealized picture, since it is
clearly multi-component; however, when a given species dominates over the others,
that is, its density contribution is much larger than the other contributions, we can
approximate the solution of the Friedmann and Raychaudhuri equations by a single-
component universe. In the general case, with a plethora of constituents, the total
density and pressure are given by

ρ =
∑

i

= ρi, P =
∑

i

= Pi. (2.57)

It is convenient to introduce a dimensionless quantity to describe the densities of
the species ρ. This quantity, which we call density parameter, and denote by Ω, is
simply written as the energy density of a given species normalized by the critical
density, which is defined as the energy density of the universe in the case where
Λ = K = 0,

ρc ≡ 3M2
P H2; (2.58)

then, for each species i, and the total content of the universe, the density parameter
are given by

Ωi ≡ ρi

ρc

, Ω ≡
∑

i

Ωi. (2.59)
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From equation (2.42) and the definitions (2.59) we deduce an important expression,

Ω(a) = 1− K

(aH)2 . (2.60)

The current observations of CMB and the large-scale structure favor a cosmological
model composed of baryonic matter (subscript B), dark matter (subscript DM),
and a vacuum energy that plays the role of the dark energy (subscript Λ), in the
following proportions today (KOMATSU et al., 2009):

ΩB ∼ 0.04, ΩDM ∼ 0.23 ΩΛ ∼ 0.72, (2.61)

which indicates that the universe is nearly flat today, Ω0 ∼ 1. This observationally-
favored model is called the ΛCDM or cosmic concordance model. Together with the
inflationary paradigm, the ΛCDM model makes up the widely accepted model to
describe the universe, the SCM.

2.5 The Birth of CMB: Recombination and Decoupling

Let us now briefly comment on the history of the universe since its early days. We
have seen in Section 2.4 that the energy density of the photons goes like ργ ∝ a−4

(Table 2.1); then, using the well known Stefan-Boltzmann law ργ ∝ T 4, we easily
find that

T ∝ 1

a
= 1 + z, (2.62)

where z is a quantity called redshift. Then, the universe was very hot in the past, and
went on cooling down as it expanded; by reaching a temperature around T ∼ 1010K,
the first nuclei were formed by primordial nucleosynthesis, so that the universe
became filled with an ionized plasma of light nuclei, electrons and photons. The
universe was opaque, that is, the mean free path of the photons were too small
to allow for free propagation; they were almost immediately absorbed after being
emitted. The amount of radiation was much larger than the amount of matter, so
the universe was dominated by radiation. For the sake of simplicity, assuming that
the matter content of the universe were composed solely of hydrogen at early times,
eventually a proton could capture an electron and form a neutral hydrogen atom by
means of the radiative recombination reaction,

p + e− → H + γ; (2.63)
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however, the high temperature of the plasma were far above the ionization energy
of the hydrogen, so that the high-energy photons ionized these atoms by means of
the reaction

H + γ → p + e−. (2.64)

Therefore, hydrogen atoms formed even in the radiation-dominated period, but they
were extremely short-lived, and were dissociated by photo-ionization. As the universe
cooled down, more matter were formed, and the photon energies dropped; then at
the temperature T ∼ 9730K, the energy densities of radiation and matter became
equal, thus inaugurating the era of radiation-matter equality. Thereafter, more and
more atoms of hydrogen were formed since less photon were sufficiently energetic
to photo-ionize the neutral atoms. When the number density of the neutral atoms
became nearly equal to the number density of the ions, the recombination process
took place: the ionization fraction of the universe dropped quickly, so that more
free electrons were captured to form neutral atoms. At this time, the rate of the
interaction photon-electron Γ were larger than the expansion rate of the universe
H; then, by the time of equality Γ = H, the photon-electron scattering froze-out,
that is, photons no longer interacted with the electrons and then free-streamed in
the universe when Γ < H. This event is called decoupling, and took place around

Decoupling : zdec ' 1100, Tdec ' 3000K . (2.65)

After decoupled, the photons were scattered for the last time by the electrons, and
this event makes up what is called the last scattering surface (LSS)1. A summary of
the key events in the very early universe is given in Figure 2.1.

Then, after the LSS, the CMB is born!

1To be more precise, the LSS should be dubbed LSL, last scattering layer, for not all the photons
are last-scattered at the same time!
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FIGURE 2.1 - The major events in the very early universe. Figure borrowed from (BAU-
MANN, 2009).
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3 THE THEORY OF COSMOLOGICAL PERTURBATIONS

In the Chapter 2 we have discussed the key ingredients of a homogeneous, isotropic
and expanding universe. In what follows we shall add fluctuations to the metric
and to the energy-momentum tensor, which is going to play an essential role in
the theory of CMB anisotropies and polarization. We follow closely (MUKHANOV et

al., 1992), (KODAMA; SASAKI, 1984), (MUKHANOV, 2005), (WEINBERG, 2008)) and
(GIOVANNINI, 2005).

3.1 Disturbing the smoothness of the universe

3.1.1 Metric fluctuations

Let us consider a general metric gαβ describing such inhomogeneous and anisotropic
spacetime. To first-order, this metric can be split up into two pieces1,

gαβ = (0)gαβ + δgαβ, (3.1)

with the supplementary condition

|δgαβ| ¿ 1 (3.2)

where (0)gαβ plays the role of a background metric (the FRW metric, for example),
and δgαβ represents the metric fluctuations. Since δgαβ is symmetric, we must have
ten independent components in four dimensions, which can be written in terms of
independent scalar (S), vector (V ), and tensor (T ) fields. As usual, the spacetime
M is foliated into ‘smooth’ hypersurfaces of constant time Σ, and each perturbation
is defined on Σ. Such decomposition is written as

δgαβ = δSgαβ + δV gαβ + δT gαβ, (3.3)

where the condition |δIgαβ| ¿ 1, I = S, V, T , must be fulfilled in order to guaran-
tee that the fluctuations are independent. The expressions for δIgαβ are given below.

• Scalar Perturbations

1It is important to stress that the equality symbol = here means that such approximation is
valid only up to first-order. For the sake of simplicity we keep this symbol henceforth, but bearing
in mind that this is a weak equality.
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The component δg00 is a pure scalar, whereas the vector components δg0i

can be built from first-order derivatives of a scalar field. As to tensor perturbations,
there are two ways to construct a tensor from a scalar: either we multiply a scalar
by the 3-metric γij on Σ, or take second-order derivatives of it. Since the fields are
defined on Σ, we only care about the spatial components of covariant derivatives.
Therefore, scalar perturbations are given by (MUKHANOV et al., 1992)

δSgαβ = a(τ)2

(
2ϕ −B|i
−B|i 2

(
ψγij − E|ij

)
)

, (3.4)

where ϕ, B, ψ and E are scalar fields, and the subscript “ |i" indicates a covariant
derivative on a spacelike hypersurface Σ. Such scalar fields contribute with four
independent components to the metric perturbations.

• Vector Perturbations

We know from classical electrodynamics that a massless vector field Aα satis-
fies a Maxwell-like equation

∂αW αβ = Jβ, (3.5)

where Wαβ ≡ Aα,β − Aβ,α and Jβ is the analog of a current density. The Maxwell
tensor Wαβ is invariant under gauge transformations

Ãα = Aα − ∂αξ, (3.6)

where ξ is an arbitrary function. Then, using this gauge freedom, we can eliminate
some degrees of freedom of the vector field Aα by imposing some constraint as, for
example, the Lorentz condition

∂αAα = 0. (3.7)

In the cosmological context, δg00 gives no vector contribution, since it is scalar,
but δg0i does, since it is a vector. The tensor part δgij can be also constructed
from vectors by taking covariant derivatives of them. Therefore, putting these facts
together, we have, for vector perturbations,

δV gαβ = −a(τ)2

(
0 −Si

−Si Fi|j + Fj|i

)
. (3.8)
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where Si and Fi are vector fields. These fields must satisfy Maxwell-like equations
as (3.5) which also allows for a gauge choice. We impose the analog of the Lorentz
gauge (3.7),

Si
|i = F i

|i = 0, (3.9)

since the vectors are constructed on Σ. Hence, each vector has two independent
components, and, altogether, contribute with four independent components to the
metric perturbations.

• Tensor Perturbations

Tensor perturbations can be constructed as

δT gαβ = −a(τ)2

(
0 0

0 hij

)
, (3.10)

where hij is a tensor defined on Σ. We can also fix the number of components of hij

by means of gauge transformations in analogy with the weak-field approximation
(see Appendix C.2.2 for details); we then impose

hi
j|i = hi

i = 0, (3.11)

which means that hij is a transverse trace-free (TTF) tensor (B.19). Therefore,
tensor perturbations contribute with two independent components.

Adding up the contributions of S (4), of V (4) and of T (2), we get the ten inde-
pendent contributions to the metric perturbations, given by

δgαβ = a(τ)2

(
2ϕ Si −B|i

Si −B|i −Fi|j − Fj|i + 2ψγij − 2E|ij − hij

)
. (3.12)

The corresponding perturbations to the fundamental tensors of GR can be deduced
as follows. We start with the inverse metric gαβ which, to first order, is given by

gαβ = (0)gαβ − δgαβ. (3.13)
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Substituting relations (3.1) and (3.13) into the usual equation

gαγgγβ = δα
β, (3.14)

it can be shown that
δgαβ = −(0)gακ(0)gβλδgκλ. (3.15)

Due to the linear character of the perturbations, the Christoffel symbol of first kind
reads

Γκβγ = (0)Γκβγ + δΓκβγ; (3.16)

notice that the linearity property of the perturbations makes the ‘δ’ symbol ‘act’
like a linear differential operator; then, we could have used this “operator"2 instead
of algebraic manipulations performed. From (A.2), we have that

δΓκβγ =
1

2
[∂γδgκβ + ∂βδgγκ − ∂κδgβγ ] . (3.17)

From the definition of the Christoffel symbol of second kind, (A.3), we find

Γα
βγ = (0)Γα

βγ + δΓα
βγ, (3.18)

where
δΓα

βγ = (0)gακδΓκβγ + δgακ(0)Γκβγ, (3.19)

which leads to

δΓα
βγ =

1

2
(0)gακ [∇γδgκβ +∇βδgγκ −∇κδgβγ] , (3.20)

where we have used expression (A.2).

The linearity property also allows us to write down the Ricci tensor (A.7) as

Rαβ = (0)Rαβ + δRαβ, (3.21)

2Strictly speaking, δ is not a differential operator, since the perturbation expansion stops at
first-order; however, the similarity between a differential operator and the algebraic result as shown
in (3.16) due to the first-order expansion allows for its use as if it were an operator.
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where

δRαβ = ∂κδΓ
κ

αβ − ∂βδΓκ
ακ + (0)Γκ

αβδΓλ
κλ + δΓκ

αβ
(0)Γλ

κλ

− (0)Γκ
αλδΓ

λ
κβ − δΓκ

αλ
(0)Γλ

κβ. (3.22)

Rewriting the derivatives of the perturbed Christoffel symbols in terms of their
covariant derivatives (A.2), we see that

δRαβ = ∇κΓ
κ

αβ −∇βΓκ
ακ. (3.23)

Using the same techniques, the mixed tensor δRα
β, the scalar curvature δR and the

Einstein tensor δGαβ read

δRα
β = (0)gαγδRγβ + δgαγ(0)Rγβ, (3.24)

δR = (0)gαγδRγα + δgαγ(0)Rγα, (3.25)

δGαβ = δRαβ − 1

2

[
δgαβ

(0)R + (0)gαβδR
]
. (3.26)

3.1.2 Density Perturbations

As discussed in Chapter 2, the energy and matter content of the universe can be
treated as a perfect fluid, whose expression is given by (2.34). To first-order, we
can decompose the stress-energy tensor into its background contribution, (0)Tαβ,
described by the expression (2.34), and a perturbation δTαβ, so that

Tαβ = (0)Tαβ + δTαβ. (3.27)

The same linearity argument accounts for similar decompositions for the elements
of (3.27), that is,

uα = (0)uα + δuα, (3.28)

P = P0 + δP, (3.29)

ρ = ρ0 + δρ, (3.30)

where P0, ρ0 stand for the background values of the pressure and energy density,
respectively. Then, substituting (3.28), (3.29) and (3.30) into (3.27), and using ‘δ’
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as a linear differential operator, it follows that

δTαβ = (δρ + δP ) (0)uα
(0)uβ + [ρ0 + P0]

[
δuα

(0)uβ + (0)uαδuβ

]

− (0)gαβδP − P0δgαβ. (3.31)

Expression (3.31) is not yet the most general way to produce small inhomogeneities
and anisotropy in a perfect background fluid; we can also introduce the anisotropic
stresses in the spatial components of δTαβ, represented by the quantity Πij, which
can be decomposed exactly in the same fashion as in the metric (3.3):

Πij = ΠS
ij + ΠV

ij + ΠT
ij, (3.32)

where

ΠS
ij = Π|ij − 1

3
γij∇2Π, (3.33)

ΠV
ij =

1

2

(
Πi|j + Πj|i

)
, (3.34)

ΠT
ij = Πij, (3.35)

subject to the constraints

Πi
|i = 0, Πi

j|i = Πi
i = 0, (3.36)

exactly as in (3.9) and (3.11). Notice that, by construction, the full anisotropic
stress tensor is traceless, as it should be. Anisotropic stresses arise, for example, in
the neutrino free-streaming.

We can calculate every component of δTαβ as follows: since (0)uα = (1, 0, 0, 0) for
the background fluid, we have, in conformal units,

(0)uα (τ) = (a (τ) , 0, 0, 0) ; (3.37)

then, using δ as an operator, it follows from (2.33) that

(0)gαβ
(0)uβδuα = −1

2
(0)uα(0)uβδgαβ. (3.38)
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Next, plugging the 00 component of (3.12), and (3.37) into (3.38), we get

δu0 = −ϕ

a
. (3.39)

However, the component δui cannot be determined by means of expression (3.38),
since this equality is identically zero on both sides for the 0i component of the
background metric and the i component of the four-velocity. We then introduce a
new vector field, which we define to be

δui ≡ vi

a
, (3.40)

where vi is the 3-velocity of matter defined with respect to the spatial coordinates
xi. The covariant version of δui is

δui = a
(
Si −B|i − v|i

)
, (3.41)

where we have used
δuα = δgαβ

(0)uβ + (0)gαβδuβ, (3.42)

which is the “perturbed version" of the usual expression to raise indices.

Once we have the components of the four-velocity perturbation, we can easily eval-
uate the components of δTαβ as given in (3.31) and (3.33-3.35)

δT00 = a2 [δρ + 2ρ0ϕ] ,

δTi0 = a2
[− (ρ0 + P0) vi + ρ0

(
Si −B|i

)]
,

δTij = a2

{
−

(
δP − 2P0ψ − 1

3
∇2Π

)
γij + (2P0E + Π)|ij

+ 2
[
P0F(i|j) + 2Π(i|j)

]
+ P0hij + Πij

}
. (3.43)

In general, the pressure depends not only on the energy density ρ, but also on the
entropy per baryon ratio S; then,

δP =

(
∂P

∂ρ

)

S

δρ + δPnad (3.44)

≡ c2
sδρ + δPnad, (3.45)

where the first term on the right-hand side represents an adiabatic process, i.e.,
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with constant entropy, and the second one stands for a non-adiabatic process. For
hydrodynamical matter, cs plays the role of the the speed of sound, given by (D.15),
in plain analogy with the propagation of acoustic waves in a material medium.

3.2 Gauge Symmetries for Cosmological Perturbations

As discussed in the Appendix B, gauge transformations play a fundamental role in
GR; they allow the existence of GWs, for example. In cosmology they also play a
fundamental role, and are extremely important for all the investigations that we will
undertake in this thesis. This is why we shall discuss this issue in some detail.

To begin with, we assume the FRW metric in Cartesian coordinates (2.10) as our
background metric, where γij is the metric on the 3-spaces Σ, given by (2.7). As
we have earlier discussed, such subspaces are maximally symmetric, and hence the
background metric is form-invariant, that is (WEINBERG, 1972)

(0)g̃αβ (x̃) = (0)gαβ (x̃) . (3.46)

Property (3.46) implies that
ã(τ̃) = a(τ̃), (3.47)

and
γ̃ij(x̃) = γij(x̃). (3.48)

In the cosmological context the local coordinate transformations (B.2) are slightly
different due to the adoption of the conformal time τ as our evolution parameter.
Hence, these coordinate transformations read

τ̃ = τ + ξ0, x̃i = xi + ξi; (3.49)

in the same way, we can show that the metric transformation (3.1), given by equation
(B.5), changes slightly,

δg̃αβ = δgαβ −∇αεβ −∇βεα, (3.50)

where εα = a(τ)2 (ξ0,−ξi). It is convenient to decompose the spatial part of ξα into
a vector and a scalar component,

ξi = ξ|i + ζi, (3.51)
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where ζi is a divergenceless vector, ζi
|i = 0. This constraint eliminates one of the

components of ζi, leaving just two independent quantities which, together with the
scalar ξ, make up the three components of ξi, hence validating the decomposition
(3.51).

With these vectors we are now in position to derive the gauge transformations for the
metric fluctuations. Taking each component of the metric (3.12) in the coordinate
system S̃, and substituting it into the equation (3.50), we find

δg̃00 = 2ã(τ̃)2ϕ̃

= 2a(τ)2ϕ− 2ξ′0 − 2Hξ0, (3.52)

δg̃0i = −ã(τ̃)2B̃|i + ã(τ̃)2S̃i

= a(τ)2
[−B|i + Si − ξ0|i + ξ′|i + ζ ′i

]
, (3.53)

δg̃ij = ã(τ̃)2
[
2ψ̃γij − 2Ẽ|ij − F̃i|j − F̃j|i + h̃ij

]

= a(τ)2[2(ψ −Hξ0)γij − 2(E − ξ)|ij − (Fi − ζi)|j − (Fj − ζj)|i

+ hij]. (3.54)

Therefore, reassembling the variables in (3.52), (3.53) and (3.54), we find all the
gauge transformations for the metric fluctuations:

a) Gauge transformations for scalar perturbations

ϕ̃ = ϕ− ξ′0 −Hξ0, (3.55)

B̃ = B + ξ0 − ξ′, (3.56)

ψ̃ = ψ +Hξ0, (3.57)

Ẽ = E − ξ, (3.58)

b) Gauge transformations for vector perturbations

S̃i = Si + ζ ′i, (3.59)

F̃i = Fi − ζi, (3.60)

31



c) Gauge transformations for tensor perturbations

h̃ij = hij. (3.61)

We now turn to the gauge transformations for the energy-matter sector. Since Tαβ is
a second rank tensor, it transforms as (B.1) under the local transformations (3.49).
After some algebra we can show that

δT̃ α
β(x̃) = δTα

β(x)− (0)T α
γ(x)ξγ

|β + (0)T γ
β(x)ξα

|γ

− (0)T α
β|γ(x)ξγ; (3.62)

then, raising one of the indices of (3.43) and substituting into (3.62), we find

δρ̃(x̃) = δρ(x)− ξ0ρ
′
0(x), (3.63)

δP̃ (x̃) = δP (x)− ξ0P
′
0(x), (3.64)

ṽi(x̃) = vi(x) + ξ′|i + ζ ′i. (3.65)

In particular, decomposing the velocity field vi in the same way as we did in (3.51),

vi = v|i + ωi, (3.66)

where ωi
|i = 0, and using (3.51) we see that

ṽ = v + ξ′, (3.67)

ω̃i = ωi + ζ ′i. (3.68)

Once we have established the gauge transformations for the metric components, let
us now analyze the gauge-fixing procedure for the parameters ξ0 and ξ. From (3.58)
it follows that

ξ = E − Ẽ; (3.69)

then, from (3.56) and (3.69),

ξ0 = (B̃ − Ẽ ′)− (B − E ′). (3.70)
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Substituting (3.70) into (3.55), we find

ϕ̃ = ϕ− (B̃ − Ẽ ′)′ + (B − E ′)′ −H
[
(B̃ − Ẽ ′)− (B − E ′)

]
. (3.71)

Defining the scalar field

Φ ≡ ϕ +H(B − E ′) + (B − E ′)′, (3.72)

it is clear from expression (3.71), that the field Φ is invariant under the gauge
transformations (3.55) and (3.58). Likewise, substituting (3.70) into (3.57), we find

ψ̃ = ψ +H
[
(B̃ − Ẽ ′)− (B − E ′)

]
; (3.73)

then, defining the scalar field

Ψ ≡ ψ −H(B − E ′), (3.74)

it is also clear that Ψ is also invariant under the gauge transformations (3.55) and
(3.58). The fields Φ and Ψ are called Bardeen potentials (BARDEEN, 1980).

As to vector fields, we can fix the gauge ζi by means of equation (3.60),

ζi = Fi − F̃i, (3.75)

which, together with (3.59), ends up being

S̃i = Si + (Fi − F̃i)
′; (3.76)

then, defining the vector field
Wi ≡ Si + F ′

i, (3.77)

it follows that the vector field Wi is invariant under the gauge transformations (3.59)
and (3.60).

As for tensor perturbations, expression (3.61) shows immediately that the tensor
field hij is invariant under gauge transformations,

h̃ij = hij. (3.78)
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We can also construct gauge-invariant quantities in the matter sector. Plugging
(3.70) into (3.63) and (3.64), it is immediate to see that the quantities

δρ(GI) ≡ δρ + ρ′0 (B − E ′) , (3.79)

δP (GI) ≡ δP + P ′
0 (B − E ′) (3.80)

are also invariant under the the same transformations. As to the 3-velocity of the
fluid, from (3.69), we conclude that the quantity

V ≡ v + E ′ (3.81)

is invariant under the coordinate transformations (3.49). Also, from (3.75) and
(3.76), the quantities

Fi ≡ ωi + Fi (3.82)

Si ≡ ωi − Si (3.83)

are invariant under the transformations (3.68).

Along with the gauge-invariant variables defined above, we can also use the gauge-
fixing procedure to write down the Einstein equations for the cosmological per-
turbations in more convenient coordinate systems. A special gauge is particularly
convenient for computations, the so-called longitudinal gauge or conformal Newto-
nian gauge, which we next discuss. We take B = E = 0 in this gauge, which fixes
completely the coordinates. Then, in the coordinate system S the potentials Φ and
Ψ take the form

Φ = ϕL, Ψ = ψL, (3.84)

where the subscript L stands for conformal Newtonian. In this gauge, the fields ϕL

and ψL coincide with their corresponding invariant potentials. Also, in this case, the
line element takes the simplified form

ds2 = a(τ)2
[
(1 + 2Φ) dτ 2 − (1− 2Ψ) γijdxidxj

]
, (3.85)

which bears resemblance to the Newtonian line element in GR. The difference lies
in the fact that, in Newtonian approximation in GR, Φ = Ψ. The physical interpre-
tation of Φ is immediate in this analogy: it acts as a gravitational potential. To see
the physical interpretation of Ψ, let us calculate the fluctuations in the spatial cur-
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vature, δR(3). A convenient gauge to do such calculation is the comoving orthogonal
gauge, in which an observer sits on a given hypersurface. In this case, for scalar per-
turbations, the perturbation to the fluid 3-velocity δui is zero, so that, from (3.41)
and (3.66), we have

δu
(com)
i = 0 =⇒ v(com) + B(com) = 0, (3.86)

where the subscript (com) stands for “comoving". In this gauge, using the definition
of the curvature of a hypersurface, R(3) = gijR

(3)
ij , and expression (3.25), we find

that
δR(3) =

4

a2
∇2ψ(com) (3.87)

in the comoving gauge. Hence, ψ(com) plays the role of a curvature perturbation.
Therefore, in (3.85) the Bardeen variable Φ plays the role of a Newtonian potential,
whereas Ψ is associated with curvature perturbations.

We can connect ψ(com) with any other gauge by means of expressions (3.56), (3.57)
and (3.67),

ψ = ψ(com) +H (v + B) , (3.88)

where we have used relation (3.86). Plugging (3.74) and (3.81) into (3.88) we find

ψ(com) = Ψ−HV . (3.89)

The gauge-invariant variable

R ≡ − [Ψ−HV ] (3.90)

represents the comoving curvature perturbation, and will be of fundamental impor-
tance to discuss the generation of quantum fluctuations during inflation in Section
4.5.

3.3 Einstein equations for Cosmological Perturbations

Using the techniques introduced in Section 3.1 we see that the Einstein equation for
the fluctuations (A.10) takes the form

δGαβ =
1

M2
P

δTαβ. (3.91)
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Substituting the metric (3.12) into expression (3.15), and using the corresponding
expressions for the background (2.10) and (2.27), and plugging this result into ex-
pression (3.16) first, and then into (3.17) in the sequel, we find all the components
of the perturbed Christoffel symbol of second kind. Then, plugging them into ex-
pression (3.23), and so forth, we derive the components of the Einstein tensor by
means of equation (3.26) and the background expressions discussed in Chapter 2,
Section 2.3. For a flat universe, with K = 0, we have

δG00 = 2∇2Ψ− 6Hψ′, (3.92)

δG0i = − (H2 + 2H′) (B,i − Si) + 2 (Ψ′ +HΦ),i +
1

2
∇2Wi

+
(H′ −H2

)
(B − E ′),i , (3.93)

δGij =
{
2Ψ′′ + 2

(H2 + 2H′) (Φ + Ψ) + 2H (Φ′ + 2Ψ′) +∇2 (Φ−Ψ)

+ 2 (H′′ +HH′) (B − E ′)} δij +
[
Ψ− Φ− 2

(H2 + 2H′) E
]
,ij

+

[
1

2
W ′

i +HWi
′ − (H2 + 2H′) Fi

]

,j

+ (i ↔ j)

+
1

2

[
h′′ij + 2Hh′ij −∇2hij − 2

(H2 +H′) hij

]
. (3.94)

From expressions (3.43) and (3.91-3.94) we finally find the Einstein equations for cos-
mological perturbations for the gauge-invariant quantities (3.72), (3.74) and (3.77-
3.83). For scalar perturbations, the Einstein equations are

∇2Ψ− 3H(Ψ′ +HΦ) =
a2

2M2
P

δρ(GI), (3.95)

(Ψ′ +HΦ),i = − a2

2M2
P

(ρ0 + P0)V,i, (3.96)

Ψ′′ +H (Φ′ + 2Ψ′) +
(H2 + 2H′) Φ +

1

2
∇2 (Φ−Ψ)

=
a2

2M2
P

(
δP (GI) − 1

3
∇2Π

)
, (3.97)

∇2 (Φ−Ψ) = − a2

M2
P

∇2Π. (3.98)
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The Einstein equations for vector perturbations are

∇2Wi = − 2a2

M2
P

(ρ0 + P0)Si, (3.99)

W ′
i + 2HWi =

2a2

M2
P

Πi, (3.100)

whereas for tensor perturbations

h′′ij −∇2hij + 2Hh′ij =
2a2

M2
P

Πij. (3.101)

In the absence of anisotropic stresses the solution to equation (3.100) is

Wi =
Ci

a2
, (3.102)

where Ci is a constant vector. Therefore, vector perturbations decay quickly as
the universe expands, and we do not expect them to endure up to the time of
recombination. This is the reason why vector perturbations are completely neglected
in the current cosmological paradigm.

From the evolution equations for the scalar modes we can recast the definition of the
curvature on comoving hypersurfaces (3.90) into a very useful form, as we shall see
in Chapter 4. First, subtracting −2H2 on both sides in equation (2.48), and using
equation (2.47), we have, for K = Λ = 0,

H2 −H′ =
a2

2M2
P

(ρ0 + P0) ; (3.103)

then, plugging equations (3.96) and (3.103) into (3.90) we see that R becomes

R = −Ψ− H (HΦ + Ψ′)
H2 −H′ . (3.104)
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4 THE INFLATIONARY UNIVERSE

In this chapter we introduce the inflationary cosmology. We follow closely (KINNEY,
2009), (BAUMANN, 2009), and (RIOTTO, 2002), together with (MUKHANOV, 2005)
and (WEINBERG, 2008), and references therein.

4.1 The Cosmic Puzzles

The ΛCDM model has a number of successes in explaining the structure of the uni-
verse from primordial nucleosynthesis up to large scales. However, when applied to
the very early universe, to the tiny fractions of time right after the initial singularity
(as the standard lore has it1), the standard paradigm failed completely. Basically,
the standard FRW has four problems when applied to the very early universe2:

a) The Flatness problem

b) The Horizon problem

c) The Entropy problem

d) The Monopole problem.

In particular, we briefly review the first two problems in the subsections below, to
see how the inflationary “miracle" works.

4.1.1 The Flatness Problem

As we have discussed in Section 2.4, the current observations favor a flat universe
today, Ω0 ∼ 1. However, was the universe nearly flat throughout all its history? The
answer can be understood as follows. Using the Friedmann equation in the form
(2.60), and taking its derivative with respect to the logarithm of the scale factor, it
follows that

d |Ω− 1|
d ln a

= (1 + 3w) Ω |Ω− 1| , (4.1)

where we have used the equation of state (2.36). If the universe is flat, it remains flat
at all times; however, if there is a slight deviation from flatness, the term (1 + 3w)

1Despite we do not discuss non-singular models here and stick to the current Big Bang picture,
it is worth mentioning that the initial singularity is completely absent in some cosmological models;
see (NOVELLO; BERGLIAFFA, 2008) for a review.

2Not to mention the initial singularity, the worst of the SCM problems, where all physical laws
do fail!
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is positive for a radiation- or matter-dominated universe, which means that a flat
universe is unstable for

d |Ω− 1|
d ln a

> 0; (4.2)

hence, small deviations from flatness at early times would grow due to the expansion
of the universe and, as a result, the universe today would be anything but flat.
Since the primordial nucleosynthesis limit is |Ωnuc − 1| ≤ 10−12, it is clear that such
minute deviation from flatness would diverge at late times. The situation is even
worse at the Planck epoch, since |ΩPl − 1| ≤ 10−61; then, the FRW universe filled
with radiation or matter cannot explain the present-time flatness of the universe due
to the instability presented in equation (4.2). This is the so-called flatness problem.

4.1.2 The Horizon Problem

As we have seen in Section 2.2, the comoving cosmological horizon is defined as the
maximum comoving distance travelled by a photon since the initial singularity up to
a time t, and it is given by the conformal time τ (2.18); also, any physical distance
in cosmology is related to a comoving length by means of the scale factor (2.8). In
particular, for a radiation- or matter-dominated universe, the scale factor evolves as
a(t) ∝ tn, where n = 1/2 for radiation of n = 2/3 for matter; then, using expressions
(2.18) and (2.20), it follows that

a(t) ∝ tn =⇒ τ ∝ t1−n ∼ dH . (4.3)

Since for both radiation- or matter-dominated universe 1 − n is always positive,
we conclude that the comoving cosmological horizon grows with time, and is finite;
also, in this case, the comoving cosmological horizon coincides with the Hubble
radius (2.20). Comoving scales entering the horizon today were outside the horizon
at LSS, which means that they were not in causal contact. An accurate calculation
shows that in the standard FRW universe two photons separated by an angular
distance larger than around 1◦ were not in causal contact (RIOTTO, 2002). This fact
would imply a very inhomogeneous temperature in the microwave sky; however,
observational evidence shows exactly the opposite: the temperature is homogeneous
up to 10−5K even for angular separations larger than 1◦! This apparent lack of causal
connection among primordial scales due to the finite horizon is called the horizon
problem.
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Both the flatness and the horizon problems are related. Using the fact that the
Hubble parameter is H(t) ∝ t−1 for a(t) ∝ tn (see Table 2.1), together with relations
(2.18) and (2.60), the ratio between a comoving scale λ and the comoving horizon
is a constant, given by (

λ

dH

)2

|Ω− 1| ≡ κ = const. (4.4)

Taking the derivative of (4.4) with respect of ln a, and using (4.1), we have

d

d ln a

(
λ

dH

)
= −κ

2

1

|Ω− 1|3/2

d |Ω− 1|
d ln a

, (4.5)

which is negative for (1 + 3w) > 0, since relation (4.2) holds:

d

d ln a

(
λ

dH

)
< 0. (4.6)

The inequality (4.6) shows that the comoving horizon size grows with time, so that
certain scales become causally connected only at later times. Equation (4.5) is the
link between the flatness problem and the horizon problem.

4.2 The Inflationary Paradigm

The key to solve both the flatness and the horizon problem is term (1 + 3w) in (4.1):
if it is positive, as we have seen, both problems arise; if it is negative, though,

d |Ω− 1|
d ln a

< 0,
d

d ln a

(
λ

dH

)
> 0, (4.7)

which means that the point Ω = 1 is stable, that is, the universe evolves toward
flatness, and that the cosmological horizon shrinks in comoving units, so that a given
scale would be inside the horizon at early times. Then, a fluid with an equation of
state parameter satisfying w < −1/3 would solve both cosmological puzzles. Notice
that, from the Raychaudhuri equation (2.43), such fluid would cause a period of
acceleration in the early universe:

w < −1

3
=⇒ ä

a
= − 1

6M2
P

ρ (1 + 3w) > 0. (4.8)
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This period of accelerated expansion at the very early universe is called inflation (see
Figure 2.1 to see when inflation takes place). Inflation solves not only the flatness
and horizon problems, but also the other two, namely the entropy and the monopole
problems, as shown in (RIOTTO, 2002).

Once we have a solution to the cosmological puzzles by means of an accelerated
expansion, the next task is: how to implement inflation? Scalar fields provide the
simplest way to do the job. We define the scalar field φ, which we call inflaton, to
be the responsible to drive inflation. The dynamics of general scalar field theories
is described by the action (D.1), whose simplest form is given by the Lagrangian
density

L [X, φ] = X − V (φ) , (4.9)

X being the kinetic term defined in (D.2), and V (φ) is the potential that describes
the self-interactions of the field. The equation of motion for the inflaton field follows
from (4.9) and (D.4),

1√−g
∂α

(√−g∂αφ
)

+ V,φ = 0, (4.10)

where we have defined
V,φ ≡ dV

dφ
. (4.11)

For a flat FRW metric (2.6) and a homogeneous scalar field, φ (t,x) = φ(t) - which
we assume to be the case throughout this Section, unless otherwise stated -, the
equation of motion (4.10) becomes

φ̈ + 3Hφ̇ + V,φ = 0. (4.12)

Equation (4.12) is basically a Klein-Gordon equation in an expanding spacetime.
The extra contribution 3Hφ̇ is a friction term due to the expansion of the universe.

The hydrodynamic approach is set up as follows. First, the stress-energy momentum
for the inflaton is obtained by plugging (4.9) into (D.9),

Tαβ = φ,αφ,β − gαβ

[
1

2
gκλφ,κφ,λ − V (φ)

]
. (4.13)

The energy density and pressure for the inflaton field are derived by substituting
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(4.9) into (D.10) and (D.11), which, for a flat FRW metric (2.6), gives

ρφ =
φ̇2

2
+ V (φ) , (4.14)

Pφ =
φ̇2

2
− V (φ) . (4.15)

The corresponding Friedmann equation for the inflaton field is given by plugging
(4.9) into (D.17),

H2 =
1

3M2
P

[
φ̇2

2
+ V (φ)

]
. (4.16)

From the definition of the equation of state (2.36), and expressions (4.14) and (4.15),
we find

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
; (4.17)

hence, when the potential term dominates the kinetic term,

V (φ) À φ̇2, (4.18)

that is, when the inflaton is slowly rolling down the potential - this is why this
condition is called slow-roll limit -, it follows that

Pφ ' −ρφ, (4.19)

and then 1+3w < 0, which implements the accelerated expansion. Expression (4.19)
is called de Sitter limit, in analogy to the corresponding solution obtained for an
empty universe filled with a cosmological constant as discussed in Section 2.4. From
the continuity equation (2.37) and the de Sitter limit (4.19), we deduce that ρ′φ ' 0,
and then ρφ is nearly constant. This fact implies that H is also nearly constant, since
Friedmann equation states that H2 ∝ ρφ. Therefore, the inflationary spacetime is
approximately de Sitter, and the universe expands quasi-exponentially according to
expression (2.54),

a(t) ∼ eHt. (4.20)
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FIGURE 4.1 - The solution to the horizon problem in the inflationary cosmology. Source:
Baumann (2009).

The conformal time for a quasi-de Sitter expansion is (Table 2.1)

τ ∼ − 1

aH
, (4.21)

so that conformal time is negative during inflation, and tends to zero at late times.
This means that if inflation took place before the radiation-dominated phase, its
negative conformal time could be arbitrarily pushed back toward −∞ depending
on the duration of inflation. The time τ = 0 represents the transition from the
inflationary expansion to radiation domination. In this case, the past light cones
of two events taking place at CMB would intersect thanks to such “extrapolation"
to negative conformal times due to inflation. This overlap of the past light cones
causally connects the events, solving the horizon problem. The conformal diagram
depicted in Figure (4.1) illustrates how this mechanism work.

The duration of inflation can be parameterized conveniently by the introduction of
a new variable. Integrating the equation that defines the Hubble parameter, (2.3)
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between a given instant t and the end te of inflation, we have

a(t) = ae exp

[
−

∫ te

t

dt′H (t′)
]

; (4.22)

defining the number of e-folds, N as

dN ≡ −Hdt, (4.23)

and choosing the value of N at the end of inflation as Ne = 0, expression (4.22)
reads

a(N) = aee
−N . (4.24)

The definition of N looks awkward, since it goes backward in time; however, since we
have observational access only to the end of inflation (KINNEY, 2009), it is convenient
to assume Ne = 0 by the same reason that we take the initial time as tin = 0:
simplicity. The number of e-folds required for inflation ranges from N = 46 to
N = 60 (see (LIDDLE; LEACH, 2003) for a discussion on these limits). However, we
still can have inflation when N À 60 (for example, in exponential models, as we
shall see).

Therefore, the inflationary solution in the slow-roll approximation provides a very
successful solution to the mentioned cosmological puzzles. In the next section we
discuss in more detail the consequences of slow-roll approximation, and derive a full
set of parameters that will become fundamental to our investigations.

4.3 Flow Hierarchy in Inflation

As we have seen in the previous Section, in the slow-roll limit (4.18) the poten-
tial term dominates over the kinetic term, so that the Friedmann equation can be
described as

H2 ' 1

3M2
P

V (φ) ; (4.25)

since the Hubble parameter is nearly constant, equation (4.25) implies that the
potential is approximately flat ; such condition can be formalized as

V,φ ¿ V. (4.26)
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Since φ̇ slowly varies with time, its derivative φ̈ must negligible, so that the equation
of motion (4.12) becomes

φ̇ ' − V,φ

3H
. (4.27)

Then, in the slow-roll limit the time evolution of the inflaton field depends on the
variation of the potential with respect to the field itself. Since V (φ) is a function
of φ, with no explicit time dependence, equation (4.27) suggests that all the time
evolution can be replaced by evolution in φ if it is a monotonic function in time. In
this sense, the field φ acts as a “clock". This property works well for the slow-roll
approximation, but is it valid in the general case? To answer this question let us
take the derivative of the Hubble parameter in (4.16) with respect to φ and use its
equation of motion (4.12); the result is

φ̇ = −2M2
P H,φ, (4.28)

which shows that we can express the Hubble parameter as a function of φ, H =

H (φ). Plugging equation (4.28) into (4.16) we have that

[
d

dφ
H (φ)

]2

− 3

2M2
P

H (φ)2 − 1

2M4
P

V (φ) = 0. (4.29)

Equations (4.28) and (4.29) are called Hamilton-Jacobi equations for inflation (MUS-

LIMOV, 1990), (SALOPEK; BOND, 1990). The Hamilton-Jacobi equation describes the
evolution of the Hubble parameter entirely in terms of the inflaton field, which is
very convenient for computational purposes.

From equation (4.28) we can express the time derivative of the Hubble parameter
H in terms of φ solely,

Ḣ = −2M2
P H2

,φ; (4.30)

then, from equations (2.49) and (4.30), we see that the acceleration of the universe
can be expressed in terms of φ-dependent functions,

ä

a
= H2 [1− ε (φ)] , (4.31)
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where we have defined the flow parameter ε as

ε ≡ 2M2
P

(
H,φ

H

)2

. (4.32)

In terms of the flow parameter ε, the Hamilton-Jacobi equation (4.29) becomes

H (φ)2

[
1− 1

3
ε (φ)

]
=

1

3M2
P

V (φ) , (4.33)

whereas the equation of state for the inflaton field reads

Pφ =

[
2

3
ε (φ)− 1

]
ρφ, (4.34)

where we have substituted into expression (4.17) the relations (4.28) for φ̇ and the
Hamilton-Jacobi equation (4.33) for V , and used definition (4.32).

We can also rewrite higher-order time derivatives of φ in terms of H (φ) and its
derivatives. In particular, φ̈ reads

φ̈ = −2M2
P H,φφφ̇, (4.35)

so that the equation of motion (4.12) can be completely written in terms of φ̇:

(3− η) Hφ̇ + V,φ = 0, (4.36)

where we have defined the second flow parameter η as

η ≡ 2M2
P

H,φφ

H
. (4.37)

Notice that the value of the flow parameter ε literally controls inflationary expansion:

ä > 0 ⇐⇒ ε < 1 , (4.38)

so that inflation lasts as long as the flow parameter ε is less than one. Also, both
parameters ε and η dictate the slow-roll approximation: taking ε ¿ 1, the equation
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of state (4.34) becomes

Pφ ' −ρφ, (4.39)

in agreement with (4.19), whereas the Hamilton-Jacobi (4.33) reads

ε ¿ 1 =⇒ H2 ' 1

3M2
P

V (φ) , (4.40)

which coincides with expression (4.25), (the consequence of the slow-roll approxi-
mation (4.18)). In turn, taking η ¿ 1, equation (4.36) becomes

η ¿ 1 =⇒ φ̇ ' − V,φ

3H
, (4.41)

which coincides with relation (4.27), (the consequence of the approximate flatness
of the potential, given by (4.26)).

Hence, the flow parameters ε and η play a decisive role to determine the conditions
for inflation and slow-roll. In particular, if ε varies with time (it can be a constant,
as we shall see in the next Section), inflation ends when φ reaches the value φ = φe,

End of inflation : ε (φe) = 1 . (4.42)

If ε is constant, additional physics must be introduced to enforce inflation to end.

Along with the flow parameters ε and η we can derive a whole hierarchy of higher-
order parameters as follows. First of all, we adopt the convention that the sign of√

ε is the same of H,φ,

√
ε ≡ +

√
2MP

H,φ

H
; (4.43)

then, taking the derivative of the parameter η, for example, we get

dη

dφ
= 2M2

P

H,φφφ

H
− η

√
ε√

2MP

, (4.44)

which may be simplified by defining

ξ2 ≡ (
2M2

P

)2 H,φH,φφφ

H2
, (4.45)
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leading to

dη

dφ
=

ξ2 − εη√
2εMP

, (4.46)

and so forth. Proceeding this way, the `− th parameter, with ` = 3, . . . ,∞, is given
by (KINNEY, 2002)

`λ =
(
2M2

P

)`
(

H,φ

H

)`−1
1

H

d`+1

dφ`+1
H. (4.47)

In particular, we can get rid of the extra factors appearing in (4.46) by simply
changing the variable φ to the number of e-folds, N , defined in (4.23), so that

d

dφ
=

1√
2εMP

d

dN
, (4.48)

and then

dη

dN
= ξ2 − εη. (4.49)

In terms of N , the flow parameter ε assume the following equivalent (and simpler)
form

ε =
1

H

dH

dN
. (4.50)

The flow parameters (4.32), (4.37), (4.45) and (4.47) satisfy an infinite set of first-
order differential equations, the so-called flow hierarchy

dε

dN
= ε (2η − 2ε) ,

dη

dN
= ξ2 − εη,

...
d`λ

dN
= −`λ [`ε− (`− 1) η] + `+1λ. (4.51)

Solutions to this infinite hierarchy of flow equations are equivalent to solutions of
the scalar field equation of motion.

49



4.4 Inflationary Potentials

Inflation acquires different properties depending on the shape of the scalar potential
V (φ). We summarize below the different classes of inflationary potentials according
to the classification pushed forward by (DODELSON et al., 1997). All figures are
adapted from (KINNEY, 2003).

4.4.1 Large-Field Inflationary Potentials

In these models, the inflaton field is displaced far from its minimum to a value φ ∼ µ

(several times the value MP ), and then rolls down toward its minimum at the origin
on a potential

V (φ) = Λ4

(
φ

µ

)p

, (4.52)

where Λ is the energy scale of inflation, and p > 1 (Figure 4.2). In this case, φ > φe,
and then inflation occurs when the inflaton field strength is larger than its minimum.

FIGURE 4.2 - Large-field polynomial potentials.

The flow parameters are given by

ε(φ) =
p2

2

M2
P

φ2
, (4.53)
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η(φ) =
p(p− 2)

2

M2
P

φ2
, (4.54)

whereas inflation ends when
φc

e

MP

=
p√
2
. (4.55)

4.4.2 Small-field polynomial potentials

Small-field polynomial potentials in canonical inflation arise from a spontaneous
symmetry breaking in the presence of a “false" vacuum in unstable equilibrium with
nonzero vacuum energy density and a “physical" vacuum, for which the classical
expectation value of the scalar field is nonzero, 〈φ〉 6= 0 (KINNEY; MAHANTHAPPA,
1996). A typical potential of this form arises in the so-called “natural" inflation mod-
els (FREESE et al., 1990). These models are characterized by an effective symmetry-
breaking scale µ ∝ 〈φ〉 such that φ ¿ µ ¿ MP , the field rolls down from an unstable
equilibrium at the origin toward µ; hence, for positive φ we have always φ̇ > 0, see
Figure 4.3.

V (φ) = Λ4

[
1− 1

p

(
φ

µ

)p]
, (4.56)

where µ is the effective symmetry-breaking scale given by (KINNEY; MAHANTHAPPA,
1996)

µ =

[
(m− 1)!V (φ)

|dmV/dφm|
]1/m

∣∣∣∣∣
φ=0

, (4.57)

and m is the order of the lowest nonvanishing derivative of the potential at the origin.
Potential (4.56) has to be regarded as the lowest-order term in a Taylor expansion,
since higher order terms can be neglected due to the smallness of φ in comparison
to µ. In the canonical small-field scenario the initial unstable equilibrium state is
characterized by the vacuum energy density Λ4, which is the height of the potential
at the origin, Λ4 = V (0).

The flow parameter ε assumes the form

ε(φ) =
MP

µ
√

2

(
φ

µ

)2(p−1)

, (4.58)

whereas from (4.58) we see that inflation ends at

φe

µ
=

[
µ

MP

√
2

]1/(p−1)

. (4.59)

51



FIGURE 4.3 - Small-field polynomial potentials.

4.4.3 Hybrid potentials

This family of inflationary models is characterized by two scalar fields: one field
φ drives inflation, whereas the other ψ makes inflation end. The original hybrid
potential was pushed forward by Linde, (LINDE, 1994; LINDE, 1991)

V (φ) =
m2

2
φ2 +

λ′

2
ψ2φ2 +

λ

4

(
M4 − ψ2

)2
, (4.60)

where M is a given energy scale, and m, λ and λ′ coupling constants. For φ > φc =

λM2/λ′, that is, its critical value, the potential for ψ has a minimum at ψmin = 0,
which occurs during inflation. The field ψ is kept at this minimum, so that φ slowly
rolls down the effective potential

V (φ) =
λM4

4
+

m2

2
φ2, (4.61)

until it reaches the critical value φc, which shifts the minimum of ψ to ψmin = ±M .
The field ψ then rolls down toward one of these minima, enforcing inflation to end.

In general, the effective potentials for hybrid models are of the form

V (φ) ∼ Λ4

[
1 +

(
φ

µ

)p]
, (4.62)
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FIGURE 4.4 - Hybrid potentials.

where, again, expression above is the lowest-order term of a Taylor expansion. The
behavior of the inflaton field on the hybrid potential is depicted in Figure 4.4.

4.4.4 Exponential potentials - Power-law Inflation

Exponential potentials make up a very important class of inflationary models, and
are characterized by

V (φ) = Λ4 exp




√
2

p

(
φ

MP

)2

 , (4.63)

where p > 0. In this case, the Hubble parameter also has an exponential form, and
then leads to a scale factor with power-law dependence on t, a ∝ tp. This class of
inflationary models were studied by Lucchin and Matarrese under the name power-
law inflation (LUCCHIN; MATARRESE, 1985). One of the most important features of
these models is that the flow parameters are constant:

ε(φ) = η(φ) =
1

p
; (4.64)

also, the Hubble parameter is inversely proportional to t,

H =
1

εt
. (4.65)
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The inflaton in this class of models behaves exactly as large-field models, as depicted
in Figure 4.2.

4.5 Quantum Fluctuations from Inflation

Once we have introduced the fundamental ideas concerning the dynamics of inflation,
let us now discuss one of the most fundamental results of the inflationary cosmology:
the generation of nearly scale-invariant spectrum of perturbations, which seeds the
structure formation of the universe. We have introduced perturbations in Chapter
3, but a question remains unanswered: what created such tiny primordial fluctu-
ations? Inflation is a mechanism that provides this answer3. Instead of a classical
inflaton field evolving classically on a potential V (φ), as we have considered so far,
small quantum fluctuations δφ around its classical trajectory couple to the spacetime
curvature, originating then the primordial density fluctuations. Such quantum fluc-
tuations evolve during inflation, until they exit the horizon and become classically
“frozen", and only much time later they re-enter the horizon and act as the classical
seeds to the small inhomogeneities that will grow into structure by gravitational
instability. Therefore, inflation solves in a very elegant and physically rich way the
problem of the generation of the small fluctuations in the universe.

In the next section we treat in detail the generation of such small fluctuations
provided by inflation. We drop the subscript , φ to indicate derivatives in the sequel,
and simply write it as φ.

4.5.1 Introducing Perturbations

To see how the inflaton fluctuations couple with the inhomogeneities discussed in
Chapter 3, let us derive first the equation of motion (4.10) for the perturbations. To
do so, we take the metric in the longitudinal gauge (3.85) with tensor perturbations,

ds2 = a(τ)2
{
(1 + 2Φ) dτ 2 − [(1− 2Ψ) δij + hij] dxidxj

}
, (4.66)

and use δ as an “operator" on (4.10), whose result is

δφ′′ + 2Hδφ′ −∇2δφ− φ′ (Φ′ + 3Ψ′) + 2a2ΦVφ + a2Vφφδφ = 0. (4.67)

3Although other proposals do also provide an answer. See the Introduction and Chapter 8.
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Proceeding the same way for the stress energy-momentum tensor (4.13), we have

δT00 = φ′δφ′ + 2a2ΦV + a2Vφδφ,

δTi0 = φ′δφ,

δTij =
[
− (Φ + Ψ) φ′2 + φ′δφ + a2 (2ΨV − Vφδφ)

]
δij; (4.68)

next, using expressions (3.92-3.94) for the Einstein tensor, and (4.68) for the energy-
momentum tensor, the Einstein equations (3.91) read

∇2Ψ− 3H(Ψ′ +HΦ) =
1

2M2
P

(
φ′δφ′ − φ′2Φ + a2Vφδφ

)
, (4.69)

Ψ′ +HΦ =
1

2M2
P

φ′δφ, (4.70)

Ψ′′ +H (Φ′ + 2Ψ′) +
(H2 + 2H′) Φ

= − 1

2M2
P

(
Φφ′2 − φ′δφ′ + a2Vφδφ

)
. (4.71)

The equation for the tensor perturbations is identical to (3.101) without anisotropic
stresses, and is given by

h′′ij −∇2hij + 2Hh′ij = 0. (4.72)

Equations (4.69-4.71) show the coupling between the inflaton perturbation δφ and
the scalar modes Φ and Ψ, whereas tensor modes do not couple. Despite tensor modes
will not play any role in the density perturbations at the time of recombination, they
do generate CMB temperature anisotropies by inducing a gravitational redshift on
the photons frequency using the same mechanism of horizon exit and re-entry. More
on this topic will be discussed in Chapter 5.

4.5.2 Evolution of the Scalar Modes

Equation (4.70) shows that the comoving curvature perturbation (3.104) is con-
nected to the perturbation of the inflaton field, δφ; to see this, we first substitute
the expressions for the energy density (4.14) and for the pressure (4.15) into expres-
sion (3.103); then, going to conformal time, we get φ̇ = φ′/a, and

H2 −H′ =
1

2M2
P

φ′2, (4.73)
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so that, from (3.104), (4.70) and (4.73), we find

R = −Ψ−Hδφ

φ′
. (4.74)

Therefore, the small fluctuations of the inflaton field induce curvature perturbations
by means of equation (4.74). In particular, taking the derivative of equation (4.74),
and using (4.69) and (4.71), we find

R′ = −2M2
PH

φ′
∇2Ψ; (4.75)

then, defining the variable z as

z (τ) ≡ aφ′

H , (4.76)

and using again (4.69), (4.71) together with (4.75) and (4.76), we find

R′′ + 2
z′

z
R′ −∇2R = 0. (4.77)

Introducing the Mukhanov-Sasaki potential u as

u ≡ zR, (4.78)

equation (4.77) turns to

u′′ −∇2u− z′′

z
u = 0. (4.79)

Expanding the Mukhanov-Sasaki potential u in its Fourier modes,

u (τ, x) =

∫
d3k

(2π)3/2
uk (τ) eik·x, (4.80)

we obtain the mode equation for curvature perturbations,

u′′k +

(
k2 − z′′

z

)
uk = 0 , (4.81)

which shows that the mode functions uk depend only upon the magnitude of the
comoving wave vector k.
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4.5.3 Evolution of the Tensor Modes

We now turn our attention to the equation for tensor perturbations, given by (4.72).
We first go the the Fourier space, expanding the tensor hij according to (C.28) and
(C.29), and following the discussion in Section C.2.2,

hij (τ, x) =

∫
d3k

(2π)3/2

[
h

(+)
k (τ) ε

(+)
ij (k) + h

(×)
k (τ) ε

(×)
ij (k)

]
eik·x, (4.82)

where ε
(+,×)
ij are the polarization tensors given by (C.33). Plugging expansion (4.82)

into equation (4.72), we get

h′′k + 2Hh′k + k2hk = 0, (4.83)

for both modes + and ×, whence we deduce that the tensor modes hk depend
only on the magnitude of the modes k (see Appendix C). Defining the quantity
(GRISHCHUK, 1975),

µk (τ) ≡ MP

2
a (τ) hk (τ) , (4.84)

we obtain the mode equation for tensor perturbations

µ′′k +

[
k2 − a′′

a

]
µk = 0 , (4.85)

which has the same functional form as the corresponding equation for the curvature
fluctuations (4.81).

4.5.4 Quantizing the Modes

Before undertaking the task of solving the mode equations (4.81) and (4.85) for
scalar and tensor perturbations, it is important to gain some insight by studying
the asymptotic behavior of the mode functions uk and µk. Since these equations
have the same functional form, we solve for the function uk first, and them write
down the similar solutions for µk. The asymptotic limits are discussed below.

• Short-wavelength limit: Subhorizon scales

This limit is characterized by

k2 À z′′

z
, (4.86)
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so that the mode equation (4.81) becomes

u′′k + k2uk = 0. (4.87)

This is the equation of a simple harmonic oscillator, whose solution is given
by

uk (τ) =
Ake

ikτ + Bke
−ikτ

√
2k

. (4.88)

• Long-wavelength limit: Superhorizon scales

In this case,

k2 ¿ z′′

z
, (4.89)

and so equation (4.81) yields

u′′k −
z′′

z
uk = 0, (4.90)

whose solution is
u′′k
uk

=
z′′

z
=⇒ uk (τ) ∝ z (τ) . (4.91)

The arbitrary normalization constants can be fixed as follows. We first expand
u (τ,x) as a quantum operator,

u (τ,x) =

∫
d3k

(2π)3/2

[
uk (τ) eik·xâk + u∗k (τ) e−ik·xâ†k

]
, (4.92)

where âk and â†k are respectively the annihilation and creation operators, and satis-
fies the well known commutation relations

[
âk, â

†
k′

]
= δ(3)(k− k′), (4.93)

and, for the vacuum state |0〉,
âk|0〉 = 0. (4.94)

Inverting the operators âk and â†k to express them in the configuration space, after
a hard work we can show that (4.93) implies the Wronskian condition

uku
∗
k
′ − u∗kuk = i. (4.95)
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Substituting expression (4.92) into (4.95), we obtain

|Ak|2 − |Bk|2 = 1, (4.96)

which is the normalization condition. The second condition that provides a way to
fix one of the constants is the choice of the quantum vacuum. In quantum field
theory, the vacuum is defined as the a zero-particle state as seen by an inertial ob-
server in the Minkowski spacetime, where a quantum state representing a particle
with momentum k can be built from the creation operators â†k. In the case of quan-
tum cosmological fluctuations, the vacuum choice must be performed on subhorizon
scales, since all the comoving scales were deep inside the Hubble horizon and then in
causal contact. Subhorizon scales correspond to the short-wavelength limit, where
the mode equation switches to a harmonic oscillator-like equation (4.87), whose so-
lutions lead to a Minkowski vacuum as long as k is time-independent. To ensure a
Minkowski vacuum we must set

Ak = 1, Bk = 0, (4.97)

which guarantees that âk|0〉 = 0, as desired. Choice (4.97) is called the Bunch-Davies
vacuum. Using conditions (4.96) and (4.97) we completely fix the constants Ak and
Bk.

As for superhorizon scales, (4.91), it follows from the definition of the mode uk,
equation (4.78), that

Rk =
uk

z
' const.; (4.98)

hence, modes with wavelengths larger than the horizon have constant nonzero ampli-
tude for the curvature on comoving hypersurfaces. That is, the quantum amplitudes
of the long wavelength modes, outside the horizon, asymptote to a constant nonzero
amplitude. This is the well known phenomenon of mode freezing, which allows for a
quantum fluctuation to exit the horizon as a perturbation with constant amplitude
and re-enter the horizon as a classical inhomogeneity that seeds the future structure
formation.

4.6 Solutions to the Mode Equation

Once we have discussed the main features of the asymptotic limits of the quantum
fluctuations, we next work out some full solutions to the mode equations.
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4.6.1 Slow-Roll Solutions

Let us now study the slow-roll solution to the mode equation (4.81). One of the
key ingredients to finding such solutions is provided by the flow parameters (4.32),
(4.37) and (4.45); they come into play through equation (4.28), from which we have

φ̇

H
=

φ′

H = −
√

2M2
P ε, (4.99)

so that the variable z becomes

z = −a
√

2M2
P ε. (4.100)

Next, using definitions (2.24) and (4.23), we get

d

dτ
= −aH

d

dN
, (4.101)

so that the acceleration term z′′/z turns to (KINNEY, 2002)

z′′

z
≡ a2H2F

(
ε, η, ξ2

)
, (4.102)

where
F ≡ 2 + 2ε− 3η + 2ε2 − 4εη + η2 + ξ2, (4.103)

and then the mode equation (4.81) becomes

1

aH

d2uk

dτ 2
+

[(
k

aH

)2

− F

]
uk = 0. (4.104)

Note that the ratio k/(aH) appearing in equation (4.104) determines whether a
given wavelength is in- or outside the horizon (2.21-2.22); then, it is convenient to
introduce a new variable (KINNEY, 2005)

y ≡ k

aH
, (4.105)

such that y ¿ 1 for superhorizon and y À 1 for subhorizon scales. In terms of y,
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the derivative with respect to the conformal time reads

d2

dτ 2
= a2H2

[
(1− ε)2 y2 d2

dy2
+ G (ε, η) y

d

dy

]
, (4.106)

where

G = −2εη + 2ε2. (4.107)

Therefore, the mode equation (4.104) becomes

(1− ε)2 y2d2uk

dy2
+

(−2εη + 2ε2
)
y
duk

dy
+

[
y2 − F

]
uk = 0, (4.108)

so that to first order in slow-roll, it turns to

(1− 2ε) y2d2uk

dy2
+

[
y2 − 2− 2ε + 3η

]
uk = 0, (4.109)

whose solution is

uk(y) = y1/2

[
αH(1)

ν

(
y

1− ε

)
+ βH(2)

ν

(
y

1− ε

)]
, (4.110)

where α and β are constants and H
(1)
ν , H

(2)
ν are Hankel functions of first and second

kind, respectively, and

ν =
3

2
+ 2ε− η. (4.111)

Using the normalization condition established by the Wronskian (4.95) and fixing
the Bunch-Davies vacuum (4.97), we have β = 0, so that we find from (4.110) the
normalized solution

uk(y) =
1

2

√
π

k

(
y

1− ε

)
H(1)

ν

(
y

1− ε

)
. (4.112)

4.6.2 The Power-Law Solution

The power-law solution is characterized by constant slow-roll parameters, and give
rise to inflationary exponential models like (4.63). For ε = const., from definition
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(4.76) we have
z′′

z
=

a′′

a
, (4.113)

so that the same solution works for both tensor and curvature modes. Equations
(2.49) and (4.31) yield

a′′

a
= a2 (2− ε) H2; (4.114)

then, using the definition of conformal time, (2.9) and (4.65), we find

τ = − 1

1− ε

1

aH
. (4.115)

From the definition of the variable y, (4.105), and (4.115), it follows that

y = − kτ

1− ε
, (4.116)

so that the mode equation (4.81) and (4.85) become

(1− ε)2 y2d2uk

dy2
+

[
y2 − (2− ε)

]
uk = 0. (4.117)

The solution to equation (4.117) is given by

uk(y) = y1/2

[
αH(1)

ν

(
y

1− ε

)
+ βH(2)

ν

(
y

1− ε

)]
, (4.118)

where now
ν =

3− ε

2 (1− ε)
. (4.119)

From the normalization condition established by the Wronskian (4.95) and fixing
the Bunch-Davies vacuum (4.97), we have β = 0, so that from (4.116) and (4.118)
we find the normalized solution

uk(y) =
1

2

√
π

k

(−kτ

1− ε

)
H(1)

ν

(−kτ

1− ε

)
, (4.120)

which is an exact solution to all wavelengths.
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4.6.3 The de Sitter Solution

For the de Sitter solution, H = const., so that ε = 0. The mode equation is the same
as (4.117) for ε = 0, so that the de Sitter solutions (4.118) read

uk(τ) =
√
−kτ

[
αH

(1)
3/2 (−kτ) + βH

(2)
3/2 (−kτ)

]
, (4.121)

where we have used the result ν = 3/2 from (4.119). Using the expressions for
the Hankel functions H3/2 (see, e.g., (ABRAMOWITZ; STEGUN, 1972)), and using
the asymptotic limits −kτ → 0 and kτ → ∞ to apply the Bunch-Davies vacuum
condition, and normalizing the modes as we did in the previous subsection, we find
that (4.121) becomes

uk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ , (4.122)

which is valid for all wavelengths, and is an exact solution.

4.7 Power Spectrum

Once we have found solutions to the mode equations (4.81) and (4.85) the next
important step is the computation of the amplitude of the quantum fluctuations.
For a generic function f (τ,x) (which can be either the Mukhanov-Sasaki potential
or the tensor amplitude), the two-point correlation function is defined as

ξ (τ, r) ≡ 〈0|f (τ,x) f (τ,x + r)∗ |0〉, (4.123)

where ξ depends on r = |r| by isotropy. Expanding f in Fourier modes as in (4.80),
we find from (4.123) that

ξ (τ, r) =

∫
d3k

(2π)3/2

d3k′

(2π)3/2
〈0|fk (τ) f ∗k′ (τ) |0〉eik·r; (4.124)

assuming that the Fourier modes fk are normally distributed, we define the power
spectrum P (k) as

〈0|fkf
∗
k′ |0〉 =

2π2

k3
P (k)δ(3) (k− k′) , (4.125)
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where the normalization 2π2/k3 has been chosen to render the power spectrum
dimensionless. Therefore,

〈|f (τ,x)2 |〉 =

∫
dk

k
P (k). (4.126)

For curvature perturbations, from the definition of the Mukhanov-Sasaki potential
we have Rk = uk/z, so that the corresponding power spectrum (4.126) is

PR(k) =
k3

2π2

∣∣∣uk

z

∣∣∣
2

. (4.127)

As we have seen in Section 4.5.4, on superhorizon scales the curvature perturbation
(4.98) is nearly constant, so that we can approximate the mode function uk by a de
Sitter solution (4.122) which, on superhorizon scales −kτ → 0, yields

uk(τ) ' − 1√
2k

i

kτ
; (4.128)

next, using the expression for the conformal time given by (4.115) with ε ¿ 0, that
is, τ ∼ −1/(aH), it follows from (4.128) that

uk(τ) ' iaH√
2k3

. (4.129)

Next, using (4.100), (4.127) and (4.129), we find, at the horizon exit k = aH,

P
1/2
R =

1

8π2

H2

M2
P ε

∣∣∣∣
k=aH

. (4.130)

For tensor perturbations, the power spectrum is given by

PT (k) =
k3

π2
|hk|2 , (4.131)

where the factor 2 accounts for the two polarization states of the graviton. In the
slow-roll limit, the solution for µ is given by (4.129) on superhorizon scales,

µk(τ) ' iaH√
2k3

; (4.132)
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then, substituting (4.84) and (4.132) into (4.131), we find, at the horizon exit,

PT =
2

π2

H2

M2
P

∣∣∣∣
k=aH

. (4.133)

Another important quantity, whose upper bound is measured by CMB satellites,
is the tensor-to-scalar ratio, r, which is nothing but the tensor power spectrum
normalized to its scalar counterpart, that is,

r ≡ PT

PR
. (4.134)

We can usually approximate both the scalar and tensor power spectra on k by a
power-law, P (k) ∝ kn; then, the spectral scalar index, ns, and the tensor spectral
index can be evaluated by means of the expressions

ns − 1 ≡ d(ln PR)

d(ln k)
,

nT ≡ d(ln PT )

d(ln k)
, (4.135)

respectively. The spectral indices measure the scale dependence of the power spec-
trum on the Fourier mode k. In the slow-roll limit, we have

ns − 1 = −4ε + 2η,

nT = −2ε. (4.136)

65





5 THEORY OF CMB ANISOTROPIES AND POLARIZATION GEN-
ERATED BY PRIMORDIAL TENSOR MODES

In this Section we discuss the basic mechanism for generating small anisotropies and
polarization in CMB. Unlike the previous chapters, in the present we will keep the
usual constants c, h and kB. In what follows we shall use the terms “tensor modes"
and “PGWs" indistinguishably.

5.1 Boltzmann Equations in Cosmology

As we have briefly discussed in Section 2.5, CMB photons freely propagate after
decoupling. They move along geodesics, and we can treat this photon gas using the
techniques of statistical mechanics, namely, the Liouville equation

df

dτ
= 0, (5.1)

where f = f (xα, pα) is the photon distribution function, and pα is the photon four-
momentum, given by

pα =
dxα

dλ
, (5.2)

where λ parameterizes the photon’s trajectory. Equation (5.1) is also called collision-
less Boltzmann equation. Since the photon four-momentum satisfies the mass-shell
condition

gαβpαpβ = 0, (5.3)

the phase-space of the photon mass-shell is seven-dimensional, {xα, pi}, since p0 can
be determined in terms of the components of the momentum vector by means of
equation (5.3),

p0 = p, (5.4)

where
p2 ≡ −a−2gijp

ipj, (5.5)

the metric gij has the general form (3.1), and the physical photon energy E is related
to p0 through E = ap0.

In terms of f = f (xα, pi), Liouville equation (5.1) becomes

df

dτ
=

∂f

∂τ
+

∂f

∂xi

dxi

dτ
+

∂f

∂p

dp

dτ
, (5.6)
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where we have neglected the dependence on

∂f

∂pi

dpi

dτ
(5.7)

since it is of second-order in the perturbation series, and here we are only concerned
about first-order terms. The second term on the rhs of (5.6) is related to the unit
vector along the photon trajectory; to see this, we simply use expressions (5.2) and
(5.4), so that

êi ≡ dxi

dτ
=

dxi

dλ

dλ

dτ
=

pi

p
. (5.8)

Then, the rate of change of the photon distribution function is

df

dτ
=

∂f

∂τ
+ êi ∂f

∂xi
+

∂f

∂p

dp

dτ
. (5.9)

In the presence of collisions, particles will be coming in and out of a given volume of
the phase space; however, on cosmological scales, the mean free path of the particles
is very long, so that we can use the ideal gas approximation to describe this gas of
particles. But, in this case, the rate of change of the particle distribution function
is no longer zero; instead, it depends on the physical process that describes the
collisions, which we call C [f ]. Then, equation (5.1) becomes

df

dτ
= C [f ] , (5.10)

and is called Boltzmann equation. Combining expressions (5.9) and (5.10) we find
that the Boltzmann equation, in its general form, is given by

∂f

∂τ
+ êi ∂f

∂xi
+

∂f

∂p

dp

dτ
= C [f ] . (5.11)

It is important to mention that the Boltzmann equation (5.11) holds for non-
relativistic matter as well. In this case, we also have a seven-dimensional phase-
space, but the mass-shell condition is determined by the constraint gαβpαpβ = m2,
where m is the mass of the particle. The final form of the Boltzmann equation is the
same as (5.11), but the collision term changes. In Figure 5.1 we present a summary
of the interactions among the different species by the time of recombination.
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FIGURE 5.1 - Interactions taking place at recombination. Adapted from (DODELSON,
2003).

5.2 Radiative Transfer induced by Tensor Modes

As we have mentioned in Chapter 1, we are primarily interested in the signatures
of the tensor modes. In order to study the anisotropies and polarization of CMB
generated by such tensor modes, we have to evaluate the respective Boltzmann
equation (5.11), first studied in a seminal paper by Polnarev (POLNAREV, 1985). To
pursue the task of deriving the Boltzmann equation for the CMB photons interacting
with free electrons in the presence of PGWs, we first discuss the collisional term of
the Boltzmann equation (5.11).

As we have seen in Section 2.5, the free electrons prior and during recombina-
tion scatter the photons tightly coupled to the baryon-photon plasma via Thom-
son scattering. The collisional term due to Thomson scattering is given by (CHAN-
DRASEKHAR, 1960)

C[f ] = −σT Nea(τ)

{
f̂(τ, r, ν, µ, ϕ)

− 1

4π

∫ 1

−1

dµ′dϕ P (µ, ϕ, µ′, ϕ′) f̂(τ, r, ν, µ′, ϕ′)
}

, (5.12)

where f is the photon distribution function and P (µ, ϕ, µ′, ϕ′) is the scattering
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matrix whose form is

P (µ, ϕ, µ′, ϕ′) = Q

{
P 0 (µ, µ′) +

√
1− µ2

√
1− µ′2P 1 (µ, ϕ, µ′, ϕ′)

+ P 2 (µ, ϕ, µ′, ϕ′)
}

, (5.13)

where

Q =




1 0 0 0

0 1 0 0

0 1 0 0

0 0 0 2




, (5.14)

P 0 =
3

4




2(1− µ2)(1− µ′2) + µ2µ′2 µ2 0 0

µ′2 1 0 0

0 0 0 0

0 0 0 µµ′




, (5.15)

P 1 =
3

4




4µµ′ cos ψ 0 −2µ sin ψ 0

0 0 0 0

2µ′ sin ψ 0 cos ψ 0

0 0 0 cos ψ




, (5.16)

P 2 =
3

4




µ2µ′2 cos 2ψ −µ2 cos 2ψ −µ2µ′ sin 2ψ 0

−µ′2 cos 2ψ cos 2ψ µ′ sin 2ψ 0

µµ′2 sin 2ψ −µ sin 2ψ µµ′ cos 2ψ 0

0 0 0 0




, (5.17)

σT is the Thomson scattering cross-section, Ne(τ) is the number of free electrons in
the unit comoving volume, and we have defined µ ≡ cos θ and ψ ≡ ϕ− ϕ′.

Next, let us consider a given beam of radiation characterized by its Stokes parameters
{I, Q, U, V } (CHANDRASEKHAR, 1960), where I is the total intensity of the wave,
the parameters Q and U measure the linear polarization of the wave, and V measures
its circular polarization. They are integrated over all radiation frequencies, so that
there is a set of Stokes parameters for each monochromatic component wave of the
radiation beam with frequency ν, {I(ν, θ, ϕ), Q(ν, θ, ϕ), U(ν, θ, ϕ), V (ν, θ, ϕ)}. If
the universe were isotropic, the Stokes parameters Q, U and V would be zero, since
an isotropic radiation beam does not induce any polarization (CHANDRASEKHAR,
1960); then, CMB would be polarized only in presence of an anisotropic radiation
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beam. Such anisotropies and polarization are generated not only by the fluctuations
of the geometry, but fundamentally by a “source of handedness" provided by the
tensor character of the fluctuations. Therefore, to deal with an anisotropic radiation
beam, it is convenient to cast the photon distribution function into a symbolic vector
of the form (CHANDRASEKHAR, 1960)

f̂(τ, r, ν, µ, ϕ) =




f̂1(τ, r, ν, µ, ϕ)

f̂2(τ, r, ν, µ, ϕ)

f̂3(τ, r, ν, µ, ϕ)


 , (5.18)

where f̂1, f̂2 and (f̂1 + f̂2 + f̂3)/2 represent the number of photons with frequency
ν and direction ẑ passing through a slit parallel to the directions x̂, ŷ and x̂ +

ŷ, respectively. The relation between f̂ and the Stokes parameters are given by
(CHANDRASEKHAR, 1960), (POLNAREV, 1985),

f̂ =
1

2

c2

hν3




I + Q

I −Q

−2U


 . (5.19)

Then, the photon distribution functions f̂i “encode" the influences of the small fluc-
tuations of the metric, so that they can be also decomposed into its zeroth-order
contribution, f̂ (0) i. e., in the absence of the tensor perturbations, and its first-order
correction f̂ (1),

f̂ = f̂ (0) + f̂ (1). (5.20)

f̂ (0) represents a situation where the radiation field is homogeneous, isotropic and
unpolarized, since there is no perturbations caused by the metric fluctuations. In
this case, as discussed before, Q = U = 0 and, from (5.19), we find that

f̂ (0) =
1

2

c2

hν3




I

I

0


 , (5.21)

or, by writing f (0)(τ, ν) = c2I/2hν3,

f̂ (0)(τ, ν) = f (0)(τ, ν)û, (5.22)
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where

û =




1

1

0


 . (5.23)

Plugging (5.22) into (5.12) with the explicit forms of (5.13), (5.14), (5.15), (5.16)
and (5.17), integrating over the angles µ′ and ϕ′, we find that C

[
f̂ (0)

]
= 0, so that

the Boltzmann equation for f̂ (0) is given by

∂f (0)

∂τ
− νH∂f (0)

∂ν
= 0, (5.24)

whose solution is f (0) = f0 (a (τ) ν), and then equation (5.24) admits the blackbody
radiation function as a solution,

f0(ν) =
1

ehν/kBT − 1
, (5.25)

where the present-time value of T is 2.725 K (KOMATSU et al., 2009).

Once we have discussed the unperturbed case, we can now consider the equation for
the perturbations in GR. The third term in equation (5.11) can be evaluated from
the geodesic equation for the photon, (A.4), which can be recast into the form

dpα

dλ
= −1

2
gβγ,αpβpγ; (5.26)

next, plugging the the photon mass-shell constraint (5.4) into the definition of tensor
perturbations (3.10), we find

(
p0

)2
= p2 ≡ (δij + hij) pipj. (5.27)

Substituting (3.10) and (5.27) into (5.26), it follows that the geodesic equation for
tensor perturbations reads

dp0

dλ
= −ν

[
H +

1

2

∂hij

∂τ
pipj

]
dτ

dλ
. (5.28)

Before going to the Fourier space to solve this equation, it is convenient to introduce
a new parametrization into this model (BOSE; GRISHCHUK, 2002). Let us write
down the present-day scale factor a(τ0) as a quantity with dimension of length;
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then, setting RH = c/H0 as the present-day Hubble radius, we define a(τ0) = 2RH .
Now, since the wavenumber of the tensor modes k is very small (in the frequency
range which could produce a signature on CMB), with wavelength comparable to
the present-day Hubble radius RH , we introduce a dimensionless time-independent
vector n which has the same direction of k, and whose modulus is exactly the
proportionality factor between the modulus of k and RH :

n = 2RHk. (5.29)

Bearing these definitions in mind, we expand hij in an analogous fashion to (4.82),

hij (τ, x) =

∫
d3n

(2π)3/2

[
h(+)

n (τ) ε
(+)
ij (n) + h(×)

n (τ) ε
(×)
ij (n)

]
ein·x, (5.30)

where ε
(+,×)
ij are the polarization tensors given by (C.33). Then, plugging (5.30) into

(5.28), the geodesic equation becomes

dp0

dτ
= −1

2

∫
d3n

(2π)3/2

[
∂h

(+)
n (τ)

∂τ
ε
(+)
ij +

∂h
(×)
n (τ)

∂τ
ε
(×)
ij

]
pipjein·x. (5.31)

The remaining contribution to be evaluated in (5.31) is related to εijp
ipj; now,

defining
F (+,×)(θ, ϕ) ≡ ε

(+,×)
ij pipj, (5.32)

we can evaluate this term precisely by means of the photon angular distribution. This
can be constructed as follows: supposing that the modes travel along an arbitrary
direction k̂, we introduce the two polarization vectors {ε̂r

(1), ε̂
r
(2)}, defined as

εr
ij ≡ εr

(1)iε
r
(1)j − εr

(2)iε
r
(2)j (5.33)

and satisfying
ε̂r
(1) · ε̂r

(2) = ε̂r
(1) · k̂ = ε̂r

(2) · k̂ = 0. (5.34)

Hence, the trihedron {ε̂r
(1), ε̂

r
(2), k̂} is orthogonal. Thus, we can use this trihedron as

a basis; now, choosing our reference frame such that its axes coincide with the the
directions defined by the above trihedron, and decomposing p = p ê in spherical

73



coordinates in this basis, we have

k̂ · ê = cos θ, ε̂(1) · ê = sin θ cos ϕ, (5.35)

ε̂(2) · ê = sin θ sin ϕ, (5.36)

as depicted in Figure 5.2.

FIGURE 5.2 - Coordinate system for the photon momentum ~p.

With these definitions it follows that

êx =
√

1− µ2 cos ϕ, êy =
√

1− µ2 sin ϕ. (5.37)

Therefore, plugging (C.33) and (5.37) into (5.32), we obtain,

F (+)(θ, ϕ) =
1

2
(1− µ2) cos 2ϕ ∝ Y2,+2 (µ, ϕ) (5.38)

F (×)(θ, ϕ) =
1

2
(1− µ2) sin 2ϕ ∝ Y2,−2 (µ, ϕ) , (5.39)
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where Y`m (µ, ϕ) are the usual spherical harmonics (ABRAMOWITZ; STEGUN, 1972).
The results (5.38) and (5.39) show us that a GW leaves an imprint on the pho-
ton angular distribution in the form of a quadrupole Y2,±2 and, as a consequence,
shifts the photon frequency along the line of sight. This is the so-called Sachs-Wolfe
(SW) effect induced by tensor modes (GIOVANNINI, 2005). Note that the SW effect
is purely gravitational, and has nothing to do with the details of the interaction be-
tween the photons and electrons. Also, there are also the scalar and vector versions
of the SW effect, but they will not be considered here.

Now let us address the question of Thomson scattering of the CMB photons by elec-
trons. Prior to Thomson scattering, the photons are unpolarized, and their angular
distribution are of the form (5.38) and (5.39) due to the tensor SW effect. Hence,
the Stokes parameters are given by (POLNAREV, 1985),

â(+)(µ, ϕ) =
1

2

(
1− µ2

)
cos 2ϕ û,

â(×)(µ, ϕ) =
1

2

(
1− µ2

)
sin 2ϕ û, (5.40)

where we have introduced the vector û in (5.23). Now, defining the operator P̂ as

P̂ ξ̂ (µ, ϕ) =
1

4π

∫ 1

−1

dµ′dϕ′ P (µ, ϕ, µ′, ϕ′) ξ̂ (µ′, ϕ′) , (5.41)

where P is the scattering matrix (5.13), it is straightforward to see, for ξ̂ = â

(dropping the polarization index for the moment), that

P̂ â = αâ + βb̂, (5.42)

where α and β are constants, and b̂ is a vector which under P̂ behaves as

P̂ b̂ = α′â + β′b̂, (5.43)

where α′ and β′ are constants as well. From (5.13), (5.40), (5.42) and (5.43) we
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readily see that

b̂(+)(µ, ϕ) =
1

2




(1 + µ2) cos 2ϕ

− (1 + µ2) cos 2ϕ

4µ sin 2ϕ


 ,

b̂(×)(µ, ϕ) =
1

2




(1 + µ2) sin 2ϕ

− (1 + µ2) sin 2ϕ

−4µ cos 2ϕ


 . (5.44)

Therefore, the Thomson interaction changes the angular pattern of the photons from
the unpolarized state characterized by (5.40) to the polarized state characterized by
the (5.44). In this sense, the PGWs act as “sources of handedness" for the CMB
polarization.

The angular distribution functions â and b̂ are closed under Thomson scattering, so
that they can be used as a basis. This fact holds only for linear polarization; for a
circular pattern, as it is well known, the polarization vectors are a complex linear
combination of the polarization vectors. Then, in this case,

âr(µ, ϕ) =
1

2

(
1− µ2

)
e±2iϕ û,

b̂r(µ, ϕ) =
1

2




(1 + µ2)

− (1 + µ2)

∓4iµ


 e±2iϕ, (5.45)

where r = 1 corresponds to a left-hand polarization, and r = 2 to the right-hand one.
Now, with this general basis (5.45), we may expand the function f̂ (1)(x, p) in terms
of it. Since the function f̂ (1) has no dependence on the modulus of photon momenta
(remember that we are considering only first-order terms in h), we can simply write
this function as depending on the photon direction, ê; its the p0-dependence can
be written simply as ν-dependence; therefore, f̂ (1)(x, p) = f̂ (1)(τ, r, ν, ê). Now, since
equation (5.11) is linear, we can expand f̂ (1) in the same way as we did in (5.30),

f̂ (1)(τ, r, ν, ê) =

∫
d3n

(2π)3/2

∑
r=+,×

f̂ (1)
n,r(τ, ν, ê)ein·x, (5.46)

which allows us to rewrite the Boltzmann equation (5.11) in the following way: using
the fact that p0 = hν, where ν is comoving photon frequency, and the constraint

76



(5.3), substituting these elements plus (5.31) and (5.46) into (5.11), we get

[
∂

∂τ
+ q(τ) + iê · f̂

]
f̂ (1)
n,r(τ, ν, ê) =

1

2
ρ(ν)eiejεr

ij(n)
dhr

n(τ)

dτ
û

+
q(τ)

4π

∫
dΩ′ P̂(e; e′)̂f (1)

n,r(τ, ν, ê), (5.47)

where we have defined

ρ(ν) ≡ ν
dn(0)

dν
, (5.48)

and introduced the scattering rate q(τ) by

q(τ) ≡ σT Ne(τ)a(τ). (5.49)

Now we have to evaluate the integral on the right-hand side of (5.47). To do so, it
is convenient to factor out the angular dependence of f̂

(1)
n,r, and this can be achieved

using the basis (5.45) and the Fourier expansion (5.46),

f̂ (1)
n,r(τ, ν, µ, ϕ) =

1

2
ρ(ν)[αn,r(τ, µ)âr(µ, ϕ)

+ βn,r(τ, µ)b̂r(µ, ϕ)], (5.50)

where αn,r(τ, µ) and βn,r(τ, µ) are functions to be determined by the solutions of the
Boltzmann equation. Now, substituting (5.50) into (5.11) and (5.12), using (5.20),
(5.31), (5.49) and (5.50), we obtain the Boltzmann equations for the radiative trans-
fer in the presence of weak gravitational fields (dropping the indices n, r for the sake
of simplicity) (POLNAREV, 1985), (BASKARAN et al., 2006),

∂

∂τ
β(τ, µ) + [q(τ) + inµ] β(τ, µ) =

3

16
q(τ)I(τ) , (5.51)

∂

∂τ
ξ(τ, µ) + [q(τ) + inµ] ξ(τ, µ) =

d

dτ
h(τ) , (5.52)

where we have defined
ξ(τ, µ) ≡ α(τ, µ) + β(τ, µ), (5.53)

and

I(τ) ≡
∫ 1

−1

dµ′
[
(1 + µ′2)2β(τ, µ′)− 1

2
(1− µ′2)2ξ(τ, µ′)

]
. (5.54)
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The solutions to the Boltzmann equations (5.51) and (5.52), given by the functions
α(τ, µ) and β(τ, µ), are the essential elements for the computation of the anisotropies
and polarization of the CMB, as we sketch in the next section.

5.3 The T, E and B-Modes

In this section we derive the explicit forms of the T, E and B-mode functions and
the correlation function C` for polarization. We follow closely (KAMIONKOWSKI et

al., 1997) and (CABELLA; KAMIONKOWSKI, 2004), introducing the harmonic analysis
on the full sky.

To begin with, let us first construct the polarization tensor associated with the Stokes
parameters Q(θ, ϕ) and U(θ, ϕ), where the coordinates (θ, ϕ) describe the position
of a given region of the sky. We consider first the simplest case, associated with a
flat 2-dimensional surface. For a radiation beam linearly polarized propagating in
the ẑ-direction, its polarization vectors lie on the x − y plane; then, rotating the
axes by an angle α around ẑ, the coordinates transform as

(
x′

y′

)
=

(
cos α sin α

− sin α cos α

)(
x

y

)
, (5.55)

whereas the Stokes parameters Q and U transform as (CHANDRASEKHAR, 1960)

(
Q′

U ′

)
=

(
cos 2α sin 2α

− sin 2α cos 2α

)(
Q

U

)
. (5.56)

Now, calling Aab the 2× 2 matrix in (5.56), it follows that the quantity

Pab(θ, ϕ) =
1

2

(
Q(θ, ϕ) U(θ, ϕ)

U(θ, ϕ) −Q(θ, ϕ)

)
(5.57)

transforms as a tensor under rotations of the x − y axes, that is, P ′ab = AacAbdPcd.
Since the tensor (5.57) is built on the two polarization parameters Q and U , we
shall denote it as the symmetric-trace-free (STF) part of the polarization tensor, for
it satisfies the relations Pab = Pba and gabPab = 0 respectively, where the metric
is simply given by gab = diag{1, 1} on a flat space. The full polarization tensor is
composed of a symmetric contribution P(ab) (but not necessarily trace-free) plus the
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antisymmetric P[ab] and STF part:

Pab = P(ab) + P[ab] + Pab; (5.58)

now, the expressions for P(ab) and P[ab] can be easily implemented as

P(ab) ∝ gab, P[ab] ∝ εab, (5.59)

where εab is the completely antisymmetric pseudotensor whose components are ε12 =

−ε21 = 1.

The polarization tensor (5.58) provides all the information concerning the radiation
beam, i.e., it contains the radiation intensity and polarization pattern. From the
STF contribution (5.57) we see that it contains the linear polarization information;
he have only to include the intensity and the circular polarization patterns into Pab,
which are given by the remaining Stokes parameters I and V . Since I is a scalar
and V is a pseudoscalar (CHANDRASEKHAR, 1960), we can rewrite (5.59) as

P(ab)(θ, ϕ) =
1

2
I(θ, ϕ)gab, P[ab](θ, ϕ) = − i

2
V (θ, ϕ)εab, (5.60)

so that the polarization tensor (5.58) is now

Pab(θ, ϕ) =
1

2
I(θ, ϕ)gab − i

2
V (θ, ϕ)εab + Pab(θ, ϕ). (5.61)

The generalization of the tensor (5.61) to the 2-sphere is straightforward. We have
only to specify gab and εab, which are given by (KAMIONKOWSKI et al., 1997),
(CABELLA; KAMIONKOWSKI, 2004)

gab(θ, ϕ) =

(
1 0

0 sin2 θ

)
, εab(θ, ϕ) = sin θ

(
0 −1

1 0

)
. (5.62)

Now, using the properties Pab = Pba, gabPab = 0 and (5.62), we find that the STF
part of the polarization tensor is

Pab(θ, ϕ) =
1

2

(
Q −U sin θ

−U sin θ −Q sin2 θ

)
, (5.63)
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whereas the polarization tensor itself is

Pab(θ, ϕ) =
1

2

(
I + Q −(U − iV ) sin θ

−(U + iV ) sin θ (I −Q) sin2 θ

)
. (5.64)

On the two-sphere tensor analysis can be easily implemented; the “divergence" and
“curl" of a symmetric rank-2 tensors are respectively given by T ab

:ab and T ab
:acε

c
b,

where “ :" denotes covariant differentiation. With these elements at hand, we in-
troduce invariants which can be built up from the polarization tensor Pab and its
derivatives. The only possible invariants which can be built from Pab solely are

I(θ, ϕ) = gabPab(θ, ϕ), V (θ, ϕ) = iεabPab(θ, ϕ); (5.65)

the first derivatives of Pab do not give rise to invariants, but the second derivatives
do, in the form of a “divergence" and a “curl" (BASKARAN et al., 2006),

E(θ, ϕ) = −2Pab
:ab, B(θ, ϕ) = −2Pab

:bcεa
c, (5.66)

respectively. With these invariants we get a very convenient way to completely char-
acterize the radiation beam, since they do not depend on the reference frame chosen.
We now proceed to expand the invariants (I, E, B, V ) in spherical harmonics in or-
der to perform an analysis on the each multipole of the radiation field (BASKARAN

et al., 2006)

I(θ, ϕ) =
∞∑

`=0

∑̀

m=−`

aT
`mY`m(θ, ϕ), (5.67)

E(θ, ϕ) =
∞∑

`=2

∑̀

m=−`

[
(` + 2)!

(`− 2)!

] 1
2

aE
`mY`m(θ, ϕ), (5.68)

B(θ, ϕ) =
∞∑

`=2

∑̀

m=−`

[
(` + 2)!

(`− 2)!

] 1
2

aB
`mY`m(θ, ϕ), (5.69)

V (θ, ϕ) =
∞∑

`=0

∑̀

m=−`

aV
`mY`m(θ, ϕ). (5.70)

It is important to stress that these expansions are consistent with the similar def-
initions in the literature (KAMIONKOWSKI et al., 1997), (ZALDARRIAGA; SELJAK,
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1997).

We are now in position to write down the T, E and B-mode functions (5.67), (5.68)
and (5.69) in terms of the functions α(µ, ϕ) and β(µ, ϕ) introduced in (5.50). From
(5.18) and (5.19) we obtain for a monochromatic radiation beam

I(τ, ν, θ, ϕ) =
hν3

c2
[f1(τ, ν, θ, ϕ) + f2(τ, ν, θ, ϕ)] ,

Q(τ, ν, θ, ϕ) =
hν3

c2
[(f1(τ, ν, θ, ϕ)− f2(τ, ν, θ, ϕ)] ,

U(τ, ν, θ, ϕ) = −4
hν3

c2
f3(τ, ν, θ, ϕ), (5.71)

so that from (5.45), (5.50) and (5.71) we get (restoring the n-dependence of the
Fourier expansion),

In,r(τ, ν, θ, ϕ) =
hν3

c2
[f (0)(ν) + ρ(ν)αn,r(τ, µ)(1− µ2)e±2iϕ], (5.72)

Qn,r(τ, ν, θ, ϕ) =
hν3

c2
ρ(ν)βn,r(τ, µ)(1 + µ2)e±2iϕ, (5.73)

Un,r(τ, ν, θ, ϕ) = ∓2
hν3

c2
ρ(ν)βn,r(τ, µ)µe±2iϕ. (5.74)

From equations (5.73) and (5.74) we may readily evaluate the expressions for E

and B, using (5.62), (5.63), (5.66) and (5.72-5.74); then, integrating over photon
frequencies, we obtain

In,r (µ, ϕ) = γ
[(

1− µ2
)
αn,r (τ, µ) e±2iϕ

]
,

En,r (µ, ϕ) = −γ

[(
1− µ2

) ((
1 + µ2

) d2

dµ2
+ 8µ

d

dµ
+ 12

)
βn,r (τ, µ) e±2iϕ

]
,

Bn,r (µ, ϕ) = ∓γ

[
2
(
1− µ2

) (
iµ

d2

dµ2
+ 4i

d

dµ

)
βn,r (τ, µ) e±2iϕ

]
, (5.75)

where we have defined

I0 ≡
∫

dν
hν3

c2
f (0)(ν), (5.76)

and

γ ≡
∫

dν
hν3

c2
ρ(ν) = −4I0. (5.77)
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Once we have the key expressions for evaluating the power spectrum correlation
function all we must do now is solving the Boltzmann equations (5.51) and (5.52),
which we handle in the next section.

5.4 The Solutions to the Boltzmann Equations

In the paper (BASKARAN et al., 2006) the authors discuss an analytical method for
solving the Volterra equation represented by (5.51) in terms of a series expansion,
and compare their results with the exact numerical solutions. Here we follow only
their numerical approach, which we sketch below. To do so, we introduce first the
functions

Φ(τ) =
3

16
g(τ)I(τ), (5.78)

H(τ) = e−κ(τ)dh(τ)

dτ
, (5.79)

where the function κ(τ) represents the optical depth of the universe, and is defined
within a time interval τ ′ and τ :

κ(τ, τ ′) ≡
∫ τ

τ ′
dτ ′′q(τ ′′),

where q(τ) is the scattering rate (5.49), g(τ) is the visibility function, written as

g(τ) = q(τ)e−κ(τ) =
d

dτ
e−κ(τ), (5.80)

and satisfying ∫ τ0

0

g(τ)dτ = 1. (5.81)

Taking τ ′ = τ0, we further write the optical depth from a given conformal instant τ

to the present as κ(τ0, τ) = κ(τ), that is

κ(τ) =

∫ τ0

τ

dτ ′q(τ ′). (5.82)

Next, using these definitions, the formal solutions to the equations (5.51) and (5.52)
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are given by the integral relations (BASKARAN et al., 2006)

β(τ, µ) = eκ(τ)−inµτ

∫ τ

0

dτ ′ Φ(τ ′)einµτ ′ , (5.83)

ξ(τ, µ) = eκ(τ)−inµτ

∫ τ

0

dτ ′ H(τ ′)einµτ ′ . (5.84)

Now, since the function H(τ) is known, we can obtain a single integral equation for
the function (5.78) by plugging (5.83) and (5.84) into (5.54), so that

I(τ) = eκ(τ)

∫ 1

−1

∫ τ

0

dµdτ ′
{(

1 + µ2
)2

Φ(τ ′)

− 1

2

(
1− µ2

)2
H(τ ′)

}
einµ(τ ′−τ); (5.85)

such expression can be further simplified by introducing the kernels K±(τ − τ ′),
defined as

K±(τ − τ ′) =

∫ 1

−1

dµ(1± µ2)2einµ(τ−τ ′), (5.86)

so that expression (5.85) yields

I(τ) = eκ(τ)

∫ τ

0

dτ ′
{

K+(τ − τ ′)Φ(τ ′)

− 1

2
K−(τ − τ ′)H(τ ′)

}
. (5.87)

The final equation for Φ(τ) is obtained by multiplying both sides of this equality by
(3/16)q(τ)e−κ(τ) and using the expression (5.78), so that

Φ(τ) =
3

16
q(τ)

∫ τ

0

dτ ′Φ(τ ′)K+(τ − τ ′) + F (τ), (5.88)

where F (τ) is related to the function (5.79) by

F (τ) = − 3

32
q(τ)

∫ τ

0

dτ ′H(τ ′)K−(τ − τ ′). (5.89)

The solution to Volterra integral equation (5.88) provides the values of the functions
α and β for every conformal instant τ ; in particular, to the present-day τ0, the
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expressions α(τ0, µ) = α(µ) and β(τ0, µ) = β(µ) are respectively given by

αn,r(µ) =

∫ τ0

0

dτ (Hn,r(τ)− Φn,r(τ)) e−iµζ ,

βn,r(µ) =

∫ τ0

0

dτ Φn,r(τ)e−iµζ , (5.90)

where we have introduced the variable ζ = n(τ0 − τ).

We are now ready to compute the coefficients aX
`m: we substitute expressions (5.67-

5.69) and (5.90) into (5.75), and integrate over angular variables, so that

aT
`m,nr = (−i)`−2 (δ2,mδ1,r + δ−2,mδ2,r) aT

`,nr,

aE
`m,nr = (−i)`−2 (δ2,mδ1,r + δ−2,mδ2,r) aE

`,nr,

aB
`m,nr = (−i)`−2

(
δ2,mδ1,s − δ−2,mδ2,s

)
aB

`,nr, (5.91)

where

aT
`,nr = γ

√
4π(2` + 1)

∫ η0

0

dη (Hn,r(η)− Φn,r(η)) T`(ζ), (5.92)

aE
`,nr = γ

√
4π(2` + 1)

∫ η0

0

dη Φn,r(η)E`(ζ), (5.93)

aB
`,nr = γ

√
4π(2` + 1)

∫ η0

0

dη Φn,r(η)B`(ζ), (5.94)

and T`(ζ), E`(ζ), B`(ζ) are the multipole projection functions which appear after
the integration over the angular variables, whose form are given by

T`(ζ) =

√
(` + 2)!

(`− 2)!

j`(ζ)

ζ2
,

E`(ζ) =

[(
2− l(l − 1)

ζ2

)
j`(ζ)− 2

ζ
j`−1(ζ)

]
,

B`(ζ) = 2

[
−(`− 1)

ζ
j`(ζ) + j`−1(ζ)

]
. (5.95)

5.5 Correlation functions

So far we have discussed the theoretical aspects of the interaction between the PGWs
and the CMB photons; however, a compelling theory must predict some quantity
which can be confronted with observations. In the case of CMB, the most powerful
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observable is the correlation function CXX′
` , where X = T,E, B, V represents its

temperature fluctuations and the polarization modes. Satellites like COBE, WMAP
and Planck and balloon-borne or ground experiments1 measure the power spectrum
CXX′

` × ` to some extent, and then the arena to the confrontation ‘theory versus
experiment ’ is set. The expression for the correlation functions for anisotropies and
polarization are given by (BASKARAN et al., 2006)

CXX′
` =

C2

4π2(2` + 1)

∫
ndn

∑
r=1,2

∑̀

m=−`

[aX
`m,nra

X′∗
`m,nr

+ aX∗
`m,nra

X′
`m,nr]. (5.96)

where the amplitudes aX
`m come from the expressions (5.95). The evaluation of this

integral is not an easy task, and it must be carried out numerically (despite some
approximations can lead to analytical results as given in references (PRITCHARD;

KAMIONKOWSKI, 2005) and (XIA; ZHANG, 2009)); then, as an application of all the
theory we went through so far, and to set the basis for the discussion in the next
chapter, we develop a computation of the CMB power spectrum for anisotropies
induced by PGWs in GR.

The first step in this computation concerns the numerical solution to the evolution
equation of the PGWs, (4.85). Since the events we have been talking about take
place at the time of recombination, the scale factor appearing in equation (4.85)
must be of a typical universe dominated by matter. However, to be more precise
in our calculations, we also include radiation; then, for the parametrization chosen
a (τ0) = 2RH , the scale factor for a flat universe filled with radiation and matter, is
given by (BASKARAN et al., 2006)

a(τ) = 2RH

(
1 + zeq

2 + zeq

)
τ

(
τ +

2
√

2 + zeq

1 + zeq

)
, (5.97)

where zeq is the redshift associated with the epoch of radiation-matter equality,
whose value is zeq ∼ 3× 103, and the corresponding conformal instant τeq is

τeq = (
√

2− 1)

√
2 + zeq

1 + zeq

∼ 7.6× 10−3. (5.98)

1See (BOCK et al., 2006) and references therein for further details.
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Substituting the scale factor (5.97) into (4.85), we obtain exact analytical solu-
tions for the functions µn(τ) (BOSE; GRISHCHUK, 2002). Following (BASKARAN et

al., 2006), we normalize the GW amplitudes hn(τ) in terms of its value at τr = 10−6

(in terms of redshift, zr ∼ 3 × 107); the resulting numerical solutions are displayed
in the figure 5.3.
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FIGURE 5.3 - The time evolution of the normalized GW amplitudes hn(τ)/hn(τr). Com-
pare with Figure 1 of (BASKARAN et al., 2006).

After having the evolution of the modes, the next steps are the numerical integration
of the Volterra equation (5.88). To perform this we have first to derive the expressions
for the scattering rate (5.49), which depends on the number of free electrons in the
unit comoving volume, Ne(τ), given by (PEEBLES, 1993)

Ne(τ) =

(
1− Yp

2

)
Xe(τ)Ωbρc

mp

(
a(τ0)

a(τ)

)3

,
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where Xe(τ) can be approximated by the fitting function (HU; SUGIYAMA, 1995)

Xe(τ) =

(
1− Yp

2

)−1 ( c2

1000

) (
mp

2σT RHρc

)
Ωc1−1

b

( z

1000

)c2−1
(

a′

a

)
(1 + z)−1.

(5.99)
In these formulae Yp ≈ 0.23 is the primordial helium mass fraction, Ωb is the baryon
content, and mp is the mass of a proton. The constants are given by c1 = 0.43,
c2 = 16 + 1.8 ln ΩB, and we take Ωb = 0.046 (KOMATSU et al., 2009).

Along with the pre-recombination era, there was another epoch in the history of the
universe in which ionization played another momentous role. As we have stated in
Chapter 2.5, at decoupling the universe underwent a transition from a completely
ionized state to a state in which neutral hydrogen and helium atoms were formed. In
this process the radiation decoupled from the matter, originating the CMB radiation
and a neutral pre-galactic baryonic medium (PGM). Then, at some redshift between
14 < z < 6 the PGM was ionized again by the UV radiation from the first luminous
objects, leaving the intergalactic medium (IGM) ionized (FAN et al., 2006). Such
process is called reionization, and would leave observable imprints on the CMB
polarization spectrum due to the interactions of the CMB photons with the free
electrons now available due to the reionized medium. However, the reionization
epoch is still not fully understood, and many models have been proposed to shed a
light on the physics of this process (see (LEE, 2009) and references therein), which
can be homogeneous models with a sudden reionization (e.g. as discussed in (XIA;
ZHANG, 2009), (GIANNANTONIO; CRITTENDEN, 2007)), or extended models with
double reionization (CEN, 2003), among others (see (XIA; ZHANG, 2009) for a more
comprehensive list of papers).

Since in this work simplicity is our guiding principle, we shall consider solely the
epoch of recombination, whose physical process is very well understood. Despite
reionization is fundamental to understand the low-multipole behavior of CMB
polarization, it can be neglected in a first-approximation to study temperature
anisotropies generated by the tensor modes. Having said that, all we have to do
now is to compute numerically the coefficients (5.91), and then integrate expression
(5.96) to get the final result, which is depicted in Figure 5.4.

As for the polarization modes, the power spectra look like the one depicted in Figure
5.5.
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FIGURE 5.5 - CMB polarization power spectra. Figure adapted from (BOCK,2008).
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6 SIGNATURES OF MASSIVE GRAVITONS IN THE CMB

In this Chapter we study the signatures of vector and tensor modes of theories with
massive gravitons, as an example of the Class 1 of alternative cosmologies in the
Table 1.2.

6.1 Theories of Gravity with Massive Gravitons

As we have argued in Section 1.1.1, it seems that the simplest and most natural
modification to GR is the introduction of a mass for the gravitons. The study of
theories with massive gravitons dates back to 1939 in the pioneering work of M. Fierz
and W. Pauli (FIERZ; PAULI, 1939), who investigated a linearized field theory of spin-
two massive particles. The Lorentz invariance of the Fierz-Pauli (FP) lagrangian
yields a spin-two massive state with six polarization modes (states with helicities
±2, ±1 and 0), differing from GR where one finds only a spin-two state with the
two tensor polarization modes (helicities ±2). Such extra degrees of freedom yield
an additional contribution of one vector and one real scalar massless particles with
helicities ±1 and 0, respectively. The scalar particle couples to the trace of the
stress energy-momentum tensor, causing a discontinuity in the propagator when
one switches from the massive to the massless regime. This is the so-called van
Dam-Veltman-Zakharov (vDVZ) discontinuity (DAM; VELTMAN, 1970; ZAKHAROV,
1970), whose net effect for a theory of a massive spin-two graviton is catastrophic
(BOULWARE; DESER, 1972): it would not even pass the solar-system tests for a theory
of gravity (the prediction of the angle concerning the bending of the light by the
Sun, for example).

However, in a full theory of gravity, we must consider nonlinear effects; the FP
theory is valid only in the linear approximation. Nonlinear effects eliminate the vDVZ
discontinuity in the classical level (VAINSHTEIN, 1972; DEFFAYET et al., 2002), so that
classically we may reconcile the massive theory with the GR predictions. Moreover,
at the quantum level, the nonlinear interactions appear at the loop diagrams, so
that the theory becomes strongly coupled above the energy scale Λ = (m4MP )1/5,
where m is the graviton mass and MP is the Planck mass (ARKANI-HAMED et al.,
2003; AUBERT, 2004). For masses m ∼ H0, where H0 is the present-day value of the
Hubble parameter, the energy scale Λ is too small, well below the expected value,
Λ = (mMP )1/2. In brane-world models (CHARMOUSIS et al., 2000; GREGORY et al.,
2000; KOGAN et al., 2000; DVALI et al., 2000) a similar problem occurs: either they
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have ghosts (LUTY et al., 2003; DUBOVSKY; LIBANOV, 2003; CHACKO et al., 2004; PILO
et al., 2000), or are strong coupled at low energies (LUTY et al., 2003; DUBOVSKY;

LIBANOV, 2003; CHACKO et al., 2004; RUBAKOV, 2003).

A great step forward was taken in the works (ARKANI-HAMED et al., 2004) and
(RUBAKOV, 2004). In reference (ARKANI-HAMED et al., 2004) the authors proposed
a consistent modification of gravity in the infrared as an analog of the Higgs mech-
anism in GR. In this model, Lorentz invariance is spontaneously broken and the
graviton, as a result, acquires a mass. In reference (RUBAKOV, 2004) the author
introduces a Lorentz-violating massive gravity model in which the vDVZ disconti-
nuity, ghosts and the low strong coupling scale are absent. In reference (DUBOVSKY,
2004) the author studies the most general Lorentz-violating gravitational theory
with massive gravitons, showing that there is a number of different regions in the
mass parameter space of this theory in which it can be described by a consistent
low-energy effective theory without instabilities and the vDVZ discontinuity.

Therefore, the theory of Massive Gravity, as developed in (RUBAKOV, 2004) and
(DUBOVSKY, 2004) gives rise to physical propagating modes, and is free of the
pathologies mentioned above. Also, there is a version of the FP model - which we
callmodified Fierz-Pauli model (MFP), which neither suffers the vDVZ discontinuity
nor is discarded by solar-system measurements (FINN; SUTTON, 2002). Also, GR is
recovered in this model when m → 0. We start our analysis of the signatures of
these massive models with the MFP model.

6.1.1 The Modified Fierz-Pauli Model

Let us now analyze how do GWs arise in the case of the MFP model. In this case,
the graviton mass lagrangian appears as a quadratic term in the perturbation of
the metric tensor hαβ in the weak-field limit, so that its action is given by (FINN;
SUTTON, 2002), (GABADADZE; GRUZINOV, 2005):

S =
M2

P

8

∫
d4x

[
hαβ,γh

αβ,γ − 2hαβ
,βhαγ

,γ + 2hαβ
,βh,α − h,αh,α

− 4M−2
P hαβTαβ −m2

(
hαβhαβ − 1

2
h2

)]
, (6.1)

where h is given by (B.10). If instead of the contribution m2h2/2 to the last term on
the right-hand side of (6.1) one had m2h2, this model would correspond to the origi-
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nal Fierz-Pauli action, which is plagued by the vDVZ discontinuity (DAM; VELTMAN,
1970).

The Einstein equations associated with the action (6.1) follow from (A.10),

¤hαβ − hα
γ

,γβ − hβ
γ

,γα + h,αβ + ηαβhγδ
,γδ

− ηαβ¤h + m2

(
hαβ − 1

2
ηαβh

)
= −2M−2

P Tαβ; (6.2)

then, imposing the conservation of the stress energy-momentum tensor, ∇αTαβ =

0, we get, in a Minkowski background, the same constraint h̄ ,α
αβ = 0 found in

GR (B.18), where h̄αβ has the same form as (B.9). However, unlike GR, in the
present case it emerges as a constraint from the conservation of the stress energy-
momentum tensor rather than a gauge choice. This constraint eliminates four degrees
of freedom out of the ten independent components of the space-time metric, leaving
then only six independent modes (five coming from the spin-2 and spin-1 modes,
and one coming from the spin-0 trace). Since these modes correspond exactly to
the polarization states of the GW, we may readily associate the components of h̄αβ

with the corresponding ones of (C.27), so that the only nonzero contributions are
the spatial components h̄ij.

Using the arguments above and plugging equation (B.18) into (6.2), we obtain, in
the absence of sources, (

¤ + m2
)
h̄ij = 0, (6.3)

which is clearly a Klein-Gordon equation for a wave propagating in the direction
k̂ = ẑ. For the sake of simplicity we henceforth drop the bar over the tensor h̄ij.

Due to the oscillatory character of equation (6.3) we may expand the tensor field hij

into the Fourier modes as we did in (C.28) and (C.29); in particular, for the TTF
component of the tensor perturbation to the metric hij (corresponding to the NP
amplitude Ψ4 mode with r = 4, 5), we write

h̃⊥ij = ε4
ij(k)h̃4(k) + ε5

ij(k)h̃5(k), (6.4)

whereas for the longitudinal polarization state we extend the definition (6.4) to the
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Ψ3 modes (associated with r = 2, 3) as

h̃
‖
ij = ε2

ij(k)h̃2(k) + ε3
ij(k)h̃3(k); (6.5)

where ε2,3,4,5
ij are the polarization tensor given in (C.27). Then, by Fourier transform-

ing (6.4) and (6.5) back to the configuration space, we see that both h
⊥,‖
ij satisfies

(6.3), that is (
¤ + m2

)
h
⊥,‖
ij = 0, (6.6)

which reduces to the GW equation for GR in the limit m = 0. The tensor h⊥ij
encompasses both transverse polarization modes “+" and “×" characteristic of GR.
As for the scalar modes Ψ2 and Φ22, we will not consider them here, since scalar
fluctuations are not “sources of handedness" to excite the CMB B-polarization mode.

6.1.2 Massive Gravity

As we have pointed out at the beginning of this section, the key ingredient to con-
struct a physically-consistent theory of gravitation with massive gravitons lies on
the spontaneous violation of the Lorentz symmetry. In what follows we do not go
into the technical details of the construction of this model; we just summarize the
basic ideas. A more thorough review of these topics can be found in (RUBAKOV;

TINYAKOV, 2008) and (BEBRONNE, 2009).

As in the Higgs analog in the Standard Model of electroweak interactions, we intro-
duce, following (DUBOVSKY, 2004) and (DUBOVSKY et al., 2005), a set of four scalar
Goldstone fields φ0(x), φi(x), such that the action for Massive Gravity is written as

S =

∫
d4x

√−g
[−M2

P R + Λ4F (X,V i,W ij) + Lmatter

]
, (6.7)

where the first term on the right-hand side represents the usual Einstein-Hilbert
action, and F is an arbitrary function of the metric components, their derivatives,
and the Goldstone fields. The lagrangian for ordinary matter, Lmatter, is assumed to
be minimally coupled to the metric. The simplest way to combine the derivatives
of the Goldstone fields to enter the argument of F is given by the set of scalar
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quantities

X = Λ−4gαβ∂αφ0∂βφ0, V i = Λ−4gαβ∂αφ0∂βφi,

W ij = Λ−4gαβ∂αφi∂βφj − V iV j

X
, (6.8)

where Λ is the parameter which characterizes the cutoff scale of the theory. The sec-
ond term on the right-hand side of (6.7) is invariant under the spatial reparametriza-
tion symmetry xi(t) → xi(t) + ξi(t) and rotations.

We now introduce the “vacuum" solutions for the model (6.7),

gαβ = a2ηαβ, φ0 = Λ2t, φi = Λ2xi, (6.9)

which corresponds to the flat FRW space; in the “unitary gauge" described by (6.9)
the action will depend solely on the metric components. Now, in order to study
linear cosmological perturbations around a flat FRW space, we spontaneously break
the Lorentz symmetry of the model by fixing the Goldstone fields to the vacuum
(6.9), so that the only remaining perturbations are given by (3.12) supplemented by
the constraints (3.9) and (3.11).

Now, in the unitary gauge (6.9) we expand
√−g + δg, X(g+δg), V i(g+δg), W ij(g+

δg) and F (g + δg) in powers of the metric perturbation δg, and substitute these
results into the massive term in (6.7), so that the lagrangian for the second-order
perturbations reads

Lm =
M2

P

2

[
m2

0δg
2
00 + 2m2

1δg
2
0i −m2

2δg
2
ij + m2

3δgiiδgjj − 2m2
4δg00δgii

]
, (6.10)

where m0, m1, m2, m3 and m4 are parameters related to the function F and its
derivatives,

m2
0 =

Λ4

M2
P

[
XFX + 2X2FXX

]
, m2

1 =
2Λ4

M2
P

[
−XFX −WFW +

1

2
XWFV V

]
,

m2
2 =

2Λ4

M2
P

[
WFW − 2W 2FWW2

]
, m2

3 =
Λ4

M2
P

[
WFW + 2W 2FWW1

]
,

m2
4 = − Λ4

M2
P

[XFX + 2XWFXW ] , (6.11)
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where W = −1/3δijW
ij and

FX =
∂F

∂X
, FXX =

∂2F

∂X2
, FV V δij =

∂2F

∂V i∂V j
,

FW δij =
∂F

∂W ij
, FXW δij =

∂2F

∂X∂W ij
,

∂2F

∂W ij∂W kl
= FWW1δijδkl + FWW2(δikδjl + δilδjk). (6.12)

(see Appendix A in references (DUBOVSKY et al., 2005) and (BEBRONNE; TINYAKOV,
2007) for details). The spatial indices in (6.10) are summed over and, as argued in
the reference (RUBAKOV, 2004), the mass parameters mi are proportional to some
scale denoted by m.

The Einstein equations for the model (6.7), with the Goldstone fields in the unitary
gauge (6.9), and metric (3.12) read (for computational details, see Appendix A of
the references (DUBOVSKY et al., 2005) and (BEBRONNE; TINYAKOV, 2007)),

H2 =
a2

3M2
P

(ρm + ρφ + ρΛ),

H′ +H2 = − a2

2M2
P

(pm + pφ + pΛ),

∂0(a
3FXX1/2) = 0, (6.13)

where ρm and pm stand for the density and pressure for the ordinary matter respec-
tively, and

ρφ = Λ4XFX , pφ = Λ4WFW , (6.14)

ρΛ = −Λ4

2
F, pΛ =

Λ4

2
F. (6.15)

6.2 Cosmological Perturbations in Massive Theories of Gravity

Once we have established the dynamical equations for the background, let us now
turn our attention to the metric perturbations. The steps toward obtaining the
dynamical equations for the massive metric perturbations are the same as followed
in Section 3.3, despite of the slight modifications in the perturbed metric of these
two distinct massive theories. We start with an analysis of the MFP model.
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6.2.1 Cosmological Perturbations in the MFP Model

In Chapter 3 we have discussed the concepts and techniques of the theory of cosmo-
logical perturbations. The core of this powerful tool lies on the metric decomposition
(3.12), in which the fluctuations are represented by scalars, transverse vectors and
TTF tensors. In the case of the modified Fierz-Pauli model the same metric de-
composition cannot be performed due to the extra polarization modes; we instead
introduce (BESSADA; MIRANDA, 2009b)

δgαβ = a(τ)2

(
2φ Xi −Q,i

Xi −Q,i −hij

)
, (6.16)

where φ and Q are scalar fields, Xi is a divergenceless vector field, and hij is the
cosmological version of the tensor given by the solution to equation (6.3), carrying
the corresponding six polarization modes spanned in the NP formalism. The two
scalar fields, plus the two components of the transverse vector field and the six
modes of the tensor field give exactly the required ten degrees of freedom. The mass
Lagrangian for this model can be constructed analogously as in (6.1), that is, it
appears as a quadratic term in the metric (6.16). The full action is then obtained
by adding up this contribution to the usual Einstein-Hilbert one, and the Einstein
equations can be derived using the standard tools. Before doing that, it is convenient
to decompose the tensor perturbation hij into its TTF and longitudinal parts in
the Fourier space. In (C.28) the whole time-dependence of hij is contained in the
exponential since it is a solution to a wave equation of the form (6.3); now, such
time-dependence changes because of the extra temporal function a(τ) appearing in
(6.16), which introduces a damping in the oscillation. Therefore, we Fourier-expand
the massive tensor perturbation hij as

hij (τ, x) =
6∑

r=1

∫
d3k

(2π)3/2
h̃r

k (τ) εr
ij(k)eik·x, (6.17)

so that the TT and longitudinal components of h̃ij can be written in the same foot
as (6.4) and (6.5), that is

h̃⊥ij (τ,k) ≡ ε4
ij(k)h̃4 (τ,k) + ε5

ij(k)h̃5 (τ,k) , (6.18)

h̃
‖
ij (τ,k) ≡ ε2

ij(k)h̃2 (τ,k) + ε3
ij (k) h̃3 (τ,k) ; (6.19)
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now, deducing the Einstein equations for the cosmological MFP model according to
the techniques discussed in Section 3.3, we see that both fields h⊥ij and h

‖
ij satisfy

the same dynamical equations

h⊥
′′

ij −∇2h⊥ij + 2Hh⊥
′

ij + a2m2h⊥ij = 0, (6.20)

h‖
′′

ij −∇2h‖ij + 2Hh
‖
ij

′
+ a2m2h

‖
ij = 0. (6.21)

Therefore, both the transverse tensor modes and the longitudinal vector modes
evolve in the same way, unlike GR, in which vector (3.99-3.100) and tensor (3.101)
modes behave quite differently. This fact will represent an important signature, as
we shall discuss later.

6.2.2 Cosmological Perturbations in Massive Gravity

In the case of Massive Gravity, the cosmological perturbations to the metric are
given by (3.12), together the following set of perturbations to the Goldstone fields
in the unitary gauge (6.9), (BEBRONNE; TINYAKOV, 2007)

φ̃0 = φ0 + Λ2λ0, φ̃i = φi + Λ2
(
λi + λ,i

)
, (6.22)

where λ0 e λ are scalar fields and λi is a divergenceless vector field. Now, under
the infinitesimal coordinate transformations (3.49), we can show that the following
vector fields

Wi = Si + F ′
i , σi = λi − Fi, (6.23)

are invariant.

The action for Massive Gravity on a flat FRW background is then given by (6.7)
with (3.12) and the Goldstone fields set to their vacuum values (6.9); the matter
lagrangian Lmatter is assumed to be described by a perfect fluid whose perturbations
for the fluid four-velocity are the same as in (3.68). With these features, the Einstein
equations for the tensor field hij are given by (BEBRONNE; TINYAKOV, 2007),

h′′ij −∇2hij + 2Hh′ij + a2m2
2hij = 0, (6.24)

whereas for the gauge-invariant vector fields defined by (6.23) the Einstein equations
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read, in the longitudinal gauge,

∇2Wi − 2a2ρmM−2
P (1 + w)ωi = 0, W ′

i + 2HWi − a2m2
2σi = 0,

m2
2∇2σi = 0, (6.25)

where δζ = v − (E ′ + B), and w is the equation of state parameter of the ordinary
matter (BEBRONNE; TINYAKOV, 2007).

By solving equations (6.25) we conclude that the only relevant vector field is Wi,
whose amplitude decays with a−2 as in (3.102), which is exactly the same behavior
of vector fields as derived in GR.

To end this section let us discuss an important aspect concerning the mass param-
eters of Massive Gravity. As we have pointed out at the beginning of this Section,
there are regions in the mass parameter space in which this theory is free of ghosts
and instabilities; this means that the mass parameters m0, m1, m2, m3 and m4

cannot be chosen arbitrarily, but they have to satisfy some constraints (RUBAKOV,
2004), (DUBOVSKY, 2004). Since in this work we deal only with the mass parameter
m2, there is a number of choices on these parameters in which the model is physi-
cally healthy; therefore, any of these choices would produce a physically acceptable
theory. We simply assume that the mass parameters in our work are within the
region in which the pathologies are absent.

Specific restrictions on the function F are discussed in (DUBOVSKY et al., 2005). In
this reference, the authors demonstrate the existence of a wide class of functions F

for which expanding cosmological solutions are compatible with constant graviton
masses and allow for the effective field theory description. Therefore, we may simply
restrict F in such a way the mass m2 is constant along the story of the universe,
which we assume to hold throughout this work.

6.3 Primordial Massive Tensor Modes

It is important to note that both the MFP model and Massive Gravity give rise
to the same results for the TTF polarization modes of the tensor perturbations as
can be seen from equations (6.20) and (6.24), whereas for vector perturbations the
situation changes drastically. Then, the behavior of the tensor modes is the same
for both models, which we next analyze.
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We first Fourier-expand the massive tensor field hij as in (5.30), (with the
parametrization (5.29)) and then plug into equation (6.24), whose result is

h(m)′′
n + 2Hh(m)′

n +
(
n2 + m2a2

)
h(m)

n = 0, (6.26)

where the superscript (m) stands for massive. In (6.26) we have dropped the GW
polarization indices r since they give the same contribution. Defining an analogous
variable to (4.84) for the massive case, µ

(m)
n (τ) = a(τ)h

(m)
n (τ), and substituting it

into equation (6.26), we find (BESSADA; MIRANDA, 2009a)

µ(m)′′
n +

[
n2 + m2a2 − a′′

a

]
µ(m)

n = 0. (6.27)

As we have discussed in Section 5.5, the scale factor (5.97) represents very well the
periods of the universe relevant to recombination, so that it makes sense to employ
it in Massive Gravity as well, since we may expect that the contribution of massive
gravitons to the expansion of the universe is negligible in its early epochs; then, as a
first approximation, we may neglect the contribution of the components ρφ, equation
(6.14), and ρΛ, equation (6.15), in (6.13).

Now, using the above arguments and consequently the scale factor (5.97), we can
solve numerically equation (6.27) for different wavenumbers n and masses m. We
choose the graviton masses m using the following argument: in GR, only GW
with frequencies ν within the range 10−15Hz to 10−18Hz may leave a signature
on CMB polarization; these frequencies correspond to wavenumbers k within the
range 10−25cm−1 (n ∼ 5× 103) to 10−28cm−1 (n ∼ 10). For Massive Gravity, we use
the same values for k, but now we vary the frequencies in order to obtain constant
nonzero graviton masses through the dispersion relation

ω2 = k2 + m2, (6.28)

which comes straight from (6.24), where now ω = 2πν. As a result, we find that
if the values of the mass m lie within the range 10−66 - 10−62g, the corresponding
frequencies have values very close to the expected in GR. In particular, we’ve found
that if the graviton mass is m = 10−66g ∼ 10−29cm−1, the behavior of the GWs in
Massive Gravity is exactly the same of GWs in GR. Therefore, if the graviton mass
is equal or less than the graviton mass limit ml = 10−66g, the effects of Massive
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Gravity are indistinguishable from GR (BESSADA; MIRANDA, 2009a).

It is important to mention that there has been a lot of efforts to constrain the
masses of the tensor modes over the past few decades: (GOLDHABER; NIETO, 1974)
(m < 2.0× 10−62g), (TALMADGE et al., 1988) (m < 7.68× 10−55g), (FINN; SUTTON,
2002) (m < 1.4 × 10−52g), and (COORAY; SETO, 2004) (∼ 10−56g). A recent and
comprehensive review of the methods to determine the bounds for the masses of
gravitons and photons can be found in (GOLDHABER; NIETO, 2008), which we refer
to for further details.

Since we are interested in investigating signatures of massive gravitons, we shall
consider only graviton masses higher than the limit m = 10−66g; the numerical solu-
tions to the massive tensor perturbation equations (6.27) are depicted in the Figure
6.1 below. For sake of comparison we depict the general-relativistic GW amplitudes
in each graph as well. We have used the same normalization as (BASKARAN et al.,
2006), and the plots start at τ = τr = 10−6. The mass m = 2.843 × 10−28cm−1

correspond to m = 10−65g, and so forth.

Let us now analyze in detail the behavior of massive gravitons in the light of equation
(6.27) (BESSADA; MIRANDA, 2009a). In the very early universe, before the time of
equality radiation-matter, the value of a(τ) is very low, and then the m2a2 on the
left-hand side of (6.27) can be dropped; therefore, we recover the characteristic tensor
mode equation of GR, (4.85), and the behavior of massless and massive gravitons are
the same. On superhorizon scales, n ¿ a′′/a, the resulting equation for the tensor
modes is

µ(m)′′
n − a′′

a
µ(m)

n = 0, (6.29)

whose solution is given by µ
(m)
n = f(n)a, which means that the tensor amplitudes

are “frozen", no matter the gravitons are massless or not. This particular behavior
can be clearly seen from figures 6.1 - 6.6, where the amplitudes are constant for all
the modes considered prior to decoupling.

However, as the universe evolves, the tensor modes “fall" into the horizon, so that
their amplitudes are no longer constant; on subhorizon scales, n À a′′/a, we can
neglect the effect of the term a′′/a, so that we are left with

µ(m)′′
n +

[
n2 + m2a2

]
µ(m)

n = 0. (6.30)
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FIGURE 6.1 - The time evolution of the normalized GW amplitudes for n = 5.
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FIGURE 6.2 - For n = 10.
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FIGURE 6.3 - For n = 50.
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FIGURE 6.4 - For n = 100.
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FIGURE 6.5 - For n = 500.
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FIGURE 6.6 - For n = 1000.
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On subhorizon scales the massive term becomes dominant over low values of n,
so that it “enforces" the tensor modes to fall into the horizon earlier than in the
massless case. It is clear from equation (6.30) that the heavier the gravitons, the
earlier their modes fall into the horizon. This effect can be clearly seen in the figures
6.1, 6.2 and 6.4, where the n values are sufficiently low to account for this effect.
However, for larger values of n, this effect weakens, since n2 À m2a2 in the time of
decoupling, and the massive term will be predominant only for low redshifts, as can
be seen in figures 6.5, 6.6 and 6.7.
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FIGURE 6.7 - The “tail of Figure 6.4 zoomed in, showing the phase difference in the tensor
modes at very low redshifts for both massless and massive gravitons.

In particular, for low n (corresponding to tensor modes with long wavelengths), its
constant contribution to (6.30) can be completely neglected, so that we are left with

µ(m)′′
n +

[
n2 + m2a2 − a′′

a

]
µ(m)

n = 0, (6.31)

and then the oscillatory behavior is strikingly different from the massless case, as
shown in figures 6.1, 6.2. For higher n (that is, tensor modes with short wavelengths),
tough, this effect is not so strong, but induces a slight phase difference in the os-
cillatory behavior of the tensor modes. Such phase difference is stronger for higher
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masses; as an example of it, we have zoomed in the “tail" of figure 6.2 to show this
fact. This is presented in figure 6.7.

Hence, from this analysis we may conclude that the tensor modes of Massive Gravity
behave similarly to the massless modes of GR, but the heavier the tensor modes are,
the more distinct are their physical evolution if compared to the massless modes.
Nevertheless, if massive gravitons do exist, they likely have left a signature on some
physical observable; then, by comparing the predicted signatures of the massless and
the massive modes with the observed ones, one should be able to determine whether
they possess or not a nonzero mass. As argued in Chapter 1, the best observable is
the CMB, and is in there we will be looking for such signatures.

6.4 Boltzmann Equations for Massive Gravitons

As we have seen in Section 6.2, the MFP model and Massive Gravity are equivalent
with respect to the TTF tensor modes, but only the vector modes of the first model
may give rise to relevant contributions to CMB polarization and anisotropies. In
this Section, using the techniques developed in Chapter 5, we investigate how these
contributions modify the radiative transport equations.

6.4.1 The Sachs-Wolfe effect induced by Massive Gravitons

We have discussed in Section 5.2 that the CMB photons are polarized due to the
Thomson scattering with the free electrons in the epoch of recombination. Prior
to Thomson scattering, the cosmological perturbations imprint a signature on the
photon angular pattern, the SW effect. As we have seen, this effect can be computed
through the geodesic equation (5.28), thus providing the source of the SW effect
given by the product (5.32), F = εijp

ipj. In turn, the angular pattern was calculated
according to the polarization vectors defined in (5.33); then, we expressed the photon
momentum p in the basis (5.34), depicted in Figure 5.2. Therefore, using (C.27) and
(5.35-5.36), it follows that (BESSADA; MIRANDA, 2009b)

ε2
ijp

ipj = µ
√

1− µ2 cos ϕ ∝ Y2,+1 (µ, ϕ) , (6.32)

ε3
ijp

ipj = µ
√

1− µ2 sin ϕ ∝ Y2,−1 (µ, ϕ) , (6.33)

ε4
ijp

ipj =
(
1− µ2

)
cos 2ϕ ∝ Y2,+2 (µ, ϕ) , (6.34)

ε5
ijp

ipj =
(
1− µ2

)
sin 2ϕ ∝ Y2,−2 (µ, ϕ) ; (6.35)
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The results (6.32-6.35) show that theories of gravitation with the Ψ3 and Ψ4 modes
leave an imprint on the photon angular distribution in the form of a quadrupole, with
m = ±2 for the Ψ4 modes (r = 4, 5, which coincides with GR), and with m = ±1 for
the Ψ3 modes (r = 2, 3). Since the MFP model has non-decaying vector modes, they
will leave an imprint of the form (6.32-6.33). The tensor modes will contribute with
the SW effect through relations (6.34-6.35) for both the MFP model and Massive
Gravity, and they coincide with the GR result (5.38-5.39) (BESSADA; MIRANDA,
2009b).

6.4.2 The Basis for Thomson Scattering

We now turn to the derivation of the Thomson scattering term (5.12) for massive
gravitons. As we have discussed in Section 5.2, CMB polarization is generated by
means of Thomson scattering by converting the unpolarized state characterized by
(5.40) to the polarized state characterized by the (5.44). In order to find an analog
effect in both the MFP and Massive Gravity we must derive first the basis for
the Thomson scattering. Following the same steps as taken in Section 5.2, we find
(BESSADA; MIRANDA, 2009b)

a) Ψ3 Modes:

â2 =
1

2
µ
√

1− µ2 cos ϕ û, â3 =
1

2
µ
√

1− µ2 sin ϕ û, (6.36)

b) Ψ4 Modes:

â4 =
1

2

(
1− µ2

)
cos 2ϕ û, â5 =

1

2

(
1− µ2

)
sin 2ϕ û, (6.37)

where the vector û is given by (5.23). Note that the tensor SW effect for massive
gravitons (6.37) is the same as for GR, (5.38-5.39). Next, using the operator (5.41),
and (5.42-5.43), it follows, for ξ̂ = âr (r = 2, 3, 4, 5), that (BESSADA; MIRANDA,
2009b)

a) Ψ3 Modes:

b̂2 =
1

2

√
1− µ2




µ cos ϕ

−µ cos ϕ

2 sin ϕ


 , b̂3 =

1

2

√
1− µ2




µ sin ϕ

−µ sin ϕ

−2 cos ϕ


 , (6.38)
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b) Ψ4 Modes:

b̂4 =
1

2




(1 + µ2) cos 2ϕ

− (1 + µ2) cos 2ϕ

4µ sin 2ϕ


 , b̂5 =

1

2




(1 + µ2) sin 2ϕ

− (1 + µ2) sin 2ϕ

−4µ cos 2ϕ


 . (6.39)

The Thomson basis vectors given by (6.36) and (6.38), (6.37) and (6.39) allows us
to factor out the angular dependence of the photon distribution vectors, and they
constitute the first-order contribution to f̂, as in (5.20).

6.4.3 The Full Boltzmann Equations

Once we have obtained the form of the photon distribution vector (5.20) for the
TTF and longitudinal GW modes, we are able to write down the full Boltzmann
equations (5.11). They are given by (BESSADA; MIRANDA, 2009b)

a) Ψ3 Modes:
χr (τ, µ)′ + [q(τ) + inµ] χr (τ, µ) = Hr (τ) , (6.40)

βr (τ, µ)′ + [q(τ) + inµ] βr (τ, µ) =
3

8
q (τ)J r(τ), (6.41)

for r = 2, 3, and

J r(τ) ≡
∫ 1

−1

dµ′
[
χr (τ, µ′) µ′2(1− µ′2) + βr (τ, µ′)

(
1 + µ′2 − 2µ′4

)]
.(6.42)

b) Ψ4 Modes:
ξr (τ, µ)′ + [q(τ) + inµ] ξr (τ, µ) = Hr (τ) , (6.43)

βr (τ, µ)′ + [q(τ) + inµ] βr (τ, µ) =
3

16
q (τ)Kr(τ) (6.44)

for r = 4, 5 and

Kr(τ) ≡
∫ 1

−1

dµ′
[
βr (τ, µ′) (1 + µ′2)2 − 1

2
ξr (τ, µ) (1− µ′2)2

]
, (6.45)

106



In the equations above, q(τ) is the scattering rate, defined in (5.49), and the functions
ξ (τ, µ), χ (τ, µ) and Hr (τ) are defined as

ξr ≡ αr + βr, χr ≡ αr − βr, (6.46)

Hr ≡ 1

2

∂hr(η)

∂η
. (6.47)

Equations (6.43) and (6.44) for massive gravitons with Ψ4 mode are identical in
form to the corresponding ones in GR, given by (5.51) and (5.52), as well as the
integral term (6.45) to (5.54). However, the terms (6.47), which carry the content of
the GW, are different for the massless and massive modes, so that we may expect
different signatures for the massive tensor modes as compared to the massless ones.

The Boltzmann equations for the Ψ3 modes, (6.40) and (6.41), do not appear in
GR. Since the vector and tensor modes satisfy the same dynamical equation, and
the mathematical form of the equations (6.40) and (6.41) is very different from (6.43)
and (6.44), it is clear that the vector polarization modes of massive gravitons leave a
characteristic signature distinguishable from the tensor ones, which could, in princi-
ple, be probed by measurements on the CMB E and B-modes (BESSADA; MIRANDA,
2009b). Since the experiments in the Planck satellite will improve the WMAP5 re-
sults for the E-mode, we may expect that such future measurements might decide
whether nontrivial GW signatures - as we showed here through equations (6.40)
and (6.41) for Ψ3-modes - appear or not in the CMB polarization spectrum. In this
case, we conclude that CMB polarization measurements may be decisive to test al-
ternative theories of gravitation - in particular, the massive model as we discussed
here.

6.5 CMB Anisotropies induced by Massive Tensor Modes

As an application of the results found in the last Section, here we numerically solve
the Boltzmann equations (6.43-6.44) for the tensor massive modes. We use the results
found in Section 6.3 and apply the techniques developed in Section 5.5 to evaluate
the correlation functions for the massive tensor modes. For the reasons discussed in
Section 5.5, we do not consider reionization in the present work, which implies that
no signature of massive gravitons can be seen in the polarization spectrum. This
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happens because in this case the visibility function (5.80) is zero at this epoch, and
then the source functions Φ (5.78) will be zero, since they depend linearly on g(τ).
However, this fact does not affect CMB anisotropies, since the mode coefficients aT

`m,
given by (5.92), depends on H(τ), defined by (5.79), and (6.47), which is not zero
even in the absence of reionization. Since the source function H(τ) depends on the
tensor mode amplitudes, and massive and massless modes are different at late times,
we conclude that the massive modes would leave a distinct signature on CMB low
multipoles even without reionization.

As we have discussed in Section 6.3, if the mass of the tensor mode is less or equal
than ml, Massive Gravity produces the same results as GR; we choose then masses
within the range m = 10−27cm−1 - m = 10−25cm−1, whose associated anisotropies
power spectrum is depicted in Figure 6.8 (BESSADA; MIRANDA, 2009a).
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FIGURE 6.8 - The correlation functions CTT
` for GR and Massive Gravity. Note that the

massive gravitons leave a signature on the spectrum for low multipoles.

This figure show distinct signatures for massless and massive gravitons, as we have
argued above. Therefore, for the range of masses selected, massive tensor modes
leave a clear signature on low multipoles ` < 30. Figure 6.9 shows the low-multipole
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region of the correlation function 6.8 in detail.
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FIGURE 6.9 - The low-multipole “tail" in the TT correlation function. Note the quite
distinct signatures for ` < 30 for the mass range selected.

Since the heavier modes fall into the horizon earlier, they have the stronger signature,
as shown. If we had chosen a different mass, say m = 10−21cm−1, the signature would
be stronger, and possibly would appear for multipoles ` > 30. This can be explained
by simply analyzing the trend shown in figures 6.1 and 6.2: the heavier the mass,
the earlier the modes fall into the horizon, which correspond to higher multipoles.
However, even in this case, as the trend shown in figure 6.9 indicates, the signature
will be particularly strong on low multipoles. Therefore, if the tensor modes of
the metric fluctuations are massive, they could be detected directly by the CMB
anisotropy power spectrum if their mass are greater than the limit ml ∼ 10−29cm−1,
and their signatures would be noticeable specially on low multipoles.

Therefore, the results above indicate clearly that the future measurements on the
TT correlation might be decisive for probing the existence of massive tensor modes,
for the signature left by them could be strong enough to be distinguished from those
of the massless modes (BESSADA; MIRANDA, 2009a).
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7 SIGNATURES OF DBI INFLATION IN THE CMB

In this Chapter we derive new solutions in the context of DBI inflation and ana-
lyze their observational consequences as an example of the Class 2 of alternative
cosmologies in the Table 1.2. We change the current notation used so far, so that a
prime denotes a derivative with respect to the field φ.

7.1 DBI Inflation - An Overview

In warped D-brane inflation (see (MCALLISTER; SILVERSTEIN, 2008) and (CLINE,
2006) for a review), inflation is regarded as the motion of a D3-brane in a six-
dimensional “throat" characterized by the metric (KLEBANOV; STRASSLER, 2000)

ds2
10 = h2 (r) ds2

4 + h−2 (r)
(
dr2 + r2ds2

X5

)
, (7.1)

where h is the warp factor, X5 is a Sasaki-Einstein five-manifold which forms the
base of the cone, and r is the radial coordinate along the throat. In this case, the
inflaton field φ is identified with r as φ =

√
T3r, where T3 is the brane tension. The

dynamics of the D3-brane in the warped background (7.1) is then dictated by the
DBI Lagrangian

L = −f−1 (φ)
√

1− 2f (φ) X − f−1 (φ)− V (φ) , (7.2)

where f−1(φ) = T3h(φ)4 is the inverse brane tension, V (φ) is an arbitrary potential,
and X is the kinetic term, defined in (D.2). We also assume that the background
cosmological model is described by the flat FRW metric (2.6).

A quick inspection of the DBI Lagrangian (7.2) shows that it is a special case of
k-inflation, characterized by a varying speed of sound cs as described in Appendix
D. In particular, the speed of sound for DBI models can be calculated from (7.2)
and (D.15), whose result is

cs(φ) =
√

1− 2f(φ)X. (7.3)

In those models it is convenient to introduce an analog of the Lorentz factor, related
to cs(φ) by:

γ(φ) =
1

cs(φ)
. (7.4)
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We next introduce the generalization of the inflationary flow hierarchy for DBI
models (PEIRIS et al., 2007). Taking the derivative of (7.2) with respect to X we see
that

LX = γ(φ); (7.5)

then, in order to find the analogs of the flow parameters and equations derived in
Appendix D, all we have to do is substitute (7.5) into equations (D.23), (D.25) and
(D.26),

ε (φ) =
2M2

P

γ (φ)

(
H ′ (φ)

H (φ)

)2

, (7.6a)

s (φ) = s̃ (φ) =
2M2

P

γ (φ)

H ′ (φ)

H (φ)

γ′ (φ)

γ (φ)
; (7.6b)

note that in the DBI model s = s̃, which reduces the number of parameters. The η

in the DBI model comes from (D.24)

η (φ) =
2M2

P

γ (φ)

H ′′ (φ)

H (φ)
, (7.7)

which suffices for our present discussion. The remaining flow parameters can be
found in (PEIRIS et al., 2007).

From the definition of the number of e-folds, (4.23), and expression (7.6a), we find

N =
1√
2M2

P

∫ φ

φe

√
γ (φ)

ε (φ)
dφ. (7.8)

In terms of the number of e-folds, the flow parameters (D.28-D.30) become

ε =
1

H

dH

dN
, (7.9a)

s =
1

γ

dγ

dN
. (7.9b)

The dynamics of the inflaton field can be completely described by this hierarchy
of equations, which are equivalent to the Hamilton-Jacobi equations (SPALINSKI,
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2007b)

φ̇ = −2M2
P

γ(φ)
H ′(φ), (7.10a)

3M2
P H2(φ) − V (φ) =

γ(φ)− 1

f(φ)
, (7.10b)

which follows from (7.5) and (D.20-D.21). Using (7.3) and (7.10a-7.10b), we have
that

γ(φ) =

√
1 + 4M4

P f(φ) [H ′(φ)]2. (7.11)

In terms of the flow parameter ε, the potential, V (φ), and the inverse brane tension,
f(φ), can be written as

V (φ) = 3M2
P H2

(
1− 2ε

3

γ

γ + 1

)
, (7.12)

and
f (φ) =

1

2M2
P H2ε

(
γ2 − 1

γ

)
, (7.13)

respectively.

As for perturbations, the techniques introduced in Section D.3 can be applied to the
present case, since the DBI model is a particular case of k-essence. Since for DBI
inflation relation s = s̃ (7.6b) holds, it follows, from (D.49) and (D.50) that

ns − 1 = −4ε + 2η − 2s, (7.14)

and
r = 16εcs. (7.15)

7.2 The Model

7.2.1 The General Setting

The usual approach to the construction of a model of inflation normally starts with a
choice of the inflaton potential, V (φ); then, all the flow parameters are derived, and
the dynamical analysis is performed. In this work we adopt the reverse procedure:
we first look for the solutions to the differential equation satisfied by the Hubble
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parameter H(φ),

H ′(φ)

H(φ)
= ±

√
ε(φ)γ(φ)

2M2
P

, (7.16)

and only afterwards derive the form of the potential. Equation (7.16) can be easily
derived from the definition of the flow parameter ε, given by (7.6a), and the sign
ambiguity indicates in which direction the field is rolling. Notice that in order to
solve equation (7.16) we must know the form of the functions ε(φ) and γ(φ); we
choose them to be power-law functions of the inflaton field (BESSADA et al., 2009),

ε(φ) =

(
φ

φe

)α

, (7.17a)

γ(φ) = γe

(
φ

φe

)β

, (7.17b)

where γe is the value of the Lorentz factor at the end of inflation1, and α and β are
constants. Another case which is worth studying appears when ε is constant, so that

ε(φ) = ε = const., (7.18)

with the same parametrization for γ. We have kept φe for the following reason: in
the IR DBI model the inflaton field rolls down from the tip of the throat toward the
bulk of the manifold with increasing speed of sound; then, when the field enters the
bulk cs becomes equal to 1, and then inflation “ends". In the UV case the behavior is
the opposite, that is, the field evolves away from the bulk and reaches the tip when
cs = 1. To reproduce both cases we could have set γe = 1 from the onset, so that
cs(φe) = 1, as required; also, cs(φ) = 1 in the canonical limit, that is, when β = 0.
However, by taking γe arbitrary, we also reproduce the non-canonical models with
constant speed of sound introduced by Spalinski (SPALINSKI, 2008). It is clear that in
the latter case γe does not refer necessarily to the end of inflation, so that if we take
γe À 1 it does not mean a superluminal propagation (as would be the case if β 6= 0).
Bearing this distinction in mind we can use the same notation unambiguously.

When α 6= 0, substituting (7.17a) and (7.17b) into (7.16), we see that the Hubble

1Henceforth all the variables with a subscript e are evaluated at the end of inflation.
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parameter takes the form

H(φ) = He exp

[
σ

√
γe

2M2
P φα+β

e

I(φ)

]
, (7.19)

where we have defined

I(φ) ≡
∫ φ

φe

dφ′φ′(α+β)/2
, (7.20)

and σ accounts for the sign ambiguity appearing in (7.16). When ε is constant, the
solution to (7.16) reads

H(φ) = He exp

[
σ

√
εγe

2Mβ+2
P

I(φ)

]
, (7.21)

where the integral I(φ) is the same as in (7.20).

It is clear that the integral (7.20) admits two distinct solutions: a logarithmic one
when α + β = −2, and power-law for α + β 6= −2. These two solutions will give
rise to different classes of inflationary potentials, which we shall address in the next
subsections.

To conclude this section we derive the general formula for the number of e-folds. For
α 6= 0 this expression can be determined by equations (7.8), (7.17a), and (7.17b), so
that

N(φ) = σ

√
γeφ

α−β
e

2M2
P

J(φ), (7.22)

where

J(φ) =

∫ φ

φe

dφ′φ′(β−α)/2
; (7.23)

if α = 0 we must use the parametrization (7.18), so that expression (7.22) changes
to

N(φ) = σ

√
γe

2M2
P εφβ

e

J̃(φ), (7.24)

where

J̃(φ) =

∫ φ

φe

dφ′φ′β/2
. (7.25)

In the next section, we discuss particular cases of this general class of solutions.
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7.2.2 The Solutions α + β = −2.

For this class of solutions, the parameters α and β are related by

α = −2− β; (7.26)

notice that the case α = 0 implies β = −2, which corresponds to the case where
the flow parameters ε and s are constant (KINNEY; TZIRAKIS, 2008). Evaluating the
integral (7.20) and substituting it into (7.19), we find

H(φ) = He

(
φ

φe

)p/2

, (7.27)

where the exponent p is determined by

p = σφe

√
2γe

M2
P

. (7.28)

Let us now analyze the sign ambiguity appearing in (7.28). We first write the ex-
pression (7.27) as

p = 2
ln (H(φ)/He)

ln (φ/φe)
; (7.29)

then, for α < 0, we have, from (7.17a), in the slow-roll limit,

ε(φ) =

(
φ

φe

)−|α|
¿ 1, (7.30)

which implies φ À φe and φ̇ < 0 for φ > 0 (the large-field limit, see subsection
4.4.1), so that ln (φ/φe) > 0. Since the weak-energy condition implies that Ḣ < 0,
we have H(φ) ≥ He, and then ln (H(φ)/He) > 0. Therefore, from (7.29), α < 0

implies p > 0. From definition (7.28) we see that p > 0 implies σ = −1 if φ < 0, and
σ = +1 if φ > 0.

Conversely, if α > 0, we have, from (7.17a), in the slow-roll limit,

ε(φ) =

(
φ

φe

)+|α|
¿ 1, (7.31)

which implies φ ¿ φe and φ̇ > 0 for φ > 0 (the small-field limit, see subsection
4.4.2), so that ln (φ/φe) < 0. Again, ln (H(φ)/He) > 0, so that, from (7.29), α > 0
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implies p < 0. From definition (7.28) we see that p < 0 implies σ = −1 if φ > 0, and
σ = +1 if φ < 0.

Therefore, what really distinguishes the models is the sign of the exponent of α; the
sign of σ simply dictates which direction the field is rolling in, exactly as in canonical
inflation. We are left with two distinct models, whose properties are summarized in
Table 7.1. (For φ < 0 the sign rule is easily obtained by flipping all the signs of the
quantities present in Table 7.1.)

TABLE 7.1 - The sign rule for models with α+β = −2 and φ > 0 (BESSADA et al., 2009).

Model 1. p > 0, α < 0 σ = +1 φ > 0 φ̇ < 0

Model 2. p < 0, α > 0 σ = +1 φ > 0 φ̇ < 0

7.2.3 The Solutions α + β 6= −2

Let us first consider the case α 6= 0. The solution to the integral (7.20) is

H(φ) = H̃e exp

[
σKφe

α + β + 2
φ̄(α+β+2)/2

]
, (7.32)

where we have defined

H̃e = He exp

[
− σ

√
2γeφe

MP (α + β + 2)

]
, (7.33)

K =

√
2γe

M2
P

, φ̄ =
φ

φe

. (7.34)

In order to fix the sign ambiguity let us rewrite expression (7.32) as

d ln H =
2σKφe

α + β + 2
dφ̄(α+β+2)/2; (7.35)

then, as we have seen in (7.30), the condition α < 0 corresponds to the large-field
limit, φ À φe; so, if α + β + 2 < 0 and φ > 0, we have dφ̄(α+β+2)/2 > 0, so that from
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(7.35),

d ln H︸ ︷︷ ︸
<0

=
2σKφe

α + β + 2
dφ̄(α+β+2)/2

︸ ︷︷ ︸
>0

=⇒ − σK|φe|
|α + β + 2| < 0, (7.36)

implying that σ = +1. Applying the same analysis for α + β + 2 < 0 and φ < 0, we
find σ = −1. For α + β + 2 > 0 we find σ = +1 for φ > 0, and σ = −1 for φ < 0.
The results in the large-field limit are summarized in Table 7.2. The same reasoning
also applies for α > 0, that is, the small-field limit, given by (7.31); the results are
summarized in Table 7.3, where we have four distinct models: As in the previous

TABLE 7.2 - The sign rule for models with α + β 6= −2, α < 0, and φ > 0 (BESSADA et
al., 2009).

Model 3. α + β + 2 > 0 σ = +1 φ̇ < 0

Model 4. α + β + 2 < 0 σ = +1 φ̇ < 0

TABLE 7.3 - The sign rule for models with α + β 6= 0, α > 0 and φ > 0 (BESSADA et al.,
2009).

Model 5. α + β + 2 > 0 σ = −1 φ̇ > 0

Model 6. α + β + 2 > 0 σ = +1 φ̇ < 0

Model 7. α + β + 2 < 0 σ = −1 φ̇ > 0

Model 8. α + β + 2 < 0 σ = +1 φ̇ < 0

case, the model φ < 0 is easily obtained by flipping all the signs of the quantities
present in Tables 7.2 and 7.3.

In the case ε = const., β 6= −2, the solution to the integral (7.20) is given by

H(φ) = H̃e exp

[
σ

√
2εγe

M2
P φβ

e

φ(β+2)/2

β + 2

]
, (7.37)
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where

H̃e = He exp

[
−σ

√
2εγe

M2
P φβ

e

φ
(β+2)/2
e

α + β + 2

]
. (7.38)

It is straightforward to see that the same sign rules shown in Tables 7.2 and 7.3 also
apply to this case.

7.3 Classes of inflationary potentials in DBI inflation

In this section we proceed to analyze the solutions obtained in the last section. The
key ingredient, in order to understand the physics associated with these classes of
solutions, is the study of the form of the inflationary potential, which is obtained
from the expressions (7.12), (7.17b), and the corresponding expression for the Hubble
parameter, given by either (7.27) or (7.32). Once we have the form of such non-
canonical potentials, we can compare these expressions with the usual canonical
inflationary potentials discussed in Section 4.4. To do so, we must make some choices
for the exponents α and β first, and then on the corresponding dynamics of the
field; hence, as we have seen in the Tables 7.1, 7.2 and 7.3, we have eight distinct
models altogether. Our main aim is to reproduce the classes of the inflationary
potentials found in Section 4.4; then, in doing so, we leave out some interesting
solutions, but our emphasis here is on understanding the physics of the non-canonical
models, which can be achieved through a close comparison with the well-established
potentials found in the literature.

7.3.1 Large-field polynomial potentials

A quick look at expressions (7.12) and (7.27) suggests that the model 1 in Table
7.1, characterized by p > 0 and α < 0, is the non-canonical counterpart of large-
field polynomial models, for its potential also goes like φp. To check this, let us first
analyze the behavior of the speed of sound (7.17b). Since the equality (7.26) implies
β > −2, we see from (7.17b) that β > 0 corresponds to

γ(φ) = γe

(
φ

φe

)|β|
=⇒ γ →∞ as φ →∞, (7.39)

or, in terms of the speed of sound,

cs → 0 as φ →∞; (7.40)
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since in the large-field limit the field strength is very large at early times, we conclude
from (7.40) that the speed of sound starts off with a subluminal value. Also, from
(7.39), we see that γ/(γ + 1) → 1; then, using this fact and plugging (7.27) into
(7.12), we find (BESSADA et al., 2009)

V (φ) ∼ 3M2
P H2

e

(
φ

φe

)p

, (7.41)

which behaves exactly as a canonical large-field potential, (4.52). The non-canonical
potential (7.41) shows that the inflaton field starts evolving from a value φ ∼ µ

with a very low speed of sound, and then rolls down toward its minimum at origin.
Once there, the speed of sound becomes unity as well as the flow parameter ε and
then inflation ends. The potential evaluated at µ corresponds to the vacuum energy
density,

V (µ) = Λ4 =⇒ Λ4 ∼ 3M2
P H2

e , (7.42)

so that in terms of these two quantities, the Hubble parameter (7.27) and the infla-
tionary potential (7.41) assume the form

H(φ) =
Λ2

√
3M2

P

(
φ

µ

)p/2

(7.43)

V (φ) = Λ4

(
φ

µ

)p

, (7.44)

respectively.

The end of inflation is achieved when φ = φe, whose value can be determined from
(7.28) and the sign rule for the model 1 in Table 7.1:

φe

MP

=
p√
2γe

; (7.45)

then, in terms of the expression (7.45) the flow parameter ε takes the form

ε(φ) =

[√
2γe

p

]−β−2 (
φ

MP

)−β−2

, (7.46)

whereas the two other relevant flow parameters s and η are given by

s(φ) =
2β

p
ε(φ), (7.47)
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η(φ) =
p− 2

p
ε(φ), (7.48)

where we have used (7.6b), the first expression of (7.7), plus (7.17b), (7.43) and
(7.45). The expression for the number of e-folds is obtained from expressions (7.22),
(7.23) and (7.26) for α 6= 0, so that

N(φ) =
p

2 (β + 2)

[
1

ε(φ)
− 1

]
. (7.49)

In the analysis performed above we have considered solely models with α < 0 and
β > 0; the case α = 0 has been studied in the paper (KINNEY; TZIRAKIS, 2008),
and leads to potentials like (7.44) in the UV limit s < 0. The case β = 0, γe = 1,
corresponds to canonical large-field models; in this limit, the expressions for the flow
parameters ε and η, given by (7.46) and (7.48), yield

ε(φ) =
p2

2

M2
P

φ2
, (7.50)

η(φ) =
p(p− 2)

2

M2
P

φ2
, (7.51)

which coincides with the corresponding canonical expressions (4.53) and (4.54), re-
spectively. Also in this limit, from (7.45) we see that inflation ends when

φc
e

MP

=
p√
2
, (7.52)

which coincides with the canonical expression found in (4.55). Hence, all large-field
polynomial models with p > 2 are particular cases of this non-canonical version.
Also, if γe 6= 1, we recover the Spalinski model (SPALINSKI, 2008) with a polynomial
potential as well. Another particular case of this general class is isokinetic inflation,
proposed in (TZIRAKIS; KINNEY, 2009). For this model, we can show that by setting
α = −p/2−1 and β = p/2−1, we reproduce all the expressions derived in (KINNEY;

TZIRAKIS, 2008) up to a redefinition of the exponent of the potential2.

Therefore, we have a completely well-defined D-brane inflationary scenario with
large-field potentials like (7.44), a flow parameter ε given by (7.17a) with α < 0,

2In isokinetic inflation the potential has the form V (φ) ∝ φ2piso (TZIRAKIS; KINNEY, 2009),
whereas in our model we have defined the exponent p (expression (7.28)) such that V (φ) ∝ φp.
Then p = 2piso.
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and a small speed of sound characterized by (7.17b) with β ≥ 0, reproducing not
only the canonical large-field polynomial potentials, but also other models discussed
in the literature. For these reasons we will call this class non-canonical large-field
polynomial models.

In particular, as we will see in section 7.4, these models predict values for the scalar
spectral index and tensor-to-scalar ratio which agree very well with WMAP5 obser-
vations.

7.3.2 Small-field polynomial potentials

For non-canonical models we can express the small-field limit φ ¿ µ by choosing
α > 0; also, as we have derived in section 7.2.3, the condition φ̇ > 0 for φ > 0 is
satisfied when σ = −1 and α+β +2 > 0, which corresponds to the model 5 in Table
7.3. In this case, the Hubble parameter (7.32) takes the form

H(φ) = H̃e exp

[
− Kφe

α + β + 2
φ̄(α+β+2)/2

]
; (7.53)

where K and φe are given by (7.34); since φ̄ = φ/φe in the small-field limit, and
α + β + 2 > 0, we can expand expression (7.53) to first-order in φ̄, so that

H(φ) = H̃e exp

[
1− Kφe

α + β + 2
φ̄(α+β+2)/2

]
. (7.54)

Since β > −2 − α and α > 0, we see that β can take either sign; in particular, for
β > 0, from (7.17b) we have the following relation

γ(φ) = γe

(
φ

φe

)−|β|
=⇒ γ →∞ as φ → 0, (7.55)

or, in terms of the speed of sound,

cs → 0 as φ → 0. (7.56)

In the small-field limit, we have always φ ¿ φe, so that φ → 0 corresponds to early
times; then, from (7.56) we conclude that the field propagates with subluminal speed
of sound at early times. Also, property (7.55) implies that γ/(γ + 1) → 1, so that
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by using this fact and plugging (7.54) into (7.12), we find

V (φ) ∼ 3M2
P H̃2

e

[
1− 2

3
φ̄α − 2Kφe

α + β + 2
φ̄(α+β+2)/2

]
(7.57)

in the slow-roll limit. It is clear that we can derive out of expression (7.57) different
sort of potentials, depending on the relations between the exponents. Let us analyze
one of such possible choices; we define first the exponent

p =
α + β + 2

2
, (7.58)

and we choose α and β such that p is always integer. Then, if α ≥ p, we see that
α ≥ β + 2, and the potential (7.57) takes the form

V (φ) ∼ 3M2
P H̃2

e

[
1− Kφe

p
φ̄p

]
, α ≥ β + 2. (7.59)

In the canonical small-field model, the energy scale of inflation is given by Λ4 = V (0),
so that in the non-canonical case, the vacuum energy density is given by

Λ4 = 3M2
P H̃2

e , (7.60)

whereas the effective symmetry-breaking scale (4.57) reads

1

µp
=

√
2γe

M2
P φα+β

e

; (7.61)

then, in terms of these two quantities, the inflationary potential (7.57) becomes, in
the small-field limit, (BESSADA et al., 2009)

V (φ) = Λ4

[
1− 1

p

(
φ

µ

)p]
, (7.62)

which coincides with the canonical small-field potential (4.56), as expected.

Then, in the non-canonical case the field also rolls down from an unstable vacuum
state whose energy density is given by (7.60) with very low speed of sound, and
evolves toward a minimum characterized by a scale µ given by (7.61) for α ≥ p ≥ 2,
and such behavior is exactly the same as the canonical case.
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From (7.61) we see that inflation ends when

φe

µ
=

[
µ

MP

√
2γe

]1/(p−1)

, (7.63)

so that the flow parameters are given by

ε(φ) =

[
MP

µ
√

2γe

](p−1)/α (
φ

µ

)α

, (7.64)

s(φ) = −β

√
2M2

P

γeφ2
e

, (7.65)

η(φ) = (α + β)

√
M2

P

2γeφ2
e

φ̄(α−β−2)/2 + ε(φ), (7.66)

where we have used (7.6b), the first expression of (7.7), plus (7.17a), (7.17b), (7.53)
and (7.63).

In particular, in the canonical limit β = 0, γe = 1 we have α ≥ 2, so that for even
values of α all the potentials with p ≥ 2 are reproduced. In this limit, from (7.58)
we see that α = 2(p− 1); then, from (7.64) the flow parameter ε assumes the form

ε(φ) =
MP

µ
√

2

(
φ

µ

)2(p−1)

, (7.67)

whereas from (7.63) we see that inflation ends at

φe

µ
=

[
µ

MP

√
2

]1/(p−1)

. (7.68)

Expressions (7.67) and (7.68) agree with the corresponding canonical expressions
(4.58) and (4.59), respectively.

Therefore, in the slow-roll limit all canonical small-field polynomial models with
p ≥ 2 are particular solutions to the non-canonical model described in this section
when β = 0, γe = 1 and α even; hence, we have again a well-defined D-brane
inflationary scenario with a small-field potential like (7.62), a flow parameter ε given
by (7.17a) with α > 0, and a small speed of sound characterized by (7.17b) with
β ≤ 0, reproducing all the canonical small-field polynomial potentials when β = 0.
For these reasons we will call this class non-canonical small-field polynomial models.

124



7.3.3 Hybrid potentials

In the last two sections we have discussed the small-field models characterized by
φ̇ > 0 for positive φ, given by the model 5 in Table 7.3. Let us now examine a similar
model, with α + β + 2 > 0 but with φ̇ < 0 for positive φ. In this case, σ = +1,
(model 6 in Table 7.3); then, the Hubble parameter (7.32) takes the form

H(φ) = H̃e exp

[
Kφe

α + β + 2
φ̄(α+β+2)/2

]
, (7.69)

where the constant K and variable φ̄ are given by the definitions (7.34). Since φ̄ ¿ 0

and p > 0, where p is given by (7.58), we expand expression (7.69) to first-order in
φ̄,

H(φ) = H̃e exp

[
1 +

Kφe

2p
φ̄p

]
. (7.70)

The analysis leading to the sign of β is identical to that made in section 7.3.2 since,
as in that case, β > −2 − α and α > 0; then, using the same arguments we find
that the field rolls down the potential with a subluminal speed of sound. Also, since
γ/(γ + 1) → 1 at early times, we have, plugging (7.70) into (7.12), that

V (φ) ∼ 3M2
P H̃2

e

[
1− 2

3
φ̄α +

Kφe

p
φ̄p

]
(7.71)

in the slow-roll limit. As in the model derived in section 7.3.2, we choose α and β

such that p is always integer; then, for α > p, the potential (7.71) takes the form

V (φ) ∼ 3M2
P H̃2

e

[
1 +

Kφe

p
φ̄p

]
. (7.72)

In this case, the minimum of the potential is at the origin, as in the small-field
polynomial case, but now V (φ) > V (0) around φ = 0. Therefore, the field rolls
toward the minimum with nonzero vacuum energy, Λ4 = V (0). This is exactly the
behavior of the canonical hybrid potentials (LINDE, 1991; LINDE, 1994). Then, we
may write the potential (7.69) as (BESSADA et al., 2009)

V (φ) ∼ Λ4

[
1 +

(
φ

µ

)p]
, (7.73)
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where we have defined
1

µp
=

1

p

√
2γe

M2
P φ

2(p−1)
e

, (7.74)

which coincides with its canonical counterpart (4.62).

7.3.4 Exponential potentials

Since the general expression for the Hubble parameter derived in section 7.2.3 is of
a exponential form, we focus on its large-field limit solution, given by the model 4

in Table 7.2. In this case φ̇ < 0 for positive φ, so that σ = +1. The expression for
the Hubble parameter (7.32) for α < 0, is given by

H(φ) = H̃e exp




√
1

2p

(
φ

MP

)α+β+2

 , (7.75)

where we have defined

p =
(α + β + 2)2

4γe

(
φe

MP

)α+β

. (7.76)

Since α + β + 2 > 0, the exponent of the speed of sound is restricted to the values
β > −α − 2; then, for β > 0, we have that γ → ∞ as φ → ∞, and then cs → 0

at early times since φ is in the large-field limit. Hence, the field propagates with a
subluminal speed of sound at early times, and γ/(γ + 1) → 1. Using this fact and
substituting (7.75) into (7.12) we find (BESSADA et al., 2009)

V (φ) ∼ 3M2
P H̃2

e exp




√
2

p

(
φ

MP

)α+β+2

 . (7.77)

Then, the field rolls down the potential toward the minimum at origin, characterized
by a nonzero vacuum energy V (0) = Λ4 with a subluminal speed of sound. This is
similar to the behavior of exponential potentials in canonical models, except for the
fact that cs = 1. Since Λ4 = 3MP H̃2

e , the final form of the non-canonical potential
(7.77) is

V (φ) ∼ Λ4 exp




√
2

p

(
φ

MP

)α+β+2

 . (7.78)
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Before we study the non-canonical limit of the potential (7.78), let us have a look
first at the flow-parameter ε. We have used the parametrization associated with
α 6= 0, given by (7.17a), but we can make it general as follows: substituting and
(7.17b) and (7.76) into (7.17a), we find

ε(φ) =
(α + β + 2)2

4pγ(φ)

(
φ

MP

)α+β

. (7.79)

which holds even when α = 0, for ε(φ) = ε = const. in that case. The other two flow
parameters s and η are given respectively by

s(φ) = β

(
φ

MP

)−1
√

2ε(φ)

γ(φ)
, (7.80)

η(φ) =
α + β√

2

(
φ

MP

)−1
√

ε(φ)

γ(φ)
+ ε(φ), (7.81)

where we have used (7.6b), the first expression of (7.7), plus (7.17b) and (7.75).

Then, with the parametrization defined by (7.79), we see that in the canonical case
α = β = 0, γe = 1, expressions (7.78), (7.79) and (7.81) give

V (φ) = Λ4 exp




√
2

p

(
φ

MP

)2

 . (7.82)

ε(φ) = η(φ) =
1

p
, (7.83)

which matches the results derived for the canonical case given by (4.63) and (4.64)
respectively. Expression (7.83) shows that we have to restrict the values of (7.76) to
be p > 1, so that we get ε ≤ 1 in the canonical limit.

Therefore, we have a completely well-defined D-brane inflationary scenario with
exponential potentials like (7.78), a flow parameter ε given by (7.79) with α ≤ 0,
and a small speed of sound characterized by (7.17b) with β ≥ 0, which reproduces
the corresponding canonical model. We will call this class non-canonical exponential
models.

The four distinct non-canonical classes obtained so far are summarized in Table 7.4
below. See also Figures 4.2, 4.3, 4.4 in Chapter 4, since the non-canonical potentials
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behave in the same way as in the canonical case.

TABLE 7.4 - A summary of the distinct models discussed in this work.

model α β p V (φ)

Large-field α = −β − 2 β ≥ 0 φe

√
2γe

M2
P

Λ4
(

φ
µ

)p

Small-field α ≥ p β ≤ 0 α+β+2
2

Λ4
[
1− 1

p

(
φ
µ

)p]

Hybrid α ≥ p β ≤ 0 α+β+2
2

Λ4
[
1 +

(
φ
µ

)p]

Exponential α ≤ 0 β ≥ 0 (α+β+2)2

4γe

(
φe

MP

)α+β

Λ4 exp

[√
2
p

(
φ

MP

)α+β+2
]

7.4 An Application of Non-Canonical Large-Field Polynomial Models

In this section we study some applications of the large-field models derived in section
7.3.1. We choose this class of non-canonical potentials because the expressions for
the scalar spectral index, the tensor/scalar ratio and the level of non-gaussianity are
particularly simple, depending on two parameters solely, p and β. Let us first derive
an expression for the flow parameter ε in terms of N . From (7.46) and (7.49) we find

ε(N) =
p

p + 2 (β + 2) N
. (7.84)

The other two flow parameters s and η are given by

s(N) =
2β

p + 2 (β + 2) N
, (7.85)

η(N) =
p− 2

p + 2 (β + 2) N
; (7.86)
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where we have used (7.6b), the first expression of (7.7), plus (7.17b), (7.43) and
(7.84). Inserting (7.84), (7.85) and (7.86) into (7.14), we find, in the slow-roll limit,

ns = 1− 2(p + 2β + 2)

p + 2 (β + 2) N
. (7.87)

The expression for the speed of sound in terms of N can be calculated in the same
way: we use (7.17a), (7.17b) and (7.49), so that

cs(N) =
1

γe

[
p

p + 2 (β + 2) N

]β/(β+2)

. (7.88)

Next, using (7.15), (7.84) and (7.88) we can derive a general expression for the
tensor/scalar ratio, which is given by

r(N) =
16

γe

[
p

p + 2 (β + 2) N

]2(β+1)/(β+2)

. (7.89)

The expression for the level of non-gaussianity fNL is given by (PEIRIS et al., 2007)

fNL = − 35

108

(
1

c2
s

− 1

)
, (7.90)

which can be easily evaluated by using expression (7.88).
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FIGURE 7.1 - The observables ns (left), r (right) as a function of the exponent of the
speed of sound β for each value of p (V (φ) ∝ φp) for N = 46.
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FIGURE 7.2 - The observables ns (left), r (right) as a function of the exponent of the
speed of sound β for each value of p (V (φ) ∝ φp) for N = 60.

Therefore, the tensor/scalar ratio will have a power-law dependence as well, with
exponent 2(β + 1)/(β + 2), which means that, for a given value of p, a larger β

corresponds to a smaller r. Since β ≥ 0 for non-canonical large-field models, we
have, from (7.4) and (7.17b), that cs ∝ φ−β; then, fields rolling with slower speed of
sound would produce lower tensor/scalar ratios. However, from (7.90), we see that
fNL depends on c−2

s , and then a low speed of sound would produce a larger level of
non-gaussianity; then, for large-field models low-r tensor modes are strongly corre-
lated with the amplitude of non-gaussianity, as has been discussed in the reference
(TZIRAKIS; KINNEY, 2009) for isokinetic inflation. Then, the suppression of tensor
modes by a large amount of non-gaussianity is a feature shared by all non-canonical
models with large-field polynomial potentials.

Let us next make some predictions on the values of ns, r and fNL through expres-
sions (7.87), (7.89) and (7.90) respectively, when the modes cross the horizon 46

or 60 e-folds before the end of inflation. As we have discussed in section 7.2.1, we
have set γe = 1, which characterizes the end of inflation; the results are depicted in
figures 7.3 and 7.4. In both figures, the left plots refer to the variation of the scalar
index in terms of β for each value of p. The right plots in Figs. 7.3 and 7.4 show
the corresponding tensor/scalar ratio. In these plots we see that for larger values
of p and small β the modes have large values of r (the observable lower bound is
r < 0.22); then, as β increases, the speed of sound gets lower and, in consequence,
the tensor/scalar ratio as well. For fNL (7.90), a field rolling very slowly produces
a large amount of non-gaussianity, as can be seen in the left plots of figures 7.3 and
7.4. Therefore, as was first discussed in the particular case of isokinetic inflation
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FIGURE 7.3 - The observable fNL as a function of the exponent of the speed of sound β
(left) for each value of p (V (φ) ∝ φp) for N = 46. On right is depicted the
behavior of fNL compared to r.
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FIGURE 7.4 - The observable fNL as a function of the exponent of the speed of sound β
(left) for each value of p (V (φ) ∝ φp) for N = 60. On right is depicted the
behavior of fNL compared to r.

(TZIRAKIS; KINNEY, 2009), the production of large non-gaussianity is strictly cor-
related with low tensor amplitudes, and this is a feature common to all large-field
polynomial potentials. This behavior is shown in the bottom right plots of figures
7.3 and 7.4.

We next compare the results obtained with the current WMAP5 data (KOMATSU

et al., 2009), (KINNEY et al., 2008). The results are depicted in Fig. 7.5 for different
values of p. Straight lines indicate the different values of β, with the left (right)
extremity indicating the value of (ns, r) evaluated at N = 46 (N = 60). Green lines
correspond to β = 0 (canonical limit), blue lines to β = 1, orange lines to β = 2
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and light blue lines to β = 3. The left (right) extremity of each line correspond to
the case where a mode crossed the sound horizon 46 (60) e-folds before the end of
inflation.

FIGURE 7.5 - 68 % (black) and 95 % C.L. (red) on the ns and r parameter space for
WMAP5 alone. In each panel we plot the values of ns and r for a specific
potential V (φ) ∝ φp according to the exponent β of the speed of sound.

As shown in (KINNEY et al., 2008), all canonical models with p > 2 are ruled out by
WMAP5 data alone; however, in the non-canonical case, figure 7.5 shows that the
models with p ≤ 5 are also consistent with the observable data. A field evolving with
slow-varying speed of sound produces low-amplitude tensors, then pushing the values
(ns, r) inwards the observable region. However, a large amount of non-gaussianity
is produced, which is a distinct signature of non-canonical large-field polynomial
models and can be a powerful observable to discriminate among inflationary models.
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8 SIGNATURES OF TACHYACOUSTIC COSMOLOGY IN THE CMB

In this Chapter we introduce a new mechanism to solve the horizon problem and to
generate a nearly scale-invariant spectrum for the fluctuations as an example of the
Class 3 of alternative cosmologies in the Table 1.2. As in the former Chapter, here
a prime denotes a derivative with respect to the field φ.

8.1 Tachyacoustic Cosmology

As we have discussed in Chapter 4, inflaton solves the flatness and horizon problems
by means of a fluid with negative pressure, so that Ω = 1 turns to a stable fixed
point (that is, the universe evolves toward flatness), and the Hubble horizon shrinks
as the universe expands, so that at very early times all the comoving scales were
far inside the horizon. These results can be summarized by the expressions in (4.7).
Furthermore, the solution to the horizon problem and the flatness problem are linked
in inflation via a conservation law,

d

d ln a

|Ω− 1|
d2

H

= 0. (8.1)

Through this conservation law, a universe with shrinking comoving horizon size is
identical to a universe which is evolving toward flatness, (4.7). Inflation therefore
solves the horizon and flatness problems of the standard Big Bang with a single
mechanism: accelerated expansion.

However, inflation is not the only way to accomplish this goal, as can be seen from
the fact that the acceleration ä appears nowhere in the conservation law (8.1). To
solve both the horizon and flatness problems, it is sufficient to have a shrinking
comoving Hubble radius. We then propose a method of solving the cosmological
horizon problem and seeding scale-invariant primordial perturbations in a cosmology
with decelerating expansion and a corresponding growing comoving Hubble horizon
(BESSADA et al., 2009). The key to implementing such a model is the fact that
curvature perturbations are not generated at the Hubble horizon, but at the acoustic
horizon determined by the speed of sound of a scalar field,

DH ' cs

aH
. (8.2)

For canonical field theories, the two are identical, but for non-canonical field the-
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ories, they are not. If one has a decaying, superluminal sound speed, curvature
perturbations can be generated outside the Hubble horizon without inflation. We
propose the term tachyacoustic for such cosmologies, which are closely related to
varying speed of light theories. This idea has some history: such cosmologies were
first proposed by Armendariz-Picon in the context of modified dispersion relations
(ARMENDARIZ-PICON, 2006), and the generation of perturbations in such cosmolo-
gies was further considered by Piao (PIAO, 2007). The idea re-emerged in the context
of varying speed of light theories by Magueijo (MAGUEIJO, 2008), and non-canonical
Lagrangians by Magueijo (MAGUEIJO, 2009) and Piao (PIAO, 2009a).

In this work, we consider a way of generating scale-invariant superhorizon cosmo-
logical perturbations based on non-canonical scalar field Lagrangians with a speed
of sound faster than the speed of light, cs > 1. If the universe is dominated by a
scalar field with speed of sound cs, the relevant horizon for the generation of density
perturbations is not the Hubble horizon dH but the acoustic horizon, DH , given by
(8.2). Mode freezing at the acoustic horizon is well-known in non-canonical inflation
models, for example k-Inflation (ARMENDARIZ-PICON et al., 1999) and DBI inflation
(SILVERSTEIN; TONG, 2004). In non-canonical inflation models, the Hubble hori-
zon and the acoustic horizon are both shrinking in comoving units, resulting in the
generation of density perturbations at the acoustic horizon and gravitational wave
perturbations at the Hubble horizon (GARRIGA; MUKHANOV, 1999) (see also Sec-
tion D.3). However, the comoving Hubble horizon need not be shrinking to generate
curvature perturbations: all that is required is that the acoustic horizon be shrink-
ing, dDH/d ln a < 0. In this case, if curvature perturbations are to be generated on
scales larger than the Hubble horizon, it is necessary that the acoustic horizon be
larger than the Hubble horizon, which requires a speed of sound greater than the
speed of light. Such theories were studied recently by Babichev et al. (BABICHEV et

al., 2006; BABICHEV et al., 2008), who showed that k-essence theories with cs > 1 are
causally self-consistent (see Appendix D.4), and can be mapped to bimetric theories
with two “light cones”, one given by the Hubble horizon, and the other given by the
acoustic horizon, which can be larger than the Hubble horizon without the presence
of closed timelike loops. This opens the possibility that one can construct a deceler-
ating cosmology which nonetheless generates perturbations on super-Hubble scales
via a superluminal, shrinking acoustic cone.

To explicitly construct such a model, consider a DBI Lagrangian (7.2) as a phe-
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nomenological ansatz. There is a class of exact solutions (CHIMENTO; LAZKOZ, 2008;
KINNEY; TZIRAKIS, 2008) to the equation of motion for the field φ where the two
flow parameters ε (7.9a) and s (7.9b) are constant, so that the scale factor evolves
as a power-law, a ∝ t1/ε; then, the expansion is accelerating (i.e. inflation) for ε < 1.
The speed of sound (7.3) evolves as

cs ∝ e−sN , (8.3)

and the Hubble parameter evolves as

H =
ȧ

a
∝ eεN . (8.4)

The parameter ε is a positive-definite quantity for Pφ ≥ −ρφ, so that the Hubble
constant always decreases with expansion. In contrast, the parameter s can take
either sign, with s > 0 corresponding to a sound speed which increases with expan-
sion, and s < 0 corresponding to an decreasing sound speed. (See Ref. (KINNEY;

TZIRAKIS, 2008) for a detailed derivation of this solution). The important dynam-
ics for the generation of perturbations is the time evolution of the corresponding
horizons in comoving units. The comoving Hubble horizon evolves as

dH ∝ (aH)−1 ∝ e(1−ε)N ∝ τ, (8.5)

where τ is the conformal time. The Hubble horizon is shrinking in comoving units
for ε < 1, which is identical to accelerated expansion, and is the usual condition for
inflation. The acoustic horizon behaves as

DH ∝ cs

aH
∝ e(1−ε−s)N ∝ τ (1−ε−s)/(1−ε). (8.6)

Therefore the condition for a shrinking acoustic horizon, 1 − ε − s > 0, is not
identical to accelerated expansion. For ε > 1 and s < 1 − ε, the expansion is non-
inflationary, the Hubble horizon is growing in comoving units, and the acoustic
horizon is shrinking. The initial singularity is at τ = 0, and we see immediately that
for the tachyacoustic solution, the speed of sound in the scalar field is infinite at the
initial singularity, and the acoustic horizon is likewise infinite in size. Therefore, such
a cosmology presents no “horizon problem” in the usual sense, since even a spatially
infinite spacetime is causally connected on the initial-time boundary (BESSADA et

al., 2009). Furthermore, unlike in the case of inflation, there is no period of reheating
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necessary, since the cosmological evolution can be radiation-dominated throughout
and the cosmic temperature is not driven exponentially to zero.

In the next section, we use the the generalized flow function approach of Bean, et al.
(BEAN et al., 2008b), introduced in Section D.2 to construct a class of Lagrangians
with solutions of the type outlined above, with constant flow parameters.

8.2 Cosmological solutions for constant flow parameters

The simplest way to solve the flow equations (D.31) derived in Section D.2 is to take
all of the flow parameters to be constant,

dε

dN
=

ds

dN
=

ds̃

dN
=

d`λ

dN
=

d`α

dN
=

d`β

dN
= 0. (8.7)

Then, from (D.28-D.30) we easily find the following relations (BESSADA et al., 2009):

H ∝ eεN ,

cs ∝ e−sN ,

LX ∝ es̃N , (8.8)

The first two are identical to the DBI case, equations (8.3) and (8.4), but in the fully
general case LX evolves independently of cs. It is straightforward to verify that the
full flow hierarchy (D.32) reduces to an exactly solvable set of algebraic equations,
with the higher-order parameters expressed in terms of ε, s, and s̃. We can use the
relations (D.23,D.26,D.25) to solve for H (φ), cs (φ), and LX (φ) as follows: from
equations (D.23,D.25), we have

s̃ =
2M2

P

LX

(
H ′

H

) L′X
LX

= Mp

√
2ε
L′X
LX

= const. (8.9)

We then have a differential equation for LX ,

L′X
L3/2

X

=
s̃

MP

√
2ε

= const., (8.10)

with solution

LX (φ) =
8ε

s̃2

(
MP

φ

)2

, (8.11)
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where the integration constant has been absorbed into a field redefinition. From
equation (8.8), the field then evolves as

φ2 ∝ e−s̃N , (8.12)

so that the direction of the field evolution depends on the sign of s̃,

dφ

φ
= − s̃

2
dN. (8.13)

Equation (D.23) then reduces to

(
H ′

H

)2

=
4ε2

s̃2φ2
, (8.14)

with solution
H ∝ φ±2ε/s̃. (8.15)

The sign ambiguity can be resolved by requiring that the universe be expanding,
dH/dN > 0, so that

H ∝ φ−2ε/s̃ ∝ eεN . (8.16)

Finally, we solve for the speed of sound using equation (D.26), which reduces to

c′s
cs

=
2s

s̃
= const., (8.17)

with solution
cs ∝ φ2s/s̃. (8.18)

Since our choice of N = 0 corresponds to an arbitrary renormalization of the scale
factor a ∝ e−N , we can without loss of generality define cs = 1 at N = 0, so that
the general solution for the background evolution is given by

LX =
8ε

s̃2

(
MP

φ

)2

, (8.19)

H (φ) = H0

(
φ

φ0

)−2ε/s̃

, (8.20)

cs (φ) =

(
φ

φ0

)2s/s̃

, (8.21)
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where the field evolves as
φ

φ0

= e−s̃N/2. (8.22)

We can derive the time dependence of the scale factor using the Hamilton-Jacobi
equation (D.20),

φ̇ =
s̃

2
H (φ) φ =

√
2X, (8.23)

so that the kinetic term can be written as

X (φ) = s̃2

8
H2 (φ) φ2. (8.24)

Integrating expression (8.23) gives

H (t) =
1

εt
, (8.25)

so that the scale factor evolves as a power-law in time, consistent with the fact that
ε = const. and the equation of state w = Pφ/ρφ,

a (t) ∝ t1/ε = t2/3(1+w). (8.26)

Radiation-dominated evolution therefore corresponds to ε = 2, and matter-
dominated evolution corresponds to ε = 3/2. Inflation corresponds to ε < 1. The
comoving Hubble horizon evolves proportional the to the conformal time,

dH ∝ (aH)−1 ∝ e(1−ε)N ∝ τ, (8.27)

and the acoustic horizon evolves as

DH ∝ cs

aH
∝ e(1−ε−s)N ∝ τ (1−ε−s)/(1−ε), (8.28)

identically to the DBI case discussed in Section 8.1, equation (8.6). For ε > 1, the
acoustic horizon is shrinking in comoving units for s < 1−ε. Note that this behavior
is independent of the parameter s̃, which determines the form of the Lagrangian, as
we discuss in the next section.
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8.3 Reconstructing the Action

In the past two sections we have solved the flow hierarchy for a model character-
ized by constant flow parameters, which allowed us to solve for H (φ), cs (φ), and
LX (φ); only the derivative of the Lagrangian with respect to the kinetic term X is
determined. Therefore this solution corresponds not to a single action but a class of
actions. In this section we derive a general equation for Lagrangians in this class,
and discuss two specific examples.

From equations (8.11) and (8.21), we see that the speed of sound cs can be written
in terms of LX

c2
s = C−1L−2s/s̃

X =

[
1 + 2X

LXX

LX

]−1

, (8.29)

where we have used equation (D.16), and defined

C ≡
(

s̃2φ2
0

8M2
P ε

)2s/s̃

. (8.30)

The result is a differential equation for the function L (X,φ) (BESSADA et al., 2009):

2XLXX + LX − CLn
X = 0, (8.31)

where we have defined
n ≡ 1 +

2s

s̃
. (8.32)

Therefore, by specifying a relationship between the parameters s and s̃, we can con-
struct a Lagrangian as the solution to the differential equation (8.31). For example,
a canonical Lagrangian with speed of sound cs = const. = 1 is just the case s = 0,
so that n = 1 and C = 1, and equation (8.31) becomes

LXX = 0, (8.33)

with general solution
L = f (φ) X − V (φ) . (8.34)

Here f (φ) and V (φ) are free functions which arise from integration of the second-
order equation (8.31). The function f (φ) can be eliminated by a field redefinition
dϕ =

√
f (φ)dφ, resulting in a manifestly canonical Lagrangian for ϕ, as we would

expect from setting cs = 1. We emphasize that equation (8.31) is constructed us-
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ing the solution (8.21), and is not a general condition on the Lagrangian. That is,
equation (8.31) allows us to construct a Lagrangian which admits solutions of the
desired form, but those solutions are not necessarily unique. A canonical Lagrangian
can support inflationary solutions, but not tachyacoustic solutions, and is therefore
not of interest here. However, other choices of n do yield tachyacoustic solutions,
and we focus on two such choices (BESSADA et al., 2009):

a) n = 0: A Cuscuton-like model.

b) n = 3: A DBI model.

We discuss each case separately below.

8.3.1 n = 0: A Cuscuton-like model

The case n = 0 corresponds to s̃ = −2s in (8.32), with solution

L (X,φ) = 2f (φ)
√

X + CX − V (φ) . (8.35)

This Lagrangian is similar to a “cuscuton” Lagrangian (AFSHORDI et al., 2007b),
with the addition of a term proportional to X. Unlike the original Cuscuton model,
which represents a causal field with infinite speed of sound, the solution obtained
here is valid for the general case, in which the speed of sound can be finite. A similar
cuscuton-like Lagrangian was considered in Ref. (PIAO, 2009a).

As in the canonical case, the functions f (φ) and V (φ) are free functions resulting
from integrating equation (8.31). Unlike the canonical case, however, neither can
be removed by a field redefinition. However, both functions are fully determined by
our choice of solution with ε, s, and s̃ constant. Differentiating equation (8.35) with
respect to X gives

LX =
f (φ)√

X
+ C =

2ε

s2

(
MP

φ

)2

, (8.36)

where the right hand side is the solution (8.19). Then

f (φ) =
√

X

(
2ε

s2

)(
MP

φ0

)2
[(

φ0

φ

)2

− 1

]

=
√

X

(
2ε

s2

)(
MP

φ0

)2 [
c2
s (φ)− 1

]
(8.37)
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where for 2s̃ = −s, the expression (8.21) for the speed of sound becomes

cs (φ) =

(
φ0

φ

)
. (8.38)

The Lagrangian (8.35) can then be written as

L = X

(
2ε

s2

)(
MP

φ0

)2 [
2c2

s (φ)− 1
]− V (φ) . (8.39)

The Hubble parameter (8.20) is given by

H (φ) = H0

(
φ

φ0

)ε/s

, (8.40)

and we can then express the kinetic term as a function of φ using equation (8.24):

X (φ) =
s2

2
H2φ2 =

s2

2

φ2
0H

2 (φ)

c2
s (φ)

, (8.41)

The Lagrangian (8.35) can then be written entirely as a function of the field φ,

L = M2
P εH2 (φ)

[
2− 1

c2
s (φ)

]
− V (φ) . (8.42)

The Hamilton-Jacobi Equation (D.20) becomes:

3M2
P H2 = 2M2

P εH2 − L
= V (φ) +

M2
P εH2

c2
s

, (8.43)

and we have an expression for the potential V (φ),

V (φ) = M2
P H2 (φ)

[
3− ε

c2
s (φ)

]
. (8.44)

The Hubble parameter H (φ) and the speed of sound cs (φ) are given by equations
(8.40) and (8.38), respectively. For φ/φ0 ¿ 1, the speed of sound is much greater
than the speed of light, cs À 1, and the potential is approximately

V (φ) ' 3M2
P H2 (φ) = 3M2

P H2
0

(
φ

φ0

)2ε/s

, (8.45)
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which can be recognized as a slow-roll-like solution dominated by the potential
H2 ' V 2/3M2

P . For s < 0, the field is rolling away from the origin, and for s < 1− ε

the comoving acoustic horizon is shrinking and the solution is tachyacoustic.

8.3.2 n = 3: The DBI model

The case n = 3, corresponds to s̃ = s; then, from (D.26) and (D.25), we find
LX = c−1

s . Equation (8.32) is then

c2
s =

1

CL2
X

, (8.46)

so that we can take C = 1 without loss of generality. Therefore, the Lagrangian
assumes the well-known DBI form,

L (X,φ) = −f−1 (φ)
√

1− f (φ) X + f−1 (φ)− V (φ) . (8.47)

The DBI model with constant flow parameters is extensively discussed in Ref.
(KINNEY; TZIRAKIS, 2008), and the reader is referred to this paper for further de-
tails. For ε and s constant, the functions V and f are fully determined and are given
by

V (φ) = 3M2
P H2 (φ)

[
1−

(
2ε

3

)
1

1 + cs (φ)

]
,

f (φ) =

(
1

2M2
P ε

)
1− c2

s (φ)

H2 (φ) cs (φ)
. (8.48)

The Hubble parameter and speed of sound are given by:

H (φ) = H0

(
φ

φ0

)−2ε/s

, (8.49)

and

cs (φ) =

(
φ

φ0

)2

. (8.50)

DBI Lagrangians allow for either inflationary or tachyacoustic evolution (MAGUEIJO,
2009), depending on the values of ε and s. Note that for cs > 1, the function f is
negative, which has consequences for embedding such a model in string theory.

In this section, we have explicitly constructed Lagrangians, including fully deter-
mined potentials, for which the flow parameters are constant and the background
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evolution can be solved exactly. For suitable choices of the flow parameters, the evo-
lution is tachyacoustic, i.e. with a growing comoving Hubble horizon and a shrinking
comoving acoustic horizon. In the next section, we discuss the generation of curva-
ture perturbations at the acoustic horizon and show that such perturbations are
nearly scale-invariant, consistent with observation.

8.4 Cosmological Perturbations for constant flow parameters

In the case where the flow parameters are constant, we can use the differential
equations (D.31) to reduce the number of independent parameters. We have

η̃ =
1

2
(2ε + s̃) , 2λ =

1

2
(2ε + s̃) (ε + s̃) ,

1α =
s

2ε
(2s + s̃) , 1β =

3s̃2

2ε
; (8.51)

then, substituting these values into expressions (D.43) and (D.47), we find, respec-
tively,

F̄ = 2− ε− 3s +
9

4
s̃2 − 3

4
ss̃ + εs− 1

2
s2, (8.52)

Ḡ = s(−1 + ε + s). (8.53)

It is important to notice that F̄ is different from the corresponding expression found
in the DBI case (KINNEY; TZIRAKIS, 2008), since the gauge-dependent s̃ comes into
play. However, Ḡ is identical to its DBI analog, and it is expected since basically it
comes from the change of variables τ → y, which depends solely on the parameters
cs and H, and not on LX . For constant flow parameters we can solve equation (D.47)
exactly, and the solutions are given by

uk(y) = y
1−ε

2(1−ε−s)

[
c1H

(1)
ν

(
y

1− ε− s

)

+ c2H
(2)
ν

(
y

1− ε− s

)]
, (8.54)
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where c1 and c2 are constants, and H
(1)
ν , H(2)

ν are Hankel functions of first and second
kind, respectively. The order ν of the Hankel function is given by

ν2 =
9− 6ε− 12s + 9s̃2 − 3ss̃ + 4εs− 2s2 + ε2

4(1− ε− s)2
; (8.55)

next, using (4.101), (8.8) and (D.45) we find that

cs ∝ ys/(ε+s−1); (8.56)

then, imposing the Bunch-Davies vacuum c2 = 0, and normalizing the mode ampli-
tudes by means of the canonical quantization condition

u∗k
duk

dy
− uk

du∗k
dy

=
i

csk(1− ε− s)
, (8.57)

we find

uk(y) =
1

2

√
π

csk

√
y

1− ε− s
Hν

(
y

1− ε− s

)
, (8.58)

which differs from the DBI case only in the order of the Hankel function (8.55). In
the small wavelength limit y →∞ the early-time behavior of uk will be identical to
DBI (KINNEY; TZIRAKIS, 2008) for constant flow parameters

uk =
1√
2csk

eiy/(1−ε−s), (8.59)

whereas in the late-time behavior y → 0 the mode function behaves as

|uk(y)| → 2ν−3/2 Γ(ν)

Γ(3/2)
(1− ε− s)ν−1/2 y1/2−ν

√
2csk

. (8.60)

From (8.60) we can derive the expression for the scalar spectral index ns. Using the
definition of the power spectrum of curvature perturbations (D.48)), and substitut-
ing expressions (8.60) and (D.41) into (D.48), we find

PR =
|f(ν)|2
8π2M2

P

H2

csε
(8.61)

at horizon crossing, where f(ν) is a constant given by

f(ν) = 2ν−3/2 Γ(ν)

Γ(3/2)
(1− ε− s)ν−1/2; (8.62)
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then, from the definition of the scalar spectral index (4.135) and using

d

d ln k
= −

(
1

1− ε− s

)
d

dN
, (8.63)

we see that the spectral index ns assumes the form (BESSADA et al., 2009)

ns = 1− 2ε + s

1− ε− s
, (8.64)

which does not depend on the gauge-dependent parameter s̃, and is identical to
its DBI analog. This is expected since the power spectrum evaluated at the horizon
crossing, equation (8.61), depends solely on H and cs, whose derivatives with respect
to N are related to the gauge-invariant flow parameters ε and s. The scale-invariant
limit is s = −2ε.

For radiation-dominated tachyacoustic expansion with ε = 2, the spectral index is

n = 1 +
4 + s

1 + s
, (8.65)

where we have s < −3 for a shrinking comoving acoustic cone. For s < −4, the
spectral index is blue, n > 1, which is ruled out by observation. The WMAP 2σ

limit n = 0.96±0.026 (KOMATSU et al., 2009) corresponds to s = [−3.814,−3.959], so
that our model also allows for a scalar spectral index in agreement with observations.
Since the Hubble horizon is growing in comoving units, no gravitational wave modes
are produced. However, it is important to stress that tachyacoustic cosmology is very
recent proposal, and some developments are still underway (BESSADA et al., 2010).

We have demonstrated that accelerated expansion or a collapsing universe are not
the only ways to dynamically generate a scale-invariant spectrum of superhorizon
curvature perturbations. There is a third way: a superluminal acoustic cone which
is shrinking in comoving coordinates. Curvature perturbations generated at the
acoustic horizon are familiar from inflationary scenarios based on non-canonical La-
grangians such as k-inflation, as discussed in Appendix D, and DBI inflation, Chap-
ter 7. Such non-canonical Lagrangians arise naturally in string theory. However, in
these scenarios, both the Hubble horizon and the acoustic horizon are shrinking in co-
moving units, and the acoustic horizon is typically smaller than the Hubble horizon,
i.e. cs < 1. It is natural to ask whether tachyacoustic models have a similar, natural
stringy embedding, especially since the DBI action (7.2) naturally admits tachy-
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acoustic solutions. Such an embedding is nontrivial, however, since the frequently
considered case of a 3+1 dimension d-brane evolving in a higher-dimensional throat
is ill-defined in the cs > 1 limit. To see this, consider the full ten-dimensional metric
of throat plus brane (7.1); the Lagrangian for the field φ can be shown to be of
the DBI form (7.2), where the inverse brane tension f (φ) is given in terms of the
warp factor h (φ) by f−1(φ) = T3h(φ)4. The problem is immediately evident: super-
luminal propagation cs > 1 requires f < 0, so that the factor h2 (φ) appearing in
the metric (7.1) is imaginary, and the metric is ill-defined. Therefore, although the
DBI action itself admits tachyacoustic solutions, this limit does not correspond to
a well-defined string solution. It is not clear whether or not string manifolds exist
which self-consistently admit solutions with cs > 1.

8.5 Boundary Action

Despite the tachyacoustic model solves the horizon problem and generates a nearly-
invariant perturbation spectrum, and does not require a reheating phase, it does not
solve the flatness problem, and inflation solves both at once. However, inflation has
initial conditions problems of its own, in particular the fact that the initial inflation-
ary “patch” must be larger than a horizon size for inflation to start (VACHASPATI;
TRODDEN, 1999). Furthermore it has been shown that inflationary spacetimes are
in general geodesically past-incomplete (BORDE et al., 2003). The initial conditions
for tachyacoustic cosmology are quite different than those for inflation due to the
presence of a true “Big Bang” singularity at zero time. However, in this limit, the
sound speed is infinite and the tachyacoustic solution approaches an instanton. To
see this, examine the form of the DBI field Lagrangian (7.2) near the τ = 0 boundary
of a tachyacoustic spacetime. From equation (8.3), the cs →∞ limit corresponds to
φ →∞ and f (φ) φ̇2 → −∞, so that

L → φ̇√
|f | − V (φ) . (8.66)

From equation (8.48), the asymptotic behavior of V (φ) and f (φ) are

V (φ) → 3M2
P H2 ∝ φ−4ε/s,

f (φ) → − 1

2M2
P ε

cs

H
∝ φ2(1+2ε/s). (8.67)
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The scale-invariant limit s = −2ε is especially interesting, since

1√
|f | → µ2 = const., (8.68)

and the Lagrangian takes the form

L → µ2φ̇− V (φ) , (8.69)

where V (φ) ∝ φ2. This can be identified as exactly the “cuscuton” Lagrangian,
suggested by Afshordi, et al. as a candidate for Dark Energy (MUKHANOV; VIKMAN,
2006; AFSHORDI et al., 2007b; AFSHORDI et al., 2007a). Similarly, the n = 0 solution
considered in Section 8.3 approaches a cuscuton on the initial boundary surface. The
cuscuton is a non-dynamical, instanton-like solution with infinite speed of sound.
Consider the action for the Lagrangian (8.69),

Sφ =

∫
d4x

√−g
[
µ2φ̇− V (φ)

]

= µ2

∫
dφΣ (φ)−

∫
d4x

√−gV (φ), (8.70)

where Σ (φ) is the volume of a constant-φ hypersurface in the spacetime. The clas-
sical solutions to the cuscuton action are constant mean curvature hypersurfaces,
analogous to soap bubbles (AFSHORDI et al., 2007b). It is interesting to speculate
that this property of the cuscuton action may provide a self-consistent cosmologi-
cal boundary condition, or (even more speculatively) be useful as a solution to the
cosmological flatness problem. A full analysis, however, would require inclusion of
the gravitational action and solution in a Wheeler-De Witt framework, or perhaps
an embedding of the model in string theory or an alternate gravity theory such as
Horava-Lifshitz (PIAO, 2009b; AFSHORDI, 2009). This is the subject of future work.
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9 CONCLUSIONS AND PERSPECTIVES

In this PhD thesis we have studied four alternative cosmologies, namely, the MFP
model, Massive Gravity, DBI inflation and the Tachyacoustic model, and investi-
gated their signatures in CMB. MFP model and Massive Gravity were studied as
alternatives to the current FRW model, whereas DBI was chosen as an alternative
inflationary scenario (keeping FRW model to drive the dynamics of the universe
at late times). Tachyacoustic cosmology has been proposed as a non-inflationary
scenario, aiming at solving the same problems addressed by canonical inflation, but
through a decelerating phase.

We showed that the MFP model and Massive Gravity lead to the same equations for
tensor perturbations, and they give rise to the usual tensor SW effect, despite the
tensor amplitudes change due to the massive character of the metric fluctuations. We
also derived the corresponding Boltzmann equations, whose form is identical to their
general-relativistic analogs . We deduced the dynamical equations for the GW vector
longitudinal polarization modes (Ψ3-modes) in the MFP model and showed that
they do not give the same results of Massive Gravity, in which vector perturbations
behave as in GR; instead, they give rise, in a cosmological scenario, to a nontrivial
SW effect which leaves a vector signature of quadrupolar form Y2,±1(µ, ϕ) on the
CMB polarization.

Analyzing the Einstein equations for such Ψ3-modes we concluded that these vector
signatures could be present at the recombination epoch, unlike the vector perturba-
tions in GR and Massive Gravity, which would decay too fast and would not leave
any signature on CMB polarization. Therefore, we calculated the new basis for the
Thomson scattering for such Ψ3-modes, and then deduced the appropriate equation
for the radiative transport. Based upon these results we have shown qualitatively
that Ψ3-mode vector signatures could clearly be distinguished on the CMB polar-
ization from the usual Ψ4 tensor modes if the former do exist; hence, we could look
for such signatures in the E-mode performed by Planck satellite in the near future.
In this sense we argued that Planck polarization measurements could be decisive to
test alternative theories of gravitation.

As for tensor modes, we evaluated numerically the TT power spectrum induced by
them, and showed that there is a graviton mass limit, ml ∼ 10−29cm−1, such that
gravitons with masses m ≤ ml behave indistinguishably from massless gravitons.
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The same happens to gravitons with short wavelengths (wavenumbers n ≥ 100 in
our example): their behavior is almost the same as of the massless gravitons for all
the masses taken into account here.

We also showed that long wavelength massive tensor modes fall into the horizon
earlier than their massless counterparts, whereas short wavelength modes behaves
quite similarly as in GR. The net effect of this behavior, as we have shown in the
TT correlation function plotted in figures 6.8 and 6.9, is a distinguished signature
on low multipoles; the heavier the mass of the mode, the stronger is its signature
as compared to that of massless gravitons. For the range of masses considered here,
m = 10−27cm−1 - m = 10−25cm−1, the signatures show up at ` < 30; however,
we have argued that such signatures might appear at ` > 30 in the case of masses
greater than m = 10−25cm−1. Therefore, our results indicate that the future precise
measurements of the CMB anisotropies induced by tensor modes might be decisive
for probing the existence of massive gravitons, for the signature left by them could
be strong enough to be distinguished from those of the massless modes.

We also proposed a general DBI model characterized by a power-law flow parameter
ε(φ) ∝ φα and speed of sound cs(φ) ∝ φβ, where α and β are constants. We showed
that this general model has distinct classes of solutions depending on the relation
between α and β, and on the time evolution of the inflaton field. These classes of
solutions are summarized in tables 7.1, 7.2 and 7.3. In particular, we showed that
in the slow-roll limit the four well-known canonical potentials arise naturally in
this general DBI model, having similar properties to their canonical counterparts,
except that the speed of sound in general varies with time. We also showed that
this general DBI model encompasses not only all the canonical models with the
mentioned potentials, but other D-brane scenarios as well: the DBI model with
constant speed of sound (SPALINSKI, 2008), with constant flow parameters (KINNEY;

TZIRAKIS, 2008), and isokinetic inflation (TZIRAKIS; KINNEY, 2009). The four non-
canonical models are summarized in table 7.4.

We also derived the expressions for the spectral index, tensor/scalar ratio and the
amplitude of non-gaussianity for large-field potentials in the slow-roll limit. We
showed that a low speed of sound suppresses the tensor/scalar ratio r and produces a
large amount of non-gaussianity, a feature already explored in the case of isokinetic
inflation, and shown to be a general property of all large-field DBI models with
polynomial potentials. Unlike canonical inflation, where all polynomial models with
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p > 2 are ruled out, the suppression of tensor modes in the non-canonical version
allows for a larger class of polynomial potentials to lie within the observable range;
also, the production of large amount of non-gaussianity is a distinct signature of
these DBI large-field models, which can be a powerful observable to discriminate
among inflationary models.

We proposed also a non-inflationary model based on a k-essence Lagrangian with
superluminal speed of sound, called tachyacoustic cosmology. We calculated the
scalar spectral index of perturbations for tachyacoustic solutions, and found that if
the flow parameter s is within the range [−3.814,−3.959] the result is compatible
with WMAP5 data. Unlike inflationary models, radiation-dominated tachyacoustic
models do not require a period of explosive entropy production to transition to a
“hot” Big Bang cosmology. The early universe must be scalar-field dominated, but
the temperature of the universe is not driven exponentially to zero, since the scalar
has a radiation equation of state at all times, and entropy density is conserved (for
any radiation component with density ργ, the ratio ρφ/ργ = const). The scalar
field φ must eventually decay to Standard Model degrees of freedom, but as long as
this happens before primordial nucleosynthesis, the model will match observations.
A slow or late decay of φ into other degrees of freedom would also suppress the
production of unwanted relics such as monopoles or gravitinos.

Then, the tachyacoustic model solves the horizon problem and provides a nearly
scale-invariant spectrum of primordial perturbations; however, it does not solve the
flatness problem, which inflation does. Nevertheless, it is important to stress that
tachyacoustic cosmology is a very recent proposal, still a terra incognita in many
aspects, and a great deal of work must be performed in order to explore all its
consequences. We hope to tackle some of these issues in a work which is being
prepared (BESSADA et al., 2010).

We have seen that CMB measurements is quite a fundamental tool to probe the
distinct alternative cosmological models, and we are convinced from the studies
performed here that Planck data and the next-generation satellites will become
decisive to unravel the deepest secrets of the gravitational interaction.
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APPENDIX A - BASIC DEFINITIONS OF GR

A.1 Some key tensors in GR

a) Covariant derivatives for an arbitrary tensor Tαβ···
κλ··· :

∇ρT
αβ···
κλ··· = ∂ρT

αβ···
κλ··· + Γα

ρσT
σβ···
κλ··· + Γβ

ρσT
ασ···
κλ··· + · · · (A.1)

− Γσ
ρκT

αβ···
σλ··· − Γσ

ρλT
αβ···
κσ··· − · · · .

b) Christoffel symbols of first kind:

Γαβγ =
1

2
[∂γgαβ + ∂βgγα − ∂αgβγ] . (A.2)

c) Christoffel symbols of second kind:

Γα
βγ =

1

2
gαδ [∂γgδβ + ∂βgγδ − ∂δgβγ] . (A.3)

d) Geodesic equation:

d2xα

dλ2
= −Γα

βγ
dxβ

dλ

dxγ

dλ
, (A.4)

where λ is an affine parameter.

e) Riemann tensor:

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ + Γε

βδΓ
α

εγ − Γε
βγΓ

α
εδ. (A.5)

f) Ricci tensor:
Rαβ = gγδRαγβδ, (A.6)

Rαβ = ∂γΓ
γ

αβ − ∂βΓγ
αγ + Γγ

αβΓδ
γδ − Γγ

αδΓ
δ
βγ. (A.7)

g) Scalar Curvature:
R = gαβRαβ. (A.8)
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h) Einstein tensor:

Gαβ = Rαβ − 1

2
gαβR. (A.9)

i) Einstein equations:

Gαβ =
1

M2
P

Tαβ. (A.10)
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APPENDIX B - GAUGE TRANSFORMATIONS IN GR

B.1 Infinitesimal Coordinate Transformations in GR

Under a general coordinate transformation, the metric tensor transforms as

g̃αβ(x̃) =
∂xκ

∂x̃α

∂xλ

∂x̃β
gκλ(x); (B.1)

in particular, considering a simple infinitesimal translation of the coordinates, given
by

x̃α = xα + ξα, (B.2)

it is easy to see that (B.1) becomes

g̃αβ(x̃) = gαβ − gαλξ
λ

, β − gλβξλ
, α. (B.3)

Decomposing the metric tensor into a background (0)gαβ and an infinitesimal per-
turbation δgαβ piece, as in (3.1), we get

g̃αβ(x̃) = (0)gαβ(x) + (0)gαβ, κ(x)ξκ + δg̃αβ(x). (B.4)

where we have assumed that the background metric is form-invariant (3.46), that
is, (0)g̃αβ(x̃) = (0)gαβ(x̃). From expressions (B.3) and (B.4), using the constraint
∇κ

(0)gαβ = 0 (satisfied by any metric tensor), and definitions (A.2) and (A.3), we
find

δg̃αβ = δgαβ −∇αξβ −∇βξα. (B.5)

B.2 Application: Weak Gravitational Fields in GR - Gravity Waves

As an important application of the principles derived above, let us derive the dy-
namical equations for a weak gravitational field in GR, which leads to the concept of
Gravity Waves (GW), a key physical element in all this work. We adopt the following
decomposition for the metric (3.1),

(0)gαβ = ηαβ, δgαβ = hαβ, (B.6)
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where hαβ is a weak fluctuation on the Minkowski background: |hαβ| ¿ 1. The
decomposition (B.6) is widely known as the weak-field approximation. Due to this
property we can express the inverse of (B.6) as

gαβ = ηαβ − hαβ; (B.7)

then, using expressions (A.3), (A.7), (A.8) and (A.9) we see that the Einstein tensor
for hαβ is given by

Gαβ =
1

2
[hγ

β,αγ + hγ
α,βγ −¤hαβ − h,αβ]− 1

2
ηαβ

[
hκλ

,κλ −¤h
]
. (B.8)

We can clean up the mess in expression (B.8) by means of the field redefinition

h̄αβ ≡ hαβ − 1

2
ηαβh, (B.9)

where h is defined by
h ≡ ηαβhαβ, (B.10)

so that expression (B.8) becomes

Gαβ =
1

2

[
h̄γ

β,αγ + h̄γ
α,βγ −¤h̄αβ − ηαβh̄κλ

,κλ

]
. (B.11)

Under the infinitesimal transformations (B.5), hαβ behaves as

h̃αβ = hαβ − ξα,β − ξβ,α, (B.12)

so that from (B.10) and (B.12) h̄αβ transforms as

˜̄hαβ = h̄αβ − ξα,β − ξβ,α + ηαβξκ
,κ. (B.13)

Then, using (B.13) it is easy (despite cumbersome) to see that the Einstein ten-
sor (B.11) is invariant under the infinitesimal metric transformations (B.13). This
invariance property has a very important consequence: we can conveniently choose
the form of ξ to simplify considerably the form of the Einstein tensor (B.11). To
accomplish this, let us write down G̃αβ as

G̃αβ =
1

2

[
−¤̃˜̄hαβ + ∂̃γ

(
∂̃α

˜̄hγ
β + ∂̃β

˜̄hγ
α − ηαβ∂̃κ

˜̄hκγ
)]

, (B.14)
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and choose ξ in such a way that

∂̃γ

(
∂̃α

˜̄hγ
β + ∂̃β

˜̄hγ
α − ηαβ∂̃κ

˜̄hκγ
)

= 0; (B.15)

then, plugging expression (B.13) into (B.15), we find

¤ξα − h̄γ
α,γ = 0. (B.16)

Equation (B.16) is identically satisfied by choosing

¤ξα = 0, (B.17)

h̄αβ
,β = 0. (B.18)

The constraint equation (B.18) makes up the so-called De Donder-Einstein-Hilbert
gauge. This gauge condition can also be stated in a different form: if we substitute
expression (B.9) into (B.18), and take the additional assumptions

hαβ
,β = 0, hα

α = 0, (B.19)

equation (B.18) is identically satisfied. A tensor whose components satisfy the con-
ditions (B.19) is called a transverse, trace-free (TTF) tensor.

As a consequence of the De Donder-Einstein-Hilbert gauge, the Einstein equations
(A.10) for a TTF tensor become

¤h̄αβ = − 2

M2
P

Tαβ, (B.20)

that is, a wave equation for the field hαβ - the GWs.
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APPENDIX C - POLARIZATION STATES FOR AN ARBITRARY
METRIC THEORY OF GRAVITATION

C.1 The Newman-Penrose Formalism

In order to compute its components in an Lorentz-invariant scheme, it is convenient
to introduce, following the pioneering work of Newman and Penrose, (NEWMAN;

PENROSE, 1962), the quasiorthonormal complex-null basis (k, l, m, m̄), where k and
l are real null-vectors and m and m̄ are a pair of complex numbers, satisfying the
following orthogonality relations:

k · l = 0, m · m̄ = −1, k · m̄ = k ·m = l · m̄ = l ·m = 0. (C.1)

We follow (EARDLEY et al., 1973) and choose the following set of null vectors,

k = − 1√
2
(1, 0, 0, 1), (C.2)

l = − 1√
2
(1, 0, 0,−1), (C.3)

m = − 1√
2
(0, 1, i, 0), (C.4)

m̄ = − 1√
2
(0, 1,−i, 0), (C.5)

all satisfying (C.1). With the basis given by (C.2) - (C.5) we can split the Riemann
tensor into its irreducible parts, namely, the Weyl tensor, whose ten independent
components are given by five complex scalars (Ψ0, Ψ1, Ψ2, Ψ3, Ψ4), the Ricci tensor,
whose nine independent components are given by the scalars Φ00, Φ01, Φ02, Φ10,
Φ20, Φ11, Φ12, Φ21, Φ22, and the Ricci scalar Λ. In this context, we may prove that
the differential and algebraic properties of the Riemann tensor reduce the number
of independent components to six (EARDLEY et al., 1973); they are given by
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i) The Weyl tensor :

Ψ0 = Ψ1 = 0, (C.6)

Ψ2 = −1

6
Rlklk, (C.7)

Ψ3 = −1

2
Rlklm̄, (C.8)

Ψ4 = −Rlm̄lm̄; (C.9)

ii) The Ricci tensor :

Φ00 = Φ01 = Φ10 = Φ02 = Φ20 = 0, (C.10)

Φ22 = −Rlmlm̄, (C.11)

Φ11 =
3

2
Ψ2, (C.12)

Φ12 = Φ̄21 = Ψ̄3; (C.13)

ii) The Ricci scalar :

Λ = −1

2
Ψ2. (C.14)

We can reduce, therefore, the number of independent components of the Riemann
tensor to the set

{Ψ2, Ψ3, Ψ̄3, Ψ4, Ψ̄4, Φ22}. (C.15)

Henceforth, we call (C.15) Newman-Penrose (NP) amplitudes. They play the role of
definite helicity states s = (0,±1,±2) under rotations around the z axis in a nearly
Lorentz coordinate frame.

C.2 Polarization of GWs

The polarization states for a GW in an arbitrary metric theory of gravitation are
given by the independent modes of the Riemann tensor. Since the NP formalism
provides all its components by means of the amplitudes {Ψ2, Ψ3, Ψ̄3, Ψ4, Ψ̄4, Φ22},
we see that such formalism is specially useful for studying GW polarization. In what
follows, we first set the general theory, and later derive the polarization states of a
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GW in GR.

C.2.1 The general setting

In particular, the two real NP amplitudes (Ψ2, Φ22) correspond to the state s = 0

(which defines the scalar modes), whereas the complex NP amplitudes (Ψ3, Ψ̄3)

correspond to s = ±1 (vector modes), and (Ψ4, Ψ̄4) to s = ±2 (tensor modes). The
polarization modes can be represented on the x− y, y− z or x− z plane (see Figure
C.1).

In this figure, the solid (dashed) lines represent the displacement that each mode
induces on a ring of test particles at ωt = 0 (ωt = π). The relative accelerations of
the test masses, as measured by an ideal detector in the coordinate system {t, xi},
where t is the proper time, and u = t − z/c represents a null “retarded time", can
be represented by the “driving-force matrix" S (EARDLEY et al., 1973):

Sij(t) := Ri0j0(u). (C.16)

The definition of the driving-force matrix allows the introduction of a basis for the
GW polarizations (analogous to the polarization basis for photons); for instance, let
us represent the NP amplitudes as

p1(ẑ, t) = Ψ2(u), (C.17)

p2(ẑ, t) = Re Ψ3(u), (C.18)

p3(ẑ, t) = Im Ψ3(u), (C.19)

p4(ẑ, t) = Re Ψ4(u), (C.20)

p5(ẑ, t) = Im Ψ4(u), (C.21)

p6(ẑ, t) = Φ22(u); (C.22)

(from now on, whenever the index r appears, it will always indicate a given NP
amplitude according to the sequence given in (C.2.1), so that r = 1 stands for Ψ2,
and so forth. The index r is called the polarization index ). Now, writing the NP
amplitudes (C.7), (C.8), (C.9) and (C.11) in Cartesian coordinates (recall that the
NP basis given by (C.2) - (C.5) can be written in terms of the coordinates {t, xi}),
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FIGURE C.1 - The six possible polarization modes for an arbitrary metric theory of grav-
itation. In terms of the NP amplitudes, we have the following: (a) Re Ψ4;
(b) Im Ψ4; (c) Φ22; (d) Ψ2; (e) Re Ψ3; (f) Im Ψ3. Figure adapted from
(WILL, 2005).
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we get the following result

S =



−1

2
(p4 + p6)

1
2
p5 −2p2

1
2
p5

1
2
(p4 − p6) 2p3

−2p2 2p3 −6p1


 (C.23)

or, rearranging the terms,

S(t) =
6∑

r=1

pr (ẑ, t) Er (ẑ) , (C.24)

where Er (ẑ) are the basis polarization matrices, given by

E1 = −6




0 0 0

0 0 0

0 0 1


 , E2 = −2




0 0 1

0 0 0

1 0 0




E3 = 2




0 0 0

0 0 1

0 1 0


 , E4 = −1

2




1 0 0

0 −1 0

0 0 0


 ,

E5 =
1

2




0 1 0

1 0 0

0 0 0


 , E6 = −1

2




1 0 0

0 1 0

0 0 0


 . (C.25)

Therefore, the polarization of a GW in an arbitrary metric theory of gravity can be
fully described by the basis polarization matrices Er (ẑ). However, due to the tenso-
rial character of the space-time metric it is convenient to cast the polarization basis
(C.25) into a tensor; hence, along with its spatial components, given by (Er)ij (ẑ),
there are the 00 and 0i components, which are zero by the very definition of the “full
driving-force matrix" S (C.16), so that

S00(t) = R0000(u) = 0, S0i(t) = R0i00(u) = 0. (C.26)

Hence, the polarization tensor assumes the form
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ε1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




, ε2 =




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0




ε3 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0




, ε4 =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




,

ε5 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




, ε6 =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




. (C.27)

Once we have described the polarization states, let us now connect the formalism
described above with GW amplitudes. As we have seen, cosmological GWs are de-
scribed by equation (3.101), whereas plane GWs of non-cosmological character are
given by a Klein-Gordon-like equation (B.20). Due to the oscillatory character of
these GW equations, we can expand the tensor field hij at the classical level into its
Fourier modes as follows,

hij (t, x) =

∫ ∞

−∞

d3k

(2π)3/2
h̃ij (t,k) eik·x, (C.28)

where we have considered a wave propagating in the direction k̂ = ẑ and, for the
sake of simplicity, we dropped the bar over the tensor on the left-hand side of (B.9)
and simply write it as hij

1, in the case of GWs described by equation (B.20). Next,
we decompose the tensors hij according to the six polarization tensors εr

ij derived in
(C.27),

h̃ij (t, k) =
6∑

r=1

εr
ij(k)h̃r(t, k), (C.29)

where h̃r(t, k) are the GW amplitudes.

1We neglect the components h00 because, as we have discussed above, a GW have at most six
polarization states, and can be then completely described by the tensor hij .
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The most general form of a GW produced in an alternative theory of gravitation
has the form (C.29), with the polarization states given by the polarization tensors
(C.27) and depicted in Figure C.1.

C.2.2 Polarization of GWs in GR

Let us now apply the techniques introduced above to the case of tensor modes in
GR. As we have seen in the Section B.2, general-relativistic tensor modes possess a
large number of symmetries, characterized by the De Donder-Einstein-Hilbert gauge
(B.19); then, calculating the NP amplitudes (C.15) and using these constraints, we
find that

Ψ2 = Ψ3 = Ψ̄3 = Φ22 = 0, (C.30)

Ψ4 6= 0, Ψ̄4 6= 0, (C.31)

or
h̃1 = h̃2 = h̃3 = h̃6 = 0. (C.32)

Therefore, there are only two polarization states for general-relativistic GWs, given
by the NP amplitudes Ψ4. These two polarization states are transverse, and, as
usual in the literature, are denoted by the symbol “+" for the amplitude h̃4 ≡ h̃+,
and “×" for the amplitude h̃5 ≡ h̃×. As can be seen from the structure of εr

ij for
r = 4, 5 in (C.27), these modes are also traceless, composing then the TTF modes.
The corresponding polarization tensors ε

(+,×)
ij are given by the components r = 4, 5

of (C.27),

ε
(+)
ij =




1 0 0

0 −1 0

0 0 0


 , ε

(×)
ij =




0 1 0

1 0 0

0 0 0


 . (C.33)

The corresponding metrics, given by expression (3.1), are

g
(+)
αβ = a2




1 0 0 0

0 −1− h+ 0 0

0 0 −1 + h+ 0

0 0 0 −1




, (C.34)
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g
(×)
αβ = a2




1 0 0 0

0 −1 h× 0

0 h× −1 0

0 0 0 −1




. (C.35)
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APPENDIX D - SCALAR FIELD THEORIES - K-ESSENCE

Since throughout this thesis we stumble with scalar fields in almost every chapter,
let us summarize here the most important ideas about these field theories. The basic
material for Chapters 7 and 8 is also presented in this Appendix.

As a reminder, we changed the notation so that a prime ′ indicates a derivative with
respect to the field φ.

D.1 k-Essence Dynamics

Consider a general Lagrangian density of the form L = L [X, φ], minimally coupled
to gravity,

S =

∫
d4x

√−g {L [X,φ] + LEH} , (D.1)

where LEH is the Einstein-Hilbert Lagrangian density, X is the conventional kinetic
term defined in (D.2),

X ≡ 1

2
gαβ∇αφ∇βφ, (D.2)

(X > 0 according to our choice of the metric signature) and φ is a scalar field. The
metric gαβ is defined on the spacetime characterized by a manifold M.

In what follows we do not specify the form of the kinetic term, so that we allow
the Lagrangian L [X, φ] to accommodate an unconventional kinetic term - in better
words, a non-canonical term - a function of X. These theories are called k-essence
(ARMENDARIZ-PICON et al., 1999), (ARMENDARIZ-PICON et al., 2001), where k re-
minds us of the “non-canonicity" of the kinetic term. For this reason we call X

canonical kinetic term. The equations of motion for the k-essence comes directly
from the variational principle (WEINBERG, 1995)

δ

δφ
S [X, φ] = 0, (D.3)

so that the equation of motion for the k-essence field reads (BEAN et al., 2008b),

Ẋ =

√
2X

1 + 2XLXX

(
Lφ − 2XLXφ − 3H

√
2XLX

)
, (D.4)

where the subscript “X" indicates a derivative with respect to the kinetic term. It
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is convenient to rewrite equation (D.4) as (BABICHEV et al., 2008)

G̃µν∇µ∇νφ + 2XLXφ − Lφ = 0, (D.5)

where G̃µν , called “effective" or “acoustic" metric, is given by

G̃µν (φ,∇φ) = LXgµν + LXX∇µφ∇νφ. (D.6)

Therefore, the k-essence field induces a new metric on M, which defines a different
causal structure for the propagation of the field perturbations, as we discuss in
Section D.4 later on. In analogy with hydrodynamics, the k-essence field plays the
role of a fluid, whose energy-momentum is given by expression (2.34),

Tαβ = (ρφ + Pφ) uαuβ − Pφgαβ. (D.7)

where, as in Section 2.3, uα is four-velocity of an observer comoving with the fluid,
and ρφ and Pφ are the energy density and pressure of the k-essence fluid, respectively.
Their expressions can be calculated in terms of the k-essence Lagrangian L [X, φ]

using the definition of the stress energy-momentum tensor, (WEINBERG, 1995)

Tαβ =
2√−g

δSφ

δgαβ
, (D.8)

whose result is
Tαβ = ∇αφ∇βφLX − Lgαβ; (D.9)

then, from expressions (D.8) and (D.9) we immediately deduce that

ρφ ≡ uαuβTαβ = 2XLX − L (D.10)

Pφ ≡ 1

3
παβTαβ = L, (D.11)

where παβ ≡ gαβ − uαuβ is an operator which projects geometric quantities defined
on M onto hypersurfaces orthogonal to the four-velocity uβ, whose expression in
terms of φ follows from (D.8) and (D.9-D.11),

uα =
∇αφ√

2X
. (D.12)
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For a null-vector nα, gαβnαnβ = 0, the Null-energy condition (NEC)

Tαβnαnβ ≥ 0 (D.13)

applied to (D.9) implies
(NEC) : LX ≥ 0. (D.14)

Hence, k-essence models that fulfils NEC have Hamiltonians bounded from below.

In the fluid approach it is also important to calculate the speed at which small
perturbations propagate, the speed of sound. The general expression is given by

c2
s ≡

(
∂P

∂ρ

)

S

, (D.15)

where the subscript “S" refers to an adiabatic process. For a k-essence fluid whose
energy density and pressure are characterized by expressions (D.10) and (D.11), the
expression of the sound velocity (D.15) yields

c2
s ≡ PX

ρX

=

(
1 + 2X

LXX

LX

)−1

. (D.16)

The Friedmann equation is given by (2.42) and (D.10),

H2 =
1

3M2
P

ρ =
1

3M2
P

(2XLX − L) , (D.17)

for a flat FRW metric, and the continuity equation (2.37) is

ρ̇ = −6HXLX . (D.18)

As we have seen in Section 4.3, for monotonic field evolution, the field value φ can
be used as a “clock”, and all other quantities expressed as functions of φ, for example
X = X (φ), L = L [X (φ) , φ], and so on. We consider the homogeneous case, so that
φ̇ =

√
2X. Using

d

dt
= φ̇

d

dφ
=
√

2X
d

dφ
, (D.19)

we can re-write the Friedmann and continuity equations as the Hamilton-Jacobi
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equations,

φ̇ =
√

2X = −2M2
P

LX

H ′(φ), (D.20)

3M2
P H2(φ) =

4M4
P H ′ (φ)2

LX

− L, (D.21)

where equations (D.20) and (D.21) are the generalizations of equations (4.28) and
(4.29).

D.2 Flow Hierarchy for k-Essence models

Throughout this Section we follow closely (BEAN et al., 2008b), unless otherwise
stated. The generalization of the flow parameters (4.32), (4.37), (4.45) and (4.47)
are performed as follows. First, from equations (2.49) and (4.31), we see that the
flow parameter ε can be written alternatively as

ε = − Ḣ

H2
; (D.22)

then, taking the time derivative of the Hubble parameter as expressed in equation
(D.17), (D.20), we find

ε (φ) =
2M2

P

LX

(
H ′ (φ)

H (φ)

)2

. (D.23)

Taking the derivative of (D.23) with respect to φ, grouping the terms, and comparing
with (4.37), we see that the generalization of the flow parameter η is

η̃ (φ) ≡ 2M2
P

LX

H ′′ (φ)

H (φ)
. (D.24)

However, in doing this derivation, another parameter appears, and it is related to
the fact that LX is not necessarily constant for a given k-essence model (although
in canonical inflation it is). This parameter is

s̃ (φ) ≡ 2M2
P

LX

H ′ (φ)

H (φ)

L′X
LX

. (D.25)

Next, taking the derivative of s̃ with respect to φ, we also find a second parameter,
defined as

s (φ) ≡ −2M2
P

LX

H ′ (φ)

H (φ)

c′S (φ)

cS (φ)
, (D.26)
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which measures the variation of the sound speed cs, which is not necessarily constant.

The number of e-folds dN , equation (4.23), can be re-written in terms of dφ by:

dN =
LX

2M2
P

(
H (φ)

H ′ (φ)

)
dφ, (D.27)

then, the general flow parameters (D.23-D.26) can be similarly be re-written in terms
of dN ,

ε ≡ 1

H

dH

dN
, (D.28)

s ≡ − 1

cS

dcS

dN
, (D.29)

s̃ ≡ 1

LX

dLX

dN
. (D.30)

Taking successive derivatives d/dN with respect to the number of e-folds yields an
infinite hierarchy of flow equations (KINNEY, 2002; BEAN et al., 2008b),

dε

dN
= −ε (2ε− 2η̃ + s̃) ,

dη̃

dN
= −η̃ (ε + s̃) + 2λ,

ds

dN
= −s (ε− η̃ + s̃ + s) + ερ,

ds̃

dN
= −s̃ (ε− η̃ + 2s̃) + ε1β,

d`λ

dN
= −`λ [` (s̃ + ε)− (`− 1) η̃] + `+1λ,

d`α

dN
= −`α [(`− 1) (ε− η̃) + `s̃ + s] + `+1α,

d`β

dN
= −`β [(`− 1) (ε− η̃) + (` + 1) s̃] + `+1β, (D.31)

where the higher-order flow parameters are defined as follows, where ` = 1, . . .∞ is
an integer parameter:

`λ (φ) =

(
2M2

P

LX

)` (
H ′ (φ)

H (φ)

)`−1
1

H (φ)

d`+1

dφ`+1
H (φ) ,

`α (φ) =

(
2M2

P

LX

)` (
H ′ (φ)

H (φ)

)`−1
1

c−1
S (φ)

d`+1

dφ`+1
c−1
S (φ),

`β (φ) =

(
2M2

P

LX

)` (
H ′ (φ)

H (φ)

)`−1
1

LX

d`+1

dφ`+1
LX . (D.32)
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D.3 Cosmological Perturbations in k-Essence Models

The introduction of perturbations in k-essence models follows exactly the same steps
taken in Section 4.5. For the sake of simplicity we consider the metric in the lon-
gitudinal gauge (4.66) with Ψ = Φ and with a flat FRW as the background met-
ric. The perturbations of the k-essence field δφ induce corresponding fluctuations
in the stress energy-momentum tensor (D.9), whose components read (GARRIGA;

MUKHANOV, 1999)

δT 0
0 =

ρ0 + P0

c2
s

[(
δφ

φ̇

)·
− Φ

]
− 3H (ρ0 + P0)

δφ

φ̇
, (D.33)

T 0
i = (ρ0 + P0)

(
δφ

φ̇

)

,i

. (D.34)

Substituting the Einstein tensors (3.92-3.93) and the components of the ten-
sors (D.33-D.34) into the perturbed Einstein equation (3.91), we find (GARRIGA;

MUKHANOV, 1999)

d

dt

(
δφ

φ̇

)
= Φ +

2M2
P c2

s

a2(ρ + p)
∇2Φ

d

dt
(aΦ) =

a(ρ + p)

2M2
P

(
δφ

φ̇

)
. (D.35)

Equations (D.35) can be cast into a more convenient form by changing the pertur-
bations Φ and δφ to the new variables ζ and ξ defined by

ξ =
2M2

P Φa

H

ζ = H
δφ

φ̇
+ Φ, (D.36)

so that the perturbed Einstein equations (D.35) become

ξ̇ =
a(ρ + p)

H2
ζ,

ζ̇ =
c2
sH

2

a3(ρ + p)
∇2ξ. (D.37)

As we did in subsection 4.5.2, we define the variable z and the gauge-invariant
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Mukhanov-Sasaki potential u as

z =
a(ρ + p)1/2

csH
, (D.38)

u = zζ, (D.39)

which corresponds to (4.76) and (4.78) respectively. Then, from (D.37) we derive
the mode equation for u(τ) ∝ uk(τ) exp(ik · x), given by (GARRIGA; MUKHANOV,
1999)

u′′k −
[
(csk)2 +

z′′

z

]
uk = 0. (D.40)

Proceeding analogously as we did in (4.100), the variable (D.38) can be cast into
the following form,

z = −aMP

√
2ε

cs

; (D.41)

then, using (4.101), we can evaluate the ratio z′′/z in (D.40) in terms of the flow
parameters (D.23-D.32); the result is

z′′

z
= a2H2F̄

(
ε, η̃, s, s̃, 2λ, 1α, 1β

)
, (D.42)

where

F̄ ≡ 2 + 2ε− 3η̃ − 3s +
3

2
s̃ + 2ε2 +

5

4
s̃2 − 2ss̃

+ η̃2 + 2ε(s̃− s) + 3η̃s− 5

2
η̃s̃− 4η̃ε + 2λ

− 1

2
ε
(
1α

)
+ ε

(
1β

)
. (D.43)

Next, we change the conformal time τ to the variable y defined as

y ≡ csk

aH
; (D.44)

similarly to what was done in (4.105); then,

d

dτ
= −aH (1− ε− s) y

d

dy
, (D.45)

and
d2

dτ 2
= a2H2

[
(1− ε− s)2 y2 d2

dy2
+ Ḡ

(
ε, η̃, s, s̃, 1α

)
y

d

dy

]
, (D.46)
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where

Ḡ ≡ −s + ε(2s + s̃) + s(2s + s̃) + 2ε2 − 2εη̃ − sη̃ − ε
(
1α

)
.

Substituting (D.42) and (D.46) into the mode equation (D.40), we find

(1− ε− s)2 y2d2uk

dy2
+ Ḡy

duk

dy
+

[
y2 − F̄

]
uk = 0, (D.47)

which is an exact equation, without any assumption of slow-roll.

The power spectra for scalar and tensor perturbations are given respectively by
similar expressions to (4.130) and (4.133); however, the curvature perturbations
must be evaluated when the mode crosses the acoustic horizon, whereas the tensor
are evaluated at the Hubble horizon crossing, (GARRIGA; MUKHANOV, 1999)

P
1/2
R =

1

8π2

H2

M2
P csε

∣∣∣∣
csk=aH

,

PT =
2

π2

H2

M2
P

∣∣∣∣
k=aH

. (D.48)

Slow-roll solutions can be worked out following the same steps as in 4.6.1; the values
for the scalar spectral index (4.135) and the tensor/scalar ratio are given by (BEAN
et al., 2008b)

ns − 1 = −4ε + 2η̃ − s̃− s,

nT = −2ε, (D.49)

The tensor-to-scalar ratio reads
r = 16εcs. (D.50)

D.4 Causal Structure of k-Essence Models

It is convenient to use the metric (BABICHEV et al., 2008)

Gµν ≡ cs

L2
X

G̃µν (D.51)
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which is conformally equivalent to G̃µν , and hence, defines the same causal structure.
The inverse metric G−1

µν is given by

G−1
µν ≡

LX

cs

[
gµν − c2

s

LXX

LX

∇µφ∇νφ

]
; (D.52)

notice that it has the same form of (D.51), since ∇µφ is timelike.

Since tachyacoustic cosmology deals with superluminal propagation of perturba-
tions, it is important to address the issue of causality in this model. Babichev et.
al. (BABICHEV et al., 2008) have discussed the conditions that must be fulfilled by
a general k-essence model with superluminal propagation in order to avoid causal
paradoxes (i.e., the presence of closed causal curves - CCC). In this appendix we
outline the main ideas of this work and apply to our tachyacoustic model.

To begin with let us introduce some key definitions (WALD, 1984). Let gµν be a
metric with Lorentzian signature defined on a given manifold M. Given a point
p ∈M, let tµ be a timelike vector at p; then, from this timelike vector we construct
a second metric, g̃µν , related to the background metric gµν by

g̃µν ≡ gµν − tµtν . (D.53)

The spacetime (M, gµν) is defined to be stably causal if there is a continuous
timelike vector field tµ such that the spacetime (M, g̃µν) possesses no closed
timelike curves. The following theorem (8.2.2. in (WALD, 1984)) establishes the
necessary and sufficient conditions for a spacetime to be stably causal:

A spacetime (M, gµν) stably causal if and only if there exists a differentiable
function f on M such that ∇µf is a past directed timelike vector field.

We can apply this theorem to k-essence models as follows (BABICHEV et al.,
2008). First, we must find the analog of the induced metric (D.53) for the case of
k-essence models, which can be obtained by means of the equation of motion for
a scalar field described by a Lagrangian L (X,φ), (D.5); then, using this equation
and expression (D.53), we can now apply the theorem stated above and check the
stable causality of k-essence models. Let t be time coordinate with respect to the
background metric (which is everywhere future directed), which we take to be
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FRW. Since gµν∇µt∇νt = 1, we have, using (D.6) and (D.51),

Gµν∇µt∇νt =
cs

LX

[
1 +

LXX

LX

φ̇2

]
; (D.54)

then, since for a homogeneous scalar field holds φ̇2 = 2X, we have, from (D.16) and
(D.54) that

Gµν∇µt∇νt =
1

csLX

> 0, (D.55)

provided the Null Energy Condition (NEC) is satisfied, that is, LX > 0. Therefore,
t plays a role of global time for both spacetimes (M, gµν) and

(M, G−1
µν

)
, and then

the conditions of the theorem are fulfilled. Then, there is no CCC in superlumi-
nal k-essence models built from homogeneous scalar fields on a FRW background.
Since this is exactly the case of the models introduced in (BESSADA et al., 2009), we
conclude that there are no causal paradoxes in tachyacoustic cosmology.
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