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ABSTRACT

We present here the linear regime of the Einstein’s field equations in the
characteristic formulation. Through a simple decomposition of the metric variables
in spin-weighted spherical harmonics, the field equations are expressed as a system
of coupled ordinary differential equations. The process for decoupling them leads
to a simple equation for J - one of the Bondi-Sachs metric variables - known in
the literature as the master equation. Then, this last equation is solved in terms of
Bessel’s functions of the first kind for the Minkowski’s background, and in terms of
the Heun’s function in the Schwarzschild’s case. In addition, when a matter source
is considered, the boundary conditions across the time-like world tubes bounding
the source are taken into account. These boundary conditions are computed for
all multipole modes. Some examples as the point particle binaries in circular and
eccentric orbits, in the Minkowski’s background are shown as particular cases of this
formalism.

Keywords: General Relativity. Characteristic Formalism. Gravitational Waves.
Linear Regime.
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NO REGIME LINEAR DA FORMULAÇÃO CARACTERÍSTICA DA
RELATIVIDADE GERAL NOS FUNDOS DE MINKOWSKI E DE

SCHWARZSCHILD

RESUMO

Nós apresentamos aqui o regime linear das equações de campo de Einstein na
formulação característica. Através de uma decomposição simples das variáveis
métricas em harmônicos esféricos com peso de spin, as equações de campo são
expressas como um sistema de equações diferenciais ordinárias acopladas. O processo
de desacoplá-las leva a uma equação para J - uma das variáveis da métrica de Bondi-
Sachs - conhecida na literatura como equação mestre. Então, esta última equação é
resolvida em termos de funções de Bessel do primeiro tipo para o fundo de Minkowski
e em termos de funções de Heun no caso de Schwarzschild. Além disso, quando uma
fonte é considerada, as condições de contorno através do tubo de mundo limitando
a fonte é levada em conta. Essas condições de contorno são calculadas para todos os
modos multipolares. Alguns exemplos como binárias em órbita circular e excêntrica
no fundo de Minkowski são mostrados como casos particulares deste formalismo.

Palavras-chave: Relatividade Geral. Formalismo Característico. Ondas
Gravitationais. Regime Linear.
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1 INTRODUCTION

The high complexity of the Einstein’s field equations, given their non-linearity, makes
impossible to find analytical solutions valid for all gravitational systems. However,
in addition to the exact solutions, which are valid for some restricted geometries
and situations, the perturbative methods and the numerical relativity are two of
the most promising ways to solve the Einstein’s field equations in presence of strong
gravitational fields in a wide variety of matter configurations.

The holy grail of numerical relativity is to obtain the gravitational radiation patterns
produced by black hole - black hole (BH-BH), neutron star - neutron star (NS-NS)
or neutron star - black hole (NS-BH) binary systems, because of their relevance in
astrophysics. Actually, there are highly accurate and strongly convergent numerical
codes, capable of performing simulations of binaries taking into account the mass
and momentum transfer (FABER et al., 2006; LEHNER; PRETORIUS, 2014; KYUTOKU

et al., 2015), the hydrodynamic evolution (TANIGUCHI et al., 2005; BAUMGARTE et al.,
2013; MONTERO et al., 2014), the magneto-hydrodynamic evolution (FONT, 2008),
the electromagnetic and gravitational signatures produced by binaries (PALENZUELA

et al., 2013b; PALENZUELA et al., 2013a; KYUTOKU et al., 2015); and recently, the spin-
spin and the spin-orbit interactions in binary systems have been also studied (DAIN

et al., 2008; IORIO, 2012; ZLOCHOWER; LOUSTO, 2015).

All these advances were possible thanks to the Lichnerowicz, Choquet-Bruhat and
Geroch works (LICHNEROWICZ, 1944; FOURÈS-BRUHAT, 1952; CHOQUET-BRUHAT;

GEROCH, 1969), which opened the possibility to evolve a space-time from a
set of initial data; putting the principles of the Initial Value Problem (IVP)
(GOURGOULHON, 2007; ALCUBIERRE, 2008; BAUMGARTE; SHAPIRO, 2010) and
checking that this is a local and a global well-posed problem, that are necessary
conditions to guarantee stable numerical evolutions.

A different point of view to carry out the evolution of a given space-time was
proposed by Bondi et. al. in the 1960s decade (BONDI et al., 1962; SACHS, 1962). They
studied the problem of evolving a given metric, from the specification of it and its
first derivatives, by using the radiation coordinates, assuming that the initial data is
given on a null initial hypersurface and on a prescribed time-like world tube. This is
known as the Characteristic Initial Value Problem (CIVP) (STEWART; FRIEDRICH,
1982) and was effectively proved as a well-posed problem when the field equations
are written in terms only of first-order derivatives (FRITTELLI, 2005).

1



In the literature, there are essentially three possible ways to evolve space-times and
sources from a specific initial data, see e. g. (COOK, 2000; LEHNER, 2001; MARTÍ;

MÜLLER, 2003; GUNDLACH; MARTÍN-GARCÍA, 2007; WINICOUR, 2012; CARDOSO

et al., 2015) for detailed descriptions and status of the formalisms available in
numerical relativity. The first one is the Regge calculus, in which the space-
time is decomposed in a network of 4-dimensional flat simplices.1 The Riemann
tensor and consequently the field equations are expressed in a discrete version
of such atomic structures. It extends the calculus to the most general spaces
than differentiable manifolds (REGGE, 1961). The second are the Arnowitt-Deser-
Misner (ADM) based formulations in which the space-time is foliated into space-
like hypersurfaces which are locally orthogonal to the tangent vectors of a central
time-like geodesic (ARNOWITT et al., 1959; ARNOWITT et al., 1960a; ARNOWITT et al.,
1960b; YORK JR., 1971; YORK JR., 1979). The third are the characteristic formalisms,
which are based on the Bondi et. al. works in which the space-time is foliated into null
cones emanated from a central time-like geodesic or a world tube, and hypersurfaces
that are related to the unit sphere through diffeomorphisms (BONDI et al., 1962;
SACHS, 1962; WINICOUR, 1983; WINICOUR, 1984; WINICOUR, 2012).

Most of the recent work have been constructed using the ADM formalisms,2 whereas
the null cone formalisms are less known. One of the biggest problems in these last
formulations is their mathematical complexity. However, these formalisms result
particularly useful for constructing waveform extraction schemes, because they are
based on radiation coordinates. Impressive advances in the characteristic formulation
have been carried out recently, in particular in the development of matching
algorithms, which evolving from the Cauchy-Characteristic-Extraction (CCE) to
the Cauchy-Characteristic-Matching (CCM) (BISHOP et al., 1996; BISHOP et al., 2005;
REISSWIG et al., 2007; BABIUC et al., 2009; BABIUC et al., 2011; REISSWIG et al., 2011).

A cumbersome aspect of the null-cone formulation is the formation of caustics in
the non-linear regime, because at these points the coordinates are meaningless.
The caustics are formed when the congruences of light beams bend, focusing and
forming points where the coordinate system is not well defined. This problem is not
present in the CCM algorithms because the characteristic evolution is performed

1Simplices (Simplexes) are the generalisation of triangles for bi-dimensional and tetrahedron for
three-dimensional spaces to four or more dimensional spaces. In the Regge calculus these simplices
are supposed flat and the curvature is given just at the vertices of the structure, just like when a
sphere is covered using flat triangles.

2These formalisms are known also as 3+1 because of the form in which the field equations are
decomposed.
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for the vacuum, where the light beams not bend outside of the time-like world
tube (WINICOUR, 2012). Therefore, the characteristic evolutions have been usually
performed only for the vacuum, considering the sources as bounded by such time-
like hypersurface. Inside of the time-like world tube, the matter is evolved from the
conservation laws. However, there are some works in which the gravitational collapse
of scalar fields, massive or not, are performed using only characteristic schemes,
but obeying restrictive geometries and taking into account the no-development
of caustics (GÓMEZ et al., 2007; BARRETO, 2014a; BARRETO, 2014b). At this
point it is worth mentioning that the finite difference schemes are not the unique
methods to solve efficiently the Einstein’s field equations. There are significative
advances in the spectral methods applied to the characteristic formulation using the
Galerkin method, see e.g. (RODRIGUES, 2008; LINHARES; OLIVEIRA, 2007; OLIVEIRA;

RODRIGUES, 2008; OLIVEIRA; RODRIGUES, 2011)

One way to calibrate these complex and accurate codes is to make tests of validity in
much simpler systems and geometries than those used in such kind of simulations. In
order to do so, toy models for these codes can be obtained with the linear version of
the field equations. Depending on the background, the linearised equations can lead
to several regimes of validity. One example of this is that the linear regime of the field
equations on a Minkowski or on a Schwarzschild’s background leads to waveforms
and behaviours of the gravitational fields completely different. There is a great
quantity of possibilities to perform approximations to the field equations. Among
them, there are different orders of the Post-Newtonian approximations, the post-
Minkowskian approximations, the approximations using spectral decompositions,
and so on.

Despite lack of real physical meaning near to the sources, the linear approximations
of the characteristic formulation of general relativity exhibit an interesting point of
view even from the theoretical perspective. It is possible to construct exact solutions
to the Einstein’s field equations for these space-times in a easy way. It allows us
to reproduce at first approximation some interesting features of simple radiative
systems. In the weak field limit, it is possible to write the field equations as a system
of coupled ordinary differential equations, that can be easily solved analytically.

Here we present exact solutions for space-times resulting from small perturbations
to the Minkowski and Schwarzschild’s space-times. Also, we construct three simple
toy models, a thin shell, a circular point particle binary system of unequal masses,
and a generalisation to this last model including eccentricity. These gravitational

3



radiating systems were treated and solved from the formalism developed from
the perturbations for the metrics mentioned above. In order to present that,
perturbations to a generic space-time at first and higher order are shown in chapter
2. Gravitational wave equations for these orders are obtained as well as their
respective eikonal equations. Additionally, chapter 2 introduces the Green functions
and the multipolar expansion. In chapter 3, the eth formalism is explained in detail,
separately from the characteristic formulation. It is an efficient method to regularise
angular derivative operators. The spin-weighted spherical harmonics are introduced
from the usual harmonics through successive applications of the eth derivatives.
In chapter 4 the initial value problem, the ADM formulation and the outgoing
characteristic formalism with and without eth expressions are shown. In chapter 5
the linear regime in the outgoing characteristic formulation is obtained, the field
equations are simplified and solved analytically. In order to do that a differential
equation (the master equation) for J , a Bondi-Sachs variable, is found. This equation
is solved for the Minkowski (Schwarzschild) background in terms of Hypergeometric
(Heun) functions. Finally in chapter 6, two examples are presented, the point particle
binaries without and with eccentricity. At the end, the conclusions and some final
considerations are discussed.
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2 LINEAR REGIME OF THE EINSTEIN’S FIELD EQUATIONS AND
GRAVITATIONAL WAVES

This chapter explores the linear regime of Einstein’s field equations and the
gravitational waves. In general, the linearisation of the Einstein’s field equations
is performed assuming a flat background (BUONANNO, 2007; CATTANI, 2010a;
CATTANI, 2010b; CATTANI, 2010c). However, this approximation turns inapplicable
to the cases in which strong fields are involved. Eisenhart in 1926 and Komar in
1957 made perturbations to the metric tensor at the first order showing how the
gravitational waves are propagated away from the sources (REGGE;WHEELER, 1957).
Regge and Wheeler (1957) considered small perturbations in a spherical symmetric
space-time to explore the stability of the Schwarzschild’s solution, obtaining a
radial wave equation in presence of an effective gravitational potential, namely the
Reege-Wheeler equation, which appears for odd-parity perturbations. On the other
hand, Zerilli (1970) made even-parity perturbations obtaining a different radial wave
equation, namely the Zerilli equation obeying a different effective potential. After
that, by using the vector and tensor harmonics, Moncrief extended the Zerilli’s
works to the Reissner-Nordström exterior space-time and to stellar models by
using a perfect fluid stress-energy tensor (MONCRIEF, 1974c; MONCRIEF, 1974d;
MONCRIEF, 1974b; MONCRIEF, 1974a). Brill and Hartle (1964) explored the stability
of the Geons, which are objects composed of electromagnetic fields held together
by gravitational attraction in the linear regime of the field equations, off the flat
space-time, but considering spherical symmetry and asymptotically flat space-times.
Isaacson found a generalisation to the gravitational wave equation when an arbitrary
background is considered. He proved that the gravitational waves for high and low
frequencies are found by performing perturbations to distinct orders in the metric
tensor (ISAACSON, 1968a; ISAACSON, 1968b).

Here some of the aspects of the linearisation approximation to first and higher
orders are examined. By using the Wentzel-Kramers-Brillouin approximation
(WKB) the eikonal equation is found, relating the tensor of amplitudes to the
metric perturbations with its propagation vector. After that, in the Minkowski’s
background, the gravitational waves are expressed in terms of the Green’s functions.
In addition, a multipolar expansion is made as usual. Finally, following (PETERS;
MATHEWS, 1963), the quadrupole radiation formula is used to find the energy lost
by emission of gravitational waves by a binary system of unequal masses.

The convention used here with respect to the indices is: xµ represent coordinates,
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µ = 1 for temporal components, µ = i, j, k, · · · for spatial coordinates. The adopted
signature is +2.

Finally, it is worth mentioning that the linearisation process of the Einstein’s
field equation presented in this section and the general results shown here are
important because we linearise the characteristic equations in the same way, by just
perturbing the Bondi-Sachs metric. The equations obtained for these perturbations
(See Chapters 5 and 6) are equivalent to those obtained in this section. For this
reason it is not surprise that in the characteristic formulation we obtain radiative
solutions and that they are characterised by the Bondi’s News function.

2.1 First Order Perturbations

In this section, we will explore in some detail the linear regime of the Einstein’s
field equations when an arbitrary background is considered. Despite the derivation
of the wave equation at first order does not differ from that in which a Minkowski’s
background is taken into account, additional terms related to the background
Riemann tensor and the correct interpretation of the D’Alembertian is shown.
We follow the same convention and procedures exposed by Isaacson (1968a) and
subsequently used in (MISNER et al., 1973)

As a starting point, perturbations to an arbitrary background (0)
gµν at first order are

chosen, i.e.,
gµν = (0)

gµν + ε
(1)
gµν , (2.1)

where ε is a parameter that measures the perturbation, satisfying ε� 1. It is worth
stressing that it guaranties that the second term is smaller than the first, because
the characteristic length of such perturbations, λ, must be very small compared to
the characteristic length of the radius of curvature of the background, L. This limit
is known as the high frequency approximation (ISAACSON, 1968a).

Considering that the inverse metric gµν is given as a background term plus a first
order perturbation with respect to the background, i.e.,

gµν =
(0)
gµν + ε

(1)
gµν , (2.2)

and that gµνgην = (0)
gµν

(0)
gην = δ η

µ , then

gµσg
σν = (0)

gµσ
(0)
gσν + ε

(
(1)
gσν

(0)
gµσ + (1)

gµσ
(0)
gσν

)
+O(ε2). (2.3)
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Therefore, the perturbation of the inverse metric is given by

(1)
gην = −(1)

gµσ
(0)
gµη

(0)
gσν . (2.4)

As a result, the Christoffel’s symbols of the first kind, reads

Γµνγ = 1
2 (gµν,γ + gγµ,ν − gνγ,µ) , (2.5)

where the comma indicates partial derivative. These symbols can be separated as a
term referred to the background plus a perturbation, namely,

Γµνγ =
(0)
Γµνγ + ε

(1)
Γµνγ, (2.6)

where
(i)
Γµνγ = 1

2

(
(i)
gµν,γ + (i)

gγµ,ν −
(i)
gνγ,µ

)
, i = 0, 1. (2.7)

Thus, the Christoffel’s symbols of the second kind,

Γµνγ = gµσΓσνγ, (2.8)

can also be separated (ISAACSON, 1968a) as,

Γµνγ =
(0)
Γµνγ + ε

(1)
Γµνγ +O(ε2), (2.9)

where,

(0)
Γµνγ =

(0)
gµσ

(0)
Γσνγ and

(1)
Γµνγ =

(0)
gµσ

(1)
Γσνγ +

(1)
gµσ

(0)
Γσνγ. (2.10)

Consequently the Riemann’s tensor is written as a term associated to the background
plus a term corresponding to a perturbation, i.e.,

Rµ
νγδ =

(0)
Rµ

νγδ + ε
(1)
Rµ

νγδ, (2.11)

where the background Riemann tensor is given by

(0)
Rµ

νγδ = 2
(0)
Γµν[δ,γ] + 2

(0)
Γσν[δ

(0)
Γµγ]σ, (2.12)
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and the term associated with the perturbation reads

(1)
Rµ

νγδ = 2
(1)
Γµν[δ,γ] + 2

(1)
Γµσ[γ

(0)
Γσδ]ν + 2

(1)
Γσν[δ

(0)
Γµγ]σ. (2.13)

As usual, the square brackets indicate anti-symmetrisation, i.e.,

A[α1···αn] = 1
n!ε

β1···βn
α1···αn Aβ1···βn , (2.14)

where ε β1···βn
α1···αn is the generalised Levi-Civita permutation symbol (MISNER et al.,

1973).

From
(1)
Γµνδ:γ, where the colon indicates covariant derivative associated with the

background metric (0)
g µν , one obtains

(1)
Γµν[δ,γ] =

(1)
Γµν[δ:γ] −

(0)
Γµσ[γ

(1)
Γσδ]ν +

(0)
Γσν[γ

(1)
Γµδ]σ +

(0)
Γσ[γδ]

(1)
Γµνσ. (2.15)

Thus, substituting (2.15) into the Riemann’s tensor (2.13), one immediately obtains

(1)
Rµ

νγδ = 2
(1)
Γµν[δ:γ]. (2.16)

From (2.8) it follows that

(1)
Γµν[δ:γ] =

(1)
Γσν[δ

(0)
gµσ :γ] +

(0)
gµσ

(1)
Γσν[δ:γ] −

(0)
Γσν[δ

(1)
gµσ :γ] −

(1)
gµσ

(0)
Γσν[δ:γ]

=
(0)
gµσ

(1)
Γσν[δ:γ] −

(0)
Γσν[δ

(1)
gµσ :γ] −

(1)
gµσ

(0)
Γσν[δ:γ]. (2.17)

Then, substituting (2.17) into (2.16)

(1)
Rµ

νγδ =
(0)
gµσ

(1)
Γσνδ:γ −

(0)
gµσ

(1)
Γσνγ:δ −

(0)
Γσνδ

(1)
gµσ :γ +

(0)
Γσνγ

(1)
gµσ :δ

−
(1)
gµσ

(0)
Γσνδ:γ +

(1)
gµσ

(0)
Γσνγ:δ. (2.18)

In order to compute the Riemann’s tensor for the perturbation (2.18), it is necessary
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to calculate

(1)
Γσνδ:γ = 1

2

(
(1)
gσν,δ:γ + (1)

gδσ,ν:γ −
(1)
gνδ,σ:γ

)
, (2.19)

where

(1)
gσν,δ:γ =

(1)
gσν:δ +

(0)
Γλσδ

(1)
gλν +

(0)
Γλ δν

(1)
gσλ


:γ

= (1)
gσν:δγ +

(0)
Γλσδ:γ

(1)
gλν +

(0)
Γλσδ

(1)
gλν:γ +

(0)
Γλ δν:γ

(1)
gσλ +

(0)
Γλ δν

(1)
gσλ:γ. (2.20)

Substituting (2.20) into (2.19) it is found that

(1)
Γσνδ:γ = 1

2

(
(1)
gσν:δγ +(1)

gδσ:νγ −
(1)
gνδ:σγ

)
+

(0)
Γλνδ:γ

(1)
gσλ +

(0)
Γλνδ

(1)
gσλ:γ. (2.21)

Therefore, substituting (2.21) into (2.18) one obtains that the Riemann tensor
corresponding to the perturbations is given by

(1)
Rµ

νγδ =1
2

( (1)
gµν:δγ +

(1)
g µ
δ :νγ +

(1)
g µ
νγ: δ −

(1)
g µ
νδ: γ −

(1)
gµν:γδ −

(1)
g µ
γ :νδ

)
. (2.22)

Now, writing the field equations as

Rµν = 8π
(
Tµν −

1
2gµνT

)
, (2.23)

where, Tµν and T are the energy-stress tensor and its trace respectively, and using
(2.9) then

(0)
Rµν + ε

(1)
Rµν = 8π

(
Tµν −

1
2gµνT

)
. (2.24)

Assuming that the background satisfies the Einstein’s field equations

(0)
Rµν = 8π

(
Tµν −

1
2gµνT

)
, (2.25)

i.e., disregarding perturbations on the stress-energy tensor, we found that the
perturbation to the Ricci’s tensor satisfies

(1)
Rµν = 0. (2.26)
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Contracting (2.22), and substituting in (2.26)

1
2

( (1)
gµν:δµ +

(1)
g µ
δ :νµ −

(1)
g µ
νδ: µ −

(1)
g µ
µ :νδ

)
= 0 (2.27)

which corresponds to a first order wave equation for the metric perturbations.

It is worth stressing that (2.27) can be re-written as

(0)
gµσ

(
2 (1)
gσν:[δµ] + (1)

gσν:µδ + 2 (1)
gδσ:[νµ] + (1)

gδσ:µν −
(1)
gνδ:σµ −

(1)
gµσ:νδ

)
= 0, (2.28)

where

(1)
gσν:[δµ] = (1)

gσν,[δ:µ] −
(0)
Γλσ[δ:µ]

(1)
gνλ −

(1)
gνλ:[µ

(0)
Γλδ]σ −

(0)
Γλν[δ:µ]

(1)
gσλ −

(1)
gσδ:[µ

(0)
Γλδ]ν . (2.29)

Explicitly, (2.29) is

(1)
gσν:[δµ] =(1)

gσν,[δµ] −
(1)
gλν,[δ

(0)
Γλµ]σ −

(1)
gσλ,[δ

(0)
Γλµ]ν −

(0)
Γλ[δµ]

(0)
gσν,λ

−

(0)
Γλσ[δ,µ] +

(0)
Γλε[µ

(0)
Γεδ]σ −

(0)
Γεσ[µ

(0)
Γλδ]ε −

(0)
Γε[δµ]

(0)
Γλσε

(1)
gνλ

−
(1)
gνλ,[µ

(0)
Γλδ]σ +

(0)
Γλσ[δ

(0)
Γεµ]ν

(1)
gελ +

(0)
Γλσ[δ

(0)
Γεµ]λ

(1)
gνε

−

(0)
Γλν[δ,µ] +

(0)
Γλε[µ

(0)
Γεδ]ν −

(0)
Γεν[µ

(0)
Γλδ]ε −

(0)
Γε[δµ]

(0)
Γλνε

(1)
gσλ

−
(1)
gσλ,[µ

(0)
Γλδ]ν +

(0)
Γλν[δ

(0)
Γεµ]σ

(1)
gελ +

(0)
Γλν[δ

(0)
Γεµ]λ

(1)
gσε,

or

(1)
gσν:[δµ] = −

(0)
Γλσ[δ,µ] +

(0)
Γλε[µ

(0)
Γεδ]σ

(1)
gνλ −

(0)
Γλν[δ,µ] +

(0)
Γλε[µ

(0)
Γεδ]ν

(1)
gσλ,

= −1
2

(0)
Rλ

σµδ

(1)
gνλ +

(0)
Rλ

νµδ

(1)
gσλ

 . (2.30)
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Substituting (2.30) into (2.28)

+
(1)
gµν:µδ +

(1)
gµδ:µν −

(1)
g µ
νδ: µ −

(1)
gµµ:νδ

−
(0)
Rλ

σµδ

(1)
gνλ

(0)
gµσ −

(0)
Rλ

νµδ

(1)
gµλ −

(0)
Rλ

δµν

(1)
gµλ −

(0)
Rλ

σµν

(1)
gδλ

(0)
gµσ = 0, (2.31)

or

(1)
gµν:µδ +

(1)
gµδ:µν −

(1)
g µ
νδ: µ −

(1)
gµµ:νδ + 2

(0)
Rλνδµ

(1)
gµλ +

(0)
Rλν

(1)
g λ
δ +

(0)
Rλδ

(1)
g λ
ν = 0. (2.32)

Defining now a reverse trace tensor hµν as

hµν = (1)
gµν −

1
2

(1)
g

(0)
gµν , (2.33)

and contracting (2.33) one obtains h = −(1)
g . Therefore,

(1)
gµν = hµν −

1
2h

(0)
gµν . (2.34)

Substituting (2.34) into (2.32) one obtains

hµν:µδ + hµδ:µν − h
µ

νδ: µ −
1
2h

µ
: µ

(0)
gνδ + 2

(0)
Rλνδµh

µλ +
(0)
Rλνh

λ
δ +

(0)
Rλδh

λ
ν = 0. (2.35)

Under the transformation of coordinates

xα := xα(xβ), (2.36)

the metric transforms as

gµ ν = gµν∆µ
µ∆ν

ν , (2.37)

where gµ ν and gµν are referred to the xα and xα coordinates respectively and the
transformation matrix ∆µ

µ is given in terms of partial derivatives, i.e.,

∆µ
µ = xµ,µ. (2.38)

Additionally, from the transformation (2.37) and the perturbation (2.1), it follows
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that
(0)
gµ ν + ε

(1)
gµ ν = ∆µ

µ∆ν
ν

(
(0)
gµν + ε

(1)
gµν

)
,

which implies that the perturbation obeys the transformation rules for tensor under
Lorentz transformations, namely

(1)
gµ ν = ∆µ

µ∆ν
ν

(1)
gµν . (2.39)

In particular, considering an infinitesimal boost, i.e.,

xa = xa + ε ζa, (2.40)

where |εζa| � |xa| are infinitesimal displacements, then the matrices (2.30) become

xα,β = δα,β + ε ζα,β. (2.41)

Thus, substituting (2.41) into (2.39),

gµ ν(xβ) = gµ ν(xα) + ε

 (1)
gµ νζν,ν +

(1)
gµ νζµ,µ

+O(ζ2), (2.42)

expanding the metric around ζ,

gµ ν(xα) ' gµ ν − ε ζσgµ ν,σ, (2.43)

and substituting it into (2.42), one obtains

gµ ν(xβ) ' gµ ν − ε
(
ζσgµ ν,σ − gµ νζν,ν − gµ νζµ,µ

)
. (2.44)

Now, from the covariant derivative of the inverse metric one has

gµν ,δ = −gσνΓµσδ − gµσΓνσδ. (2.45)
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Substituting (2.45) into (2.44), one obtains

gµ ν(xβ) ' gµ ν(xβ) + ε
(
ζσgµ ηΓνση + ζσgη νΓµση + gµ νζν,ν + gµ νζµ,µ

)
,

' gµ ν(xβ) + ε
(
gµ ν

(
ζν,ν + ζσΓνσν

)
+ gµ ν

(
ζµ,µ + ζσΓµσµ

))
,

' gµ ν(xβ) + 2 ε ζ(ν:µ), (2.46)

where, as usual the round brackets indicates symmetrisation. The symmetrisation
is defined as

A(α1·αn) = 1
n!
∑
n

Aασ1 ·ασn , (2.47)

where the sum is performed over all index permutations.

Thus, the metric is invariant under such transformation whenever

ζ(ν:µ) = 0, (2.48)

in which ζα are just the Killing vectors associated with the background space-time
(LANDAU; LIFSHITZ, 1975).

Lowering the indices of (2.46) with the metric, and using (2.1) one immediately
obtains a gauge condition for the perturbations, i.e.,

(1)
gµν(xβ) = (1)

gµν(xβ) + 2ζ(ν:µ). (2.49)

From this last equation, one immediately reads

(1)
g :µ
µν =

(1)
g :µ
µν + 2ζ µ

(ν:µ) , (2.50)

where the overline indicates the metric in the new coordinate system, i.e.,
(1)
gµν =

(1)
gµν(xα) which allows to impose

(1)
g :µ
µν = 0. (2.51)

This gauge is known as De Donder or Hilbert gauge.

The form of the gauge for hµν is found when (2.33) is substituted into (2.49), it
results in
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hµν = (1)
gµν −

1
2

(1)
g

(0)
gµν + 2ζ(ν:µ) − ζσ:σ

(0)
gµν ,

= hµν + 2ζ(ν:µ) − ζσ:σ
(0)
gµν , (2.52)

which implies that its trace is given by

h = h+ 2ζµ:µ − ζσ:σ δµµ,

= h− 2ζµ:µ. (2.53)

Therefore, computing the covariant derivative of (2.52), one has

h
ν

µν: = h ν
µν: + 2 ζ ν

(ν:µ) − ζσ ν
:σ

(0)
gµν ,

= h ν
µν: + 2 ζ ν

(ν:µ) − ζσ:σµ,

= h ν
µν: + ζ ν

µ: ν + 2 ζσ:[σµ]. (2.54)

Considering that

2 ζσ:[σµ] =
(0)
Rσ
λσµζ

λ,

=
(0)
Rλµζ

λ, (2.55)

then,

h
ν

µν: = h ν
µν: + ζ ν

µ: ν +
(0)
Rλµζ

λ. (2.56)

Thus, (2.53) and (2.56) can be re-written as

h ν
µν: = h

ν

µν: − ζ ν
µ: ν −

(0)
Rλµζ

λ, h = h+ 2ζµ:µ, (2.57)

then the tensor field hµν can be recalibrated making the selection

h = 0, h ν
µν: = 0, (2.58)
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only if the following conditions are met,

h
ν

µν: = ζ ν
µ: ν +

(0)
Rλµζ

λ, h = −2ζµ:µ. (2.59)

Substituting (2.58) into (2.35), one obtains

h µ
νδ: µ − 2

(0)
Rλνδµh

µλ −
(0)
Rλνh

λ
δ −

(0)
Rλδh

λ
ν = 0, (2.60)

which is just a wave equation for hνδ (ISAACSON, 1968a). This equation includes the
terms related to the background’s curvature.

2.2 Higher Order Perturbations

At this point, there appears the question how are the forms of the higher
order perturbations to the Ricci’s tensor. Different approximations can be made
considering different expansions for the metric gµν or for the inverse metric gµν . The
perturbation method can vary depending on which quantity is expanded and how
it is done. In particular Isaacson (1968a) shows the Ricci’s tensor for higher order
perturbation, expanding only the inverse metric gµν ; however, other perturbation
schemes were explored with interesting results, for example Choquet-Bruhat (1969)
expands the metric and its inverse supposing ab initio that both quantities depends
on two parameters, a frequency and a phase, which leaves to different versions of
the perturbed Ricci tensor.

As a starting point, the procedure exposed by Isaacson (1968a) is followed. Thus,
the metric is expanded as

gµν = (0)
gµν + ε

(1)
gµν , (2.61)

whereas its inverse metric, gµν , is expanded as

gµν =
(0)
gµν +

n∑
i=1

εi
(i)
gµν +O(εn+1). (2.62)

Thus, from (2.61) and (2.62)

gµνg
νδ = (0)

gµν

(0)
gνδ +

n∑
i=1

εi

(0)
gµν

(i)
gνδ +(1)

gµν

(i−1)
gνδ

+O(εn+1), (2.63)
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which implies
(i)
gζδ = −(1)

gµν

(0)
gµζ

(i−1)
gνδ , i = 1, 2, · · · (2.64)

then,

(1)
gζδ = −(1)

gµν

(0)
gµζ

(0)
gνδ,

(2)
gζδ = −(1)

gµν

(0)
gµζ

(1)
gνδ,

(3)
gζδ = −(1)

gµν

(0)
gµζ

(2)
gνδ, · · · (2.65)

Substituting recursively the last equations, one finds

(1)
gζδ = −(1)

gµν

(0)
gµζ

(0)
gνδ,

(2)
gζδ = (1)

gµν
(1)
gαβ

(0)
gµζ

(0)
gαν

(0)
gβδ,

(3)
gζδ = −(1)

gµν
(1)
gαβ

(1)
gγη

(0)
gµζ

(0)
gαν

(0)
gγβ

(0)
gηδ, · · · (2.66)

In this approximation, the Christoffel symbols of the first kind can be separated just
as in (2.6) where each addend is given by (2.7). Using (2.62) to raise the first index
in (2.6), it is found

Γαβγ =
(0)
Γαβγ +

n∑
i=1

εi
(i)
Γαβγ +O(εn+1), (2.67)

where

(0)
Γαβγ =

(0)
gαη

(0)
Γηβγ,

(k)
Γαβγ =

(k−1)
gαη

(1)
Γηβγ +

(k)
gαη

(0)
Γηβγ, k = 1, 2, · · · , (2.68)

which is just one of the possibilities to generalise (2.10). The separation of the
Christoffel’s symbols of the second kind allows to write the Riemann’s tensor as

Rµ
νγδ =

(0)
Rµ

νγδ +
n∑
i=1

εi
(i)
Rµ

νγδ +O(εn+1), (2.69)

where
(0)
Rµ

νγδ is given in (2.12) and
(i)
Rµ

νγδ corresponds to

(k)
Rµ

νγδ = 2
(k)
Γµν[δ:γ] + 2

k∑
i=1

(k−i)
Γµσ[γ

(i)
Γσδ]ν . (2.70)

Computing the derivative of (2.68) and anti-symmetrising it, one obtains

(k)
Γαβ[γ:δ] =

(1)
Γηβ[γ

(k−1)
gαη :δ] +

(k−1)
gαη

(1)
Γηβ[γ:δ] +

(0)
Γηβ[γ

(k)
gαη :δ] +

(k)
gαη

(0)
Γηβ[γ:δ]. (2.71)
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Noting that

(1)
Γηβγ =(1)

gηβ:γ +(1)
gγη:β −

(1)
gβγ:η + 2

(0)
Γσγβ

(1)
gση, (2.72)

then,

(1)
Γηβ[γ:δ] = (1)

gηβ:[γδ] + (1)
g[γ|η:β|δ] −

(1)
gβ[γ|:η|δ] + 2

(0)
Γσβ[γ:δ]

(1)
gση + 2 (1)

gση:[δ
(0)
Γσγ]β. (2.73)

The first term in (2.71) is

(1)
Γηβ[γ

(k−1)
gαη :δ] = (1)

gηβ:[γ

(k−1)
gαη :δ] +

(k−1)
gαη :[δ

(1)
gγ]η:β −

(k−1)
gαη :[δ

(1)
gγ]β:η + 2

(k−1)
gαη :[δ

(0)
Γσγ]β

(1)
gση, (2.74)

and the second term in (2.71) is

(k−1)
gαη

(1)
Γηβ[γ:δ] =

(k−1)
gαη

(1)
gηβ:[γδ] +

(k−1)
gαη

(1)
g[γ|η:β|δ] −

(k−1)
gαη

(1)
gβ[γ|:η|δ]

+ 2
(k−1)
gαη

(0)
Γσβ[γ:δ]

(1)
gση + 2

(k−1)
gαη

(1)
gση:[δ

(0)
Γσγ]β. (2.75)

Therefore the first term in (2.70) is

2
(k)
Γµν[δ:γ] =2(1)

gηβ:[γ

(k−1)
gαη :δ] + 2

(k−1)
gαη :[δ

(1)
gγ]η:β − 2

(k−1)
gαη :[δ

(1)
gγ]β:η + 4

(k−1)
gαη :[δ

(0)
Γσγ]β

(1)
gση

+ 2
(k−1)
gαη

(1)
gηβ:[γδ] + 2

(k−1)
gαη

(1)
g[γ|η:β|δ] − 2

(k−1)
gαη

(1)
gβ[γ|:η|δ]

+ 4
(k−1)
gαη

(0)
Γσβ[γ:δ]

(1)
gση + 4

(k−1)
gαη

(1)
gση:[δ

(0)
Γσγ]β + 2

(0)
Γηβ[γ

(k)
gαη :δ]

+ 2
(k)
gαη

(0)
Γηβ[γ:δ]. (2.76)

Using (2.72) the second term in (2.70) is given by

2
k∑
i=1

(k−i)
Γµσ[γ

(i)
Γσδ]ν =2

k∑
i=1

(k−i−1)
gµη

(i−1)
gσζ

(1)
Γησ[γ

(1)
Γ|ζ|δ]ν +

(k−i−1)
gµη

(i)
gσζ

(0)
Γζν[δ

(1)
Γ|ησ|γ]

+
(k−i)
gµη

(i−1)
gσζ

(0)
Γησ[γ

(1)
Γ|ζ|δ]ν +

(k−i)
gµη

(i)
gσζ

(0)
Γησ[γ

(0)
Γ|ζ|δ]ν

 . (2.77)

One wave equation for the vacuum for each perturbation order is obtained
contracting (2.70), i.e.,

(k)
R νδ = 2

(k)
Γµν[δ:µ] + 2

k∑
i=1

(k−i)
Γµσ[µ

(i)
Γσδ]ν = 0. (2.78)
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where, the first term in (2.78) is obtained from the contraction of (2.76)

2
(k)
Γµν[δ:µ] =2(1)

gηβ:[µ

(k−1)
gαη :δ] + 2

(k−1)
gαη :[δ

(1)
gµ]η:β − 2

(k−1)
gαη :[δ

(1)
gµ]β:η + 4

(k−1)
gαη :[δ

(0)
Γσµ]β

(1)
gση

+ 2
(k−1)
gαη

(1)
gηβ:[µδ] + 2

(k−1)
gαη

(1)
g[µ|η:β|δ] − 2

(k−1)
gαη

(1)
gβ[µ|:η|δ]

+ 4
(k−1)
gαη

(0)
Γσβ[µ:δ]

(1)
gση + 4

(k−1)
gαη

(1)
gση:[δ

(0)
Γσµ]β + 2

(0)
Γηβ[µ

(k)
gαη :δ]

+ 2
(k)
gαη

(0)
Γηβ[µ:δ]. (2.79)

and the second term results from the contraction of (2.77)

2
k∑
i=1

(k−i)
Γµσ[µ

(i)
Γσδ]ν =2

k∑
i=1

(k−i−1)
gµη

(i−1)
gσζ

(1)
Γησ[µ

(1)
Γ|ζ|δ]ν +

(k−i−1)
gµη

(i)
gσζ

(0)
Γζν[δ

(1)
Γ|ησ|µ]

+
(k−i)
gµη

(i−1)
gσζ

(0)
Γησ[µ

(1)
Γ|ζ|δ]ν +

(k−i)
gµη

(i)
gσζ

(0)
Γησ[µ

(0)
Γ|ζ|δ]ν

 . (2.80)

It is worth nothing here some of the most important aspects of this last results.

First, observe that (2.66) expresses the perturbations
(k)
gµν in terms of power of the

perturbations (1)
gµν . Thus, each order in (2.78) corresponds to a wave equation related

to such powers. Second, (2.78) can be read as inhomogeneous wave equations because
the second derivatives for the metric becomes from the first term, thus the second
term, formed from products of Christoffel symbols, contributes like a barrier that
affects the frequency of the waves. Third, different eikonal equations are obtained
from the substitution of solutions like gµν := Aµνe

iφ with φ,α = kα, namely WKB

solutions. Note that high order non-linear terms will appear given the factors
(k)
gµν .

As an example, substituting the WKB solutions into (2.60) one obtains

−kµkµAνδ+A µ
νδ: µ+2ikµA µ

νδ: +ikµ:µAνδ−2
(0)
RλνδµA

µλ−
(0)
RλνA

λ
δ −

(0)
RλδA

λ
ν = 0 (2.81)

and from Equations (2.58) one has

Aµµ =
(0)
gµνAνµ = 0 and A ν

µν: = −ikνAµν = 0 (2.82)

The last equation implies that these waves are transversal. Assuming that the
gravitational waves are propagated in geodesics, i.e., that the wave vector is null,

kµkµ = 0, (2.83)
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one finds immediately

A µ
νδ: µ + 2ikµA µ

νδ: − 2
(0)
RλνδµA

µλ −
(0)
RλνA

λ
δ −

(0)
RλδA

λ
ν = 0 (2.84)

that corresponds to the Eikonal equation, which relates the tensor of amplitudes
and the wave vector for space-times perturbed to first order (see (ISAACSON, 1968a;
ISAACSON, 1968b)). Space-times corresponding to higher order perturbations include
the terms appearing in (2.84).

Finally, given that the higher order perturbations are linked with the first order
perturbation for the metric, then the TT gauge can be imposed only from a
simple coordinate gauge, as shown for the first order perturbation in the precedent
section. It implies that these infinitesimal coordinate transformation leads to
gauge conditions which simplify the uncalibrated wave equation (2.78). Other
approximations, in which higher order perturbation in the metric and in its inverse,
without considering averages on the stress-energy tensor have been carry out
(CHOQUET-BRUHAT; GEROCH, 1969).

2.3 Green’s Functions for the Flat Background and Perturbations of
First Order

In this section, the Green’s functions are introduced with the aim to perform a
multipolar expansion. Also, the decomposition of the wave functions in terms of
advance and retarded potentials is needed to explain the back reaction effects, which
appears in the presence of curvature in the non-linear as well as in the linear case.
However, here it is considered only the flat case, where only the retarded Green
function is not null.

From (2.60), the inhomogeneous gravitational wave equation in the TT gauge for a
Minkowski’s background reads

�hµν + 16πTµν = 0, (2.85)

where the d’Alembertian is given by

� = −∂2
t +∇2. (2.86)

Therefore, the wave equation for the flat background takes the form

(−∂2
t +∇2)hµν + 16πTµν = 0, (2.87)

19



where, the perturbations and the source term are functions of the coordinates, i.e.,

hµν := hµν(t,x), Tµν := Tµν(t,x). (2.88)

In particular, the perturbations and the source can be described in terms of the
Fourier transforms

hµν(t,x) = 1√
2π

ˆ ∞
−∞

dω h̃µν(ω,x)e−iωt,

Tµν(t,x) = 1√
2π

ˆ ∞
−∞

dω T̃µν(ω,x)e−iωt, (2.89)

where, it is assumed that the inverse transformation exists. Consequently, it is
possible to return again to the original variables. Thus, the inverse transform is
given by

h̃µν(ω,x) = 1√
2π

ˆ ∞
−∞

dt hµν(t,x)eiωt,

T̃µν(ω,x) = 1√
2π

ˆ ∞
−∞

dt Tµν(t,x)eiωt. (2.90)

Substituting (2.89) into (2.87) one obtains

1√
2π

ˆ ∞
−∞

dω
[
(ω2 +∇2)h̃µν(ω,x) + 16πT̃µν(ω,x)

]
e−iωt = 0, (2.91)

which will be satisfied only if the integrand is null, i.e.,

(ω2 +∇2)h̃µν(ω,x) + 16πT̃µν(ω,x) = 0. (2.92)

This equation is known as a Helmholtz equation (JACKSON, 1962). Redefining the
second term in the last equation, as 4T̃µν(ω,x) = F̃µν , then,

(ω2 +∇2)h̃µν(ω,x) + 4πF̃µν(ω,x) = 0, (2.93)

and from the fact that the wave vector is null, one has

(kiki +∇2)h̃µν(ω,x) + 4πF̃µν(ω,x) = 0. (2.94)

The Green’s function used to construct the solution must satisfy

(kiki +∇2
x)Gk(x; x′) + 4πδ(x− x′) = 0, (2.95)
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where x indicates the observer position and x′ indicates each point in the source.

The Laplacian can be decomposed as a Legendrian plus a radial operator, namely

∇2
x = 1

r2
∂

∂r

(
r2 ∂

∂r

)
+ L2, (2.96)

where, the Legendrian is explicitly defined as

L2 = 1
sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 , (2.97)

and r = |x − x′|. Assuming that x′ = 0, i.e., the source is at the coordinate origin,
then

L2Gk(x; x′) = 0. (2.98)

Since far enough from the source the gravitational waves must be spherical, then
(2.95) is reduced to

1
r

d2

dr2 (rGk(r)) + kik
iGk(r) + 4πδ(r) = 0. (2.99)

Then, for all points in the 3-space except for the origin, we have that the
homogeneous version of (2.99) is given by

d2

dr2 (rGk(r)) + kik
i(rGk(r)) = 0, (2.100)

whose family of solutions is

Gk(r) = C+

r
eikr + C−

r
e−ikr, (2.101)

where, k = |k| =
√
kiki and C± are arbitrary constants. The physically acceptable

solutions must satisfy
lim
kr→0

Gk(r) = 1
r
. (2.102)

Therefore, the solutions take the form

Gk(r) = C

r
eikr + 1− C

r
e−ikr. (2.103)

Now, we notice that the inverse Fourier transform of (2.95) leads immediately to
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the wave equation for the Green’s function

�G(t,x; t′,x′) + 4πδ(x− x′)δ(t− t′) = 0, (2.104)

with

G(t,x; t′,x′) = 1
2π

ˆ ∞
−∞

dω Gk(x,x′)e−iω(t−t′),

= C

|x− x′|
δ (τ − |x− x′|) + 1− C

|x− x′|
δ (τ + |x− x′|) ,

= CG(+)(t,x; t′,x′) + (1− C)G(−)(t,x; t′,x′), (2.105)

where, τ = t− t′ and

G(±)(t,x; t′,x′) = 1
|x− x′|

δ (τ ∓ |x− x′|) . (2.106)

Note that the solution for the Green’s function (2.103) is written in terms of two
functions, one for the advance time G(+) and the other for the retarded time G(−).

If the second term in the wave equation (2.87) is written as

16πTµν(t,x) = 4πFµν(t,x),

= 4π
ˆ ∞
−∞

ˆ
V

dt′d3x′ Fµν(t′,x′)δ(x− x′)δ(t− t′), (2.107)

where V is the source volume, then hµν must be

hµν(xα) = 4
ˆ
d4x′ Tµν(xα

′)G(xα;xα′), (2.108)

where the integral is defined for all times and for the volume occupied by the source.
Substituting (2.105) into (2.108), one has

hµν(xα) = 4
ˆ
d4x′ Tµν(xα

′)
(
CG(+)(xα;xα′) + (1− C)G(−)(xα;xα′)

)
. (2.109)

Now, observing the structure of the Green’s function (2.106), the delta distribution
argument is

t± = t′ ∓ |x− x′|. (2.110)

This means that the Green’s function is describing two travelling waves, one
outgoing and other ingoing. However, the advanced Green’s function is physically
unacceptable in the flat background because of the causality principle. Thus, the
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solution is restricted only to the retarded Green’s function, which indicates that one
wave will be detected at the point x in a time t after generated at a point x′ in a
time t′. This wave propagates from x′ to x with velocity c. Therefore (2.109) takes
the form

hµν(xα) = 4
ˆ
d4x′ Tµν(xα

′)G(−)(xα;xα′). (2.111)

Substituting explicitly the Green’s function (2.106) one obtains the expression for
the wave function in term of the sources

hµν(t,x) = 4
ˆ ∞
−∞

ˆ
V

dt′d3x′
Tµν(t′,x′)δ (t− t′ + |x− x′|)

|x− x′|

= 4
ˆ
V

d3x′
Tµν(t− |x− x′|,x′)

|x− x′|
. (2.112)

It is worth mentioning that the advance Green’s function in the presence of curved
space-time must be taken into account, because both terms, advance and retarded,
appears in back reaction phenomena. As a consequence of the effective potential
in the radial equations, for example, when the Schwarzschild’s space-time is axially
perturbed, two radial waves will travel between the source and the spatial infinity.

2.4 Multipolar Expansion

A series expansion is a way to compute the contribution of the sources to the
gravitational radiation in Equation (2.112). This kind of procedure is known in
the literature as multipolar expansion.

Note that
1

|x− x′|
= 1

(r2 − 2xixi′ + x′ix
i′)1/2 , (2.113)

where, r2 = xix
i. The observer, at x, is far from the source, then ‖x‖ � ‖x′‖, as

sketched in Figure 2.1.
Thus, r2 � x′ix

i′ , then,
1

|x− x′|
= 1

(r2 − 2xixi′)1/2 . (2.114)

Expanding in McLaurin series for xk,

1
|x− x′|

= 1
r

+ x′kx
k

r3 + 1
2

3x′kx′mxkxm
r5 + · · · (2.115)
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Figure 2.1 - Source and observer’s position.

Then, whenever r →∞, i.e., whenever the observer is far from the source,

1
|x− x′|

≈ 1
r

(2.116)

and therefore (2.112) can be written (CATTANI, 2010a) as follows

hµν(t,x) = 4
r

ˆ
V

d3x′ Tµν(t− |x− x′|,x′). (2.117)

On the other hand,

|x− x′| = r

(
1− 2x

ix′i
r2

)1/2

, (2.118)

which, can be expanded in McLaurin series for xi

|x− x′| = r

(
1− x′k

r
nk − 1

2
x′kx

′
l

r2 nknl + · · ·
)
, (2.119)

where,

nk = xk

r
, nknk = 1. (2.120)

Therefore, far from the gravitational wave sources

t− |x− x′| = t− r + x′kn
k, (2.121)
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which, implies that

Tµν(t− |x− x′|) = Tµν(t− r + x′kn
k). (2.122)

Defining t′ = t− r, (2.120) can be written in the form

Tµν(t− |x− x′|) = Tµν(t′ + x′kn
k). (2.123)

Thus, the stress-energy tensor can be expanded as

Tµν(t′ + x′kn
k) = Tµν(t′) + Tµν,1(t′)x′knk + 1

2!Tµν,11(t′)x′kx′jnknj

+ 1
3!Tµν,111(t′)x′ix′jx′kninjnk + · · · (2.124)

where is assumed that the source is moving slowly with respect to the speed of light
c, or in other words, r � λ/2π, with λ the gravitational wave length. Substituting
the last equation in the expression for the wave function (2.117), one obtains

hµν(t,x) =
4
r

ˆ
V

d3x′
(
Tµν(t′) + Tµν,1(t′)x′knk + 1

2!Tµν,11(t′)x′kx′jnknj

+ 1
3!Tµν,111(t′)x′ix′jx′kninjnk + · · ·

)
(2.125)

Thus, it is possible to define the following momenta of the stress-energy tensor
(PETERS, 1964; SCHUTZ; RICCI, 2010)

M(t) =
ˆ
V

d3x T 11(t, xm), M i(t) =
ˆ
V

d3x T 11(t, xm)xi,

M ij(t) =
ˆ
V

d3x T 11(t, xm)xixj, M ijk(t) =
ˆ
V

d3x T 11(t, xm)xixjxk,

P i(t) =
ˆ
V

d3x T 1i(t, xm), P ij(t) =
ˆ
V

d3x T 1i(t, xm)xj,

P ijk(t) =
ˆ
V

d3x T 1i(t, xm)xjxk, Sij(t) =
ˆ
V

d3x T ij(t, xm),

Sijk(t) =
ˆ
V

d3x T ij(t, xm)xk, Sijkl(t) =
ˆ
V

d3x T ij(t, xm)xkxl. (2.126)
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Using the conservation equation

T µν ;µ = 0, (2.127)

that in the case of the linear theory reads

T 1ν
,1 = −T iν,i. (2.128)

Since T 11
,1 = −T i1,i, it is possible to re-express

Ṁ(t) =
ˆ
V

d3x T 11
,1(t, xm),

= −
ˆ
V

d3x T 1i
,i(t, xm),

= −
˛
∂V

d2x T 1i(t, xm)ni,

= 0, (2.129)

where, ∂V is the source surface and ni is its normal vector. Thus, one has

Ṁ j(t) =
(ˆ

V

d3x T 11(t, xm)xj
)
,1
,

=
ˆ
V

d3x T 11
,1(t, xm)xj +

ˆ
V

d3x T 11(t, xm)ẋj,

= −
ˆ
V

d3x T 1i
,i(t, xm)xj +

ˆ
V

d3x T 11(t, xm)ẋj,

=
ˆ
V

d3x T 1i(t, xk)δ j
i ,

= P j(t). (2.130)

Also, the following relation between the momenta for the stress-energy tensor Tµν
are established

Ṁ ij = P ij + P ji, Ṁ ijk = P ijk + P jki + P kij, (2.131a)

Ṗ j = 0, Ṗ ij = Sij, Ṗ ijk = Sijk + Sikj, (2.131b)

M̈ jk = 2Sjk,
...
M

ijk = 3!S(ijk). (2.131c)
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Thus, from (2.125) it is obtained that

h
11 = 4

r
M + 4

r
P ini + 4

r
Sijninj + 4

r
Ṡijkninjnk + · · · ,

h
1i = 4

r
P i + 4

r
Sijnj + 4

r
Ṡijknjnk + · · · ,

h
ij = 4

r
Sij + 4

r
Ṡijknk + · · · , (2.132)

which is known as the multipolar expansion (SCHUTZ; RICCI, 2010). From the gauge
condition (2.49), one obtains

New
h
µν =

Old
h
µν + 2ξ(µ,ν) − ηµνξγ ,γ, (2.133)

from which, the changes in the different components of the metric result as

δh
11 = ξ1,1 + ξi ,i,

δh
1j = ξ1,j + ξj,1,

δh
jl = ξj,l + ξl,j − δjlζµµ. (2.134)

One can select the gauge functions

ξ1 = 1
r
P i

i + 1
r
P jlnjnl + 1

r
Siijn

j + 1
r
Sijkninjnk,

ξi = 4
r
M i + 4

r
P ijnj −

1
r
P j

jn
i − 1

r
P jknjnkn

i + 4
r
Sijknjnk

−1
r
Sllkn

kni − 1
r
Sjlknjnlnkn

i, (2.135)

such that in the TT gauge, the components hTTµν take the form

h
TT11 = 4M

r
,

h
TT1i = 0,

h
TTij = 4

r

[
⊥ik⊥jl Slk + 1

2 ⊥
ij
(
Skln

knl − Skk
)]
. (2.136)

Observe that hTT11 is not a radiative term, it corresponds to the Newtonian potential
which falls as ∼ 1/r. From h

TTij we see that the radiative terms have quadrupolar
nature or higher. The projection tensor ⊥ij is defined (WEINBERG; DICKE, 1973;
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BUONANNO, 2007) as

⊥ij= δij − ninj (2.137)

so that

⊥ij nj = 0, ⊥ij⊥ k
j =⊥ik . (2.138)

Since, hTTij does not depend on the trace of S, then one can define

S
ij = Sij − 1

3δijS
k
k, (2.139)

which is the trace-free part of Sij. In the same manner, the trace-free part of M ij is
defined as

M
ij = M ij − 1

3δijM
k
k, S

ij = 1
2M̈

ij
. (2.140)

Therefore

h
TTij = 2

r

(
⊥ik⊥jl M̈kl + 1

2 ⊥
ij M̈ lkn

lnk
)
, (2.141)

which depends strictly on the quadrupolar contribution of the source.

Returning to the weak field approximation, it can be shown that another form to
expand the left side of (2.113) is in spherical harmonics (JACKSON, 1962), i.e.,

1
x− x′

= 4π
∞∑
l=0

l∑
m=−l

1
2l + 1

rl<
rl+1
>

Ȳlm(θ′, φ′)Ylm(θ, φ), (2.142)

where, r> = max(|x|, |x′|) and r< = min(|x|, |x′|). Hence, (2.112) can be written as

hµν(xα) = 16π
ˆ
V

d3x′ Tµν(t− |x− x′|, xj′)
∑
l,m

1
2l + 1

rl<
rl+1
>

Ȳlm(θ′, φ′)Ylm(θ, φ),

(2.143)
where, the volume element is

d3x′ = r
′2dr′dΩ′, (2.144)

and dΩ′ = sin2 θ′dθ′dφ′, and the symbol∑l,m represents the double sum that appears
in (2.142).
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It is worth noting that (2.143) can be written as

hµν(xα) = 16π
∞∑
l=0

l∑
m=−l

1
2l + 1

Ylm(θ, φ)
rl + 1 q lm

µν , (2.145)

where the multipolar moments are defined as

q lm
µν =

ˆ
V

d3x′ rl
′
Tµν(t− |x− x′|, xj′)Ȳlm(θ′, φ′), (2.146)

which are equivalent to those multipolar moments defined in (2.126).

2.5 Gravitational Radiation from Point Particle Binary System

It is worth recalling the main steps given by Peters and Mathews (PETERS;
MATHEWS, 1963) to obtain the well-known and widespread equation used for the
power radiated by two point masses in a Keplerian orbit.

As it is well known in the literature, in the weak field limit of the Einstein’s
field equations, i.e., when the metric can be written as a perturbation hµν of the
Minkowski metric ηµν , namely

gµν = ηµν + hµν , |hµν | � |ηµν |, (2.147)

the power emitted by any discrete mass distribution in the limit of low velocities,
as shown, e.g., in Ref. (PETERS; MATHEWS, 1963), is given by

P = 1
5

(...
Qij

...
Qij −

1
3
...
Qii

...
Qjj

)
, (2.148)

where the dots indicate derivative with respect to the retarded time u and

Qij =
∑
a

maxaixaj, (2.149)

in which a labels each particle of the system and xai is the projection of the position
vector of each mass along the x and y axes. Particularly, for a point particle binary
system of different masses in circular orbits, when the Lorentz factor is considered
to be γ = 1, one can write

xa1 = ra cos(νu− πδa2), xa2 = ra sin(νu− πδa2), a = 1, 2 (2.150)

as shown in Figure 2.2
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Figure 2.2 - Binary system as viewed from the top. The coordinates xai of the particles
are indicated, as well as the angle νu with respect to the x axis.

Here, ra is given by (6.12), ν by (6.13), and the Kronecker delta discriminates each
particle. Then, the components of Qij read

Qij =
 µd2

0 cos2(νu) µd2
0 sin(νu) cos(νu)

µd2
0 sin(νu) cos(νu) µd2

0 sin2(νu)

 , (2.151)

thus,

...
Qij =

 4ν3µd2
0 sin(2νu) −4ν3µd2

0 cos(2νu)
−4ν3µd2

0 cos(2νu) −4ν3µd2
0 sin(2νu)

 . (2.152)

Finally, substituting the above equation in (2.148), one obtains

P = 32
5 µ

2ν6d4
0 = 32m1

2m2
2(m1 +m2)
5d5

0
, (2.153)

where Kepler’s third law is used in the last equality.

If the eccentricity of the orbits are taken into account, the expression for the power
lost by emission in gravitational waves (PETERS; MATHEWS, 1963) become

P = 8
15
m1

2m2
2(m1 +m2)

a5(1− ε2)5

(
1 + ε cos φ̃

)4
(

12
(
1 + ε cos φ̃

)2
+ ε2 sin2 φ̃

)
, (2.154)

where
˙̃φ = ((m1 +m2)a(1− ε2))1/2

d2 and d = a(1− ε2)
1 + ε cosφ, (2.155)

where d is the separation of the particles, a is the semi-major axis of the ellipse
described by the particles and φ̃ is the angle between the line that connects both
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particles and the x axis.
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3 THE Eth FORMALISM AND THE SPIN-WEIGHTED SPHERICAL
HARMONICS

Before introducing the outgoing characteristic formulation of the general relativity,
it is convenient to consider a standard tool to regularise the angular differential
operators, namely the eth formalism, which is based on a non-conformal mapping
of the regular coordinate charts to make a finite coverage of the unit sphere. This
kind of mapping was originally used in global weather studies (WILLIAMSON, 1970;
SADOURNY, 1972; RONCHI et al., 1996), and is based on the stereographic and
gnomonic projections. It is worth mentioning that these projections that make the
finite coverage of the unit sphere, remove the singular points related to the fact that
the sphere can not be covered by only one coordinate chart.

The eth formalism (NEWMAN; PENROSE, 1966; GOLDBERG et al., 1967; GÓMEZ et al.,
1997; STEWART, 1993; TORRES DEL CASTILLO, 2007) is a variant of the Newman-
Penrose formalism. As such in this last formalism, scalars and associated functions,
and operators related to the projections onto the null tangent vectors to the unit
sphere are present. The projection onto the tangent vectors to a topological sphere
(a diffeomorphism to the unit sphere) can also be generalised.

In order to present the eth formalism, the non-conformal mapping using
stereographic coordinates is given. After that, a decomposition to the unit sphere and
the transformation of vectors and one-forms are shown. These transformation rules
are extended to the dyads and their spin-weights are found. It is worth mentioning
that the spin-weight induced into the scalar functions comes from the transformation
rules associated with the stereographic dyads. However, this property is not exclusive
of this kind of coordinates, and appears as a transformation associated with the
coordinate maps needed to make the finite coverage to the unit sphere. Then the
spin-weighted scalars are constructed from the irreducible representation for tensors
of type (0, 2) and then, the general form for a spin-weighted scalar of spin-weight
s is shown. The rising and lowering operators are presented from the projection of
the covariant derivative associated with the unit sphere metric and the Legendrian
operator is then expressed in terms of these rising and lowering operators.

Subsequently, some properties of spin-weighted scalars are shown and the
orthonormality of such functions is defined. It is shown that the spin-weighted
spherical harmonics sYlm constitute a base of functions in which any spin-weighted
function on the sphere can be decomposed. The spin-weighted spherical harmonics
sYlm and the action of the rising and lowering operators in them are constructed.
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Finally, another base of functions to decompose spin-weighted functions on the
sphere, composed by the spin-weighted spherical harmonics sZlm, is defined as linear
combinations of the sYlm.

3.1 Non-conformal Mappings in the Sphere

There are infinite forms to make up finite coverage of the sphere. The principal
aim here is to show an atlas, with at least two coordinate charts, in which all
points in S2 are mapped. In the context of the global weather studies diverse
useful schemes were proposed, from the numerical point of view, to make finite
coverages to the sphere (SADOURNY et al., 1968; WILLIAMSON, 1970; SADOURNY,
1972; THACKER, 1980; BAUMGARDNER; FREDERICKSON, 1985; CHEONG; KANG,
2015). Only two of these schemes become important in numerical relativity. The
first one is the stereographic projection in two maps and the second one is the
gnomonic projection in six maps, also known as cubed sphere. Both offer great
numerical advantages, as the simplification of all angular derivatives, in the case of
the stereographic coordinates and simplification in the numerical computation as in
the case of the cubed sphere projection. It is worth stressing that the eth formalism
is totally independent on the selection of the coordinates, as we will show in the
next sections. However, given the simplification in some of the calculations and its
use in those numerical computations, we present in details the connection between
the stereographic coordinates and the spin-weighted scalars.

3.2 Stereographic Coordinates

This section starts with the description of the construction of the stereographic atlas
which covers the entire sphere. As an example, a point (in green) in the equatorial
plane is projected into the north hemisphere from the south pole as sketched in
Figure 3.1

The coordinates on the equatorial plane (the green point) are represented as the
ordered pair (q, p) and the point to be represented in the sphere P as the ordered
triad (x, y, z). From Figure 3.1, one has

ρ = tan
(
θ

2

)
, q = ρ cosφ, p = ρ sinφ. (3.1)
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Figure 3.1 - Stereographic coordinates construction: the equatorial plane is projected from
the south pole to the surface of the unit sphere. The interior points to the
equator are projected to the north hemisphere, whereas the exterior points
are projected to the south.

Then, it is possible to represent the coordinates through a complex quantity ζ

(NEWMAN; PENROSE, 1966), in the form

ζ = tan
(
θ

2

)
eiφ; (3.2)

thus, <(ζ) = q and =(ζ) = p. It is worth stressing that it is not possible to map all
points in the spherical surface into the equatorial plane, even if the plane is extended
to the infinity. Thus, it is necessary to appeal to at least two coordinate charts. One
possible way to do this is by selecting one for each hemisphere north (N) and south
(S) (GOLDBERG et al., 1967), namely

ζN = tan
(
θ

2

)
eiφ, ζS = cot

(
θ

2

)
e−iφ, ζN

S
= qN

S
+ ipN

S
; (3.3)

such that
|qN | ≤ 1, |pN | ≤ 1, (3.4)

which defines a rectangular domain in the plane to be mapped into the sphere.

From the definition (3.1), one immediately has

q = tan
(
θ

2

)
cosφ, p = tan

(
θ

2

)
sinφ. (3.5)
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Taken into account that

tan
(
θ

2

)
= sin θ

2

(
1 + tan2

(
θ

2

))
, (3.6)

then the relationship between the rectangular and the q, p reads

x = 2q
1 + q2 + p2 , y = 2p

1 + q2 + p2 . (3.7)

This allows to write the z coordinate as

z = cos θ,

= 1− q2 − p2

1 + q2 + p2 . (3.8)

With equations (3.7) and (3.8) the coordinate lines (q, p) on the surface of the
sphere are constructed, as shown in Figure 3.2, which shows how the atlas
{{qN , pN}, {qS, pS}} for the unit sphere is constructed.

Figure 3.2 - Coordinate atlas in the sphere. Coordinate lines as result of the mapping of
the plane maps contructed from the equator of the sphere.

From (3.3), for all points except the poles,

ζN = 1
ζS

(3.9)
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or

ζN = ζ̄S

ζS ζ̄S
. (3.10)

In terms of the q and p coordinates, (3.10) reads

qN = qS
q2
S + p2

S

, pN = −pS
q2
S + p2

S

, (3.11)

which define the relationship between the north and south coordinates, and therefore
it defines the transformation between the corresponding charts. Thus, the form of
the coordinate lines (qN , pN), corresponding to the north map when pS or qS are
considered as constant, can be traced (see Figure 3.3). It is particularly useful when a
discretisation scheme of the angular operators in the sphere is implemented, because
it shows clearly that a bi-dimensional interpolation is needed to pass information
from one to another coordinate map.

Figure 3.3 - Coordinate lines of north hemisphere into the south region. The equatorial
line is indicated as a circle in black.
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3.3 Decomposition of the Metric of the Unit Sphere

The square of the line element that describes the S2 manifold (the unit sphere) in
spherical coordinates is given by

ds2 = dθ2 + sin2 θdφ2. (3.12)

Now, from (3.2) the total differential of ζ and ζ are computed, namely

dζ = ζ,θdθ + ζ,φdφ and dζ = ζ ,θdθ + ζ ,φdφ. (3.13)

Here the absence of the indices N or S means that the results are equal for both
hemispheres. Thus, from (3.13) one obtains that

dζdζ = ζ,θζ ,θdθ
2 +

(
ζ,θζ ,φ + ζ,φζ ,θ

)
dφdθ + ζ,φζ ,φdφ

2

= 1
4
(
1 + ζζ

)2 (
dθ2 + sin2 θdφ2

)
.

Therefore, the unit sphere metric in terms of ζ, ζ takes the non-diagonal form
(STEWART, 1993),

dθ2 + sin2 θdφ2 = 4(
1 + ζζ

)2dζdζ. (3.14)

Expressing the total derivatives dζ and dζ as

dζ = dq + idp, dζ = dq − idp, (3.15)

then
dζdζ = dq2 + dp2. (3.16)

For this reason, the element of line (3.14) can be written as (GÓMEZ et al., 1997),

dθ2 + sin2 θdφ2 = 4(
1 + ζζ

)2

(
dq2 + dp2

)
. (3.17)

Now, it is considered that the metric (3.17) can be decomposed in terms of a new
complex vector field qA (NEWMAN; PENROSE, 1966; GOLDBERG et al., 1967) as follows

qAB = q(AqB). (3.18)

These vectors are related to the tangent vectors to the unit sphere along the
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coordinate lines. These two vector fields, qA and qA, that allow to decompose the
unit sphere metric, are known as dyads and it is said that the metric is written in
terms of dyadic products. The metric and its inverse are related as

qABq
BC = δ C

A , (3.19)

then, in terms of these dyads one obtains

δ C
A = q(AqB)q

(BqC). (3.20)

Imposing that
qBq

B = 2, qBq
B = 0, (3.21)

the expression (3.20) is reduced to

δ C
A = q(Aq

C). (3.22)

From (3.17) and (3.18)
4(

1 + ζζ
)2 δAB = q(AqB), (3.23)

one obtains
|q3|2 = 4(

1 + ζζ
)2 and |q4|2 = 4(

1 + ζζ
)2 .

Thus, it is possible to make the choice

q3 = 2(
1 + ζζ

) and q4 = 2i(
1 + ζζ

) .
For this reason, the complex vectors qA can be written (NEWMAN; PENROSE, 1966;
GOLDBERG et al., 1967) as,

qA = 2(
1 + ζζ

) (δ3
A + iδ4

A

)
and qA = 2(

1 + ζζ
) (δ3

A − iδ4
A

)
. (3.24)

Raising the index of qA with the metric qAB one obtains

qA =

(
1 + ζζ

)
2

(
δA3 + iδA4

)
and qA =

(
1 + ζζ

)
2

(
δA3 − iδA4

)
. (3.25)
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If the spherical coordinates are used, then (3.18) can be written as
1 0

0 sin2 θ

 =
 q3q3 q3q4 + q3q4

q3q4 + q3q4 q4q4

 , (3.26)

which implies that the spherical dyads (TORRES DEL CASTILLO, 2007) take the form

qA = δ 3
A + i sin θδ 4

A , qA = δ 3
A − i sin θδ 4

A , (3.27a)

qA = δA3 + i csc θδA4, qA = δA3 − i csc θδA4. (3.27b)

3.4 Transformation Rules for Vectors and One-forms

In order to establish the transformation rules for the dyads, it is necessary to
understand how the differential operators transform between one map to another.
Thus, as qN := qN(qS, pS) and pN := pN(qS, pS) as shown explicitly in (3.11), then
the one-forms ∂qN and ∂qS transform as

∂qN = (∂qN qS)∂qS + (∂qNpS)∂pS , (3.28a)

∂pN = (∂pN qS)∂qS + (∂pNpS)∂pS . (3.28b)

Computing each coefficient in Equations (3.28), one obtains

∂qN qS = p2
N − q2

N

(q2
N + p2

N)2 , ∂qNpS = 2qNpN
(q2
N + p2

N)2 ,

∂pN qS = − 2qNpN
(q2
N + p2

N)2 , ∂pNpS = p2
N − q2

N

(q2
N + p2

N)2 .

It means that the differential operators (3.28) become

∂qN = 1
(q2
N + p2

N)2

((
p2
N − q2

N

)
∂qS + 2qNpN∂pS

)
, (3.29a)

∂pN = 1
(q2
N + p2

N)2

(
−2qNpN∂qS +

(
p2
N − q2

N

)
∂pS

)
. (3.29b)

Now, the transformation rule for the vectors will be examined

dxAN = ∂xBS x
A
Ndx

B
S . (3.30)
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Specifically, the transformation rules for the vectors dq and dp are given by

dqN = ∂qSqNdqS + ∂pSqNdpS, (3.31a)

dpN = ∂qSpNdqS + ∂pSpNdpS. (3.31b)

Here, it is important to point out that the equations (3.11) are symmetrical with
respect to the interchange of indices N and S, i.e., the same expressions are obtained
if qS and pS are considered as functions of qN and pS, therefore

∂qSqN = p2
S − q2

S

(q2
S + p2

S)2 , ∂qSpN = 2qSpS
(q2
S + p2

S)2 ,

∂pSqN = − 2qSpS
(q2
S + p2

S)2 , ∂pSpN = p2
S − q2

S

(q2
S + p2

S)2 .

Then, the vectors (3.31) transform as

dqN = 1
(q2
S + p2

S)2

((
p2
S − q2

S

)
dqS − 2qSpSdpS

)
, (3.32a)

dpN = 1
(q2
S + p2

S)2

(
2qSpSdqS +

(
p2
S − q2

S

)
dpS

)
. (3.32b)

Notice that, by virtue of the interchangeability of the indices in (3.11), the relations
(3.29) and (3.32) for one-forms and vectors are symmetrical with respect to the
interchange of the indices N and S. Therefore the same rules are applied to construct
the inverse transformation from north to south.

3.5 Transformation Rules for the Dyads and Spin-weight

Any vector field v can be expanded in terms of a basis of one-forms eA, namely
v = vAeA. Thus, for each hemisphere

vN = vANeAN and vS = vAS eAS . (3.33)

In particular for a local coordinate basis {∂AN} and {∂AS}, the complex vectors qN

and qS can be expressed as the linear combinations, i.e.,

qN = qAN∂AN and qS = qAS ∂AS . (3.34)
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Using the explicit expression for the dyads components qAN given in (3.25), (3.34)
take the explicit form

qN =

(
1 + ζNζN

)
2 (∂qN + i∂pN ) . (3.35)

Then, transforming the basis in (3.35), using for this (3.29), one obtains

qN =− ζS
ζS

qS, (3.36)

which is the transformation rule for the dyads. It is worth stressing that, apparently,
this transformation appears as induced by the stereographic mapping used to make
the finite coverage to the unit sphere. However, it is a vector property that appears
by the fact that the atlas is constructed from two local charts, whose centres are
diametrically opposed. This result can be written in terms of components, as

qAN = eiαqAS , (3.37)

where the complex factor

eiα = −ζS
ζS
, (3.38)

is the spin-weight associated with the transformation of coordinates (NEWMAN;

PENROSE, 1966; GOLDBERG et al., 1967; STEWART, 1993).

From (3.37) it is obtained immediately the rule for the complex conjugate dyads
components, namely

qAN = e−iαqAS . (3.39)

In order to complete this description, it is necessary to examine the transformation
rules of the covariant components of the dyads. Thus, expressing the dyads as linear
combinations of the vectors

qN = qANeAN and qS = qASeAS . (3.40)

Then, using a local coordinate basis, one has

qN = 2(
1 + ζNζN

) (dqN + idpN) . (3.41)
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Using the transformation rules (3.32), one obtains

qN = −ζS
ζS

qS.

This shows that these transformation rules are completely consistent. Thus, it allows
one to lower the index with the unit sphere metric, i.e. from (3.37) and (3.39), one
has

qAN = eiαqAS and qAN = e−iαqAS . (3.42)

It is worth mentioning that the unit sphere metric (3.18) has spin-weight zero,
namely

qN (AqNB) = eiαqS(Ae
−iαqSB)

= qS(AqSB).

The spin-weight of a finite product of these tangent vectors depends on the number
of qA, qA, qA and qA considered. For example, if the product ∏n

i=1 qAi of tangent
vectors is considered, then its transformation from north to south hemisphere is
given by

n∏
i=1

qNAi =
(
eiα
)n n∏

i=1
qSAi, (3.43)

which implies that this product has a spin-weight of s = n. As another example, if
the product ∏n

i=1 qAi
∏m
j=n+1 qAj is considered, then it transforms as

n∏
i=1

qNAi

m∏
j=n+1

qNAj =
(
eiα
)(2n−m) n∏

i=1
qSAi

m∏
j=n+1

qSAj. (3.44)

which means that its spin-weight is s = 2n − m. Therefore, if scalar quantities
involving products like those given above are considered, then these scalars must
have spin-weight induced by these products. Thus, the scalar functions constructed
through the projection of the tensors onto these dyads, inherits the spin-weight
carried by these dyads. This crucial point will be clarified in the next section.

3.6 Spin-weighted Scalars and Spin-weight

Here, we will show that any tensor field of rank 2 of type (0, 2), namely ωAB, in
the tangent space of the unit sphere admits a irreducible decomposition in spin-
weighted functions (STEWART, 1993; GÓMEZ et al., 1997). In order to show that, it is
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first considered that ωAB can be decomposed into its symmetric and anti-symmetric
part, i.e.,

ωAB = ω(AB) + ω[AB]. (3.45)

The symmetric part can be separated in two parts, one trace-free and other
corresponding to its trace

ω(AB) = tAB + qAB
2 ω, (3.46)

where t = qABtAB = 0, i.e., tAB is the trace-free symmetric part of ωAB, and the
second term is its trace, i.e.,

ω = ωABq
AB

= 2ωABq(AqB). (3.47)

Thus, ωAB can be written as

ωAB = tAB + qAB
2 ω + ω[AB]. (3.48)

The anti-symmetric part can be expressed as

ω[AB] = ωCDδ
C

[Aδ
D
B]

where using (3.22)

ω[AB] = ωCD
2

(
q(CqA)q

(DqB) − q(CqB)q
(DqA)

)
= 1

4
ωCD

2

 (qAqB − qAqB)
(
qCqD − qCqD

),
i.e.,

ω[AB] = 1
2q[AqB]u, (3.49)

where
u = ωCDq

[CqD]. (3.50)

For this reason, (3.48) can be written as

ωAB = tAB + ω

2 qAB + 1
2q[AqB]u. (3.51)

Here, it is important to notice that ω and u are scalar functions with spin weight
zero, as given in (3.47) and (3.50) respectively. The symmetric traceless part, tAB
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admits a irreducible decomposition in scalar spin-weighted functions as follow

I = tABq
AqB, L = tABq

AqB, S = tABq
AqB, (3.52)

where, if it is considered that tAB ∈ R, then L = I, and S = S.
Consequently, any tensor field of type (0, 2), say ωAB, is completely determined by a
linear combination of spin-weighted scalar fields of weight 0, 2 and −2 (GOLDBERG

et al., 1967; STEWART, 1993). In general, it is possible to construct spin-weighted
scalars from tensor fields into the tangent space to the unitary sphere, in the form

sΨ =
n∏
i=1

qAi

r∏
j=n+1

qAj

m∏
k=1

qBk
s̃∏

l=m+1
qBlΨA1···AnAn+1···Ar

B1···BmBm+1···Bs̃ . (3.53)

Then, it is possible to compute the spin-weight of sΨ taking advantage of (3.44).
Considering the expression (3.53) for the north or south hemisphere, and making
the transformation from one region to another, one obtains that the spin-weight for
the sΨ function is,

s = 2(n+m)− r − s̃. (3.54)

3.7 Raising and Lowering Operators

Here it will be shown the action of the differential operators induced by the projection
of the covariant derivative of the tensor field defined in (3.53). In order to do this,
it is useful to compact the notation in the form

Λ̃Ãab
=

b∏
i=a

ΛAi , Λ̃Ãab =
b∏
i=a

ΛAi , (3.55)

and for the tensor field
ΨB̃1m

Ã1n
= ΨB1···Bm

A1···An . (3.56)

Thus, (3.53) will be written as

sΨ = Λ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n
. (3.57)

The eth operator ð is defined through the projection of the covariant derivative of
ΨB1···Bm

A1···An associated with qAB noted by

4AΨB1···Bm
A1···An = ΨB1···Bm

A1···An|A, (3.58)
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onto the dyads q, i.e.,

ð sΨ = qD sΨ|D
= qDΛ̃B̃1m

Λ̃Ã1nΨB̃1m
Ã1n|D

, (3.59)

where the symbols ΛBi and the ΛAj are defined as

ΛBi =

qBi if i ≤ x

qBi if i > x
, (3.60a)

and

ΛAj =

q
Aj if j ≤ y

qAj if j > y
, (3.60b)

for 1 ≤ x ≤ m and 1 ≤ y ≤ n. In this case, the spin-weight of this function, in
agreement with (3.54), will be

s = 2(x+ y)− (m+ n). (3.61)

On the other hand, the eth bar operator is defined as

ð sΨ = qDΛ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n|D
. (3.62)

After some algebra, it is shown that the ð and ð operators acting on a spin-weighted
function sΨ can be expressed as

ð sΨ = qD∂D sΨ + sΩ sΨ and ð sΨ = qD∂D sΨ− sΩ sΨ (3.63)

(see Appendix A for further details). It is worth stressing that from (3.63) the ð and
ð operators can be written in general (NEWMAN; PENROSE, 1966; GOLDBERG et al.,
1967; GÓMEZ et al., 1997) as

ð = qD∂D + sΩ, ð = qD∂D − sΩ. (3.64)

where Ω is defined from (A.9), i.e.

Ω = 1
2q

AqBqAB. (3.65)

Note that, (3.63) allows to operate directly on the spin-weighted functions.
Furthermore, they put in evidence their character to raise and lower the spin-weight
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of the function sΨ. Under a transformation of coordinates between north and south
hemispheres, one has

(ð sΨ)N = eiα(s+1) (ð sΨ)S , and
(
ð sΨ

)
N

= eiα(s−1)
(
ð sΨ

)
S
. (3.66)

Despite using the stereographic coordinates in each chart, this property does not
depend on the coordinates chosen to be used in each coordinate map. The last
equations show that ð sΨ and ð sΨ are functions with s+ 1 and s− 1 spin-weight,
then

ð sΨ = As+1 s+1Ψ and ð sΨ = As−1 s−1Ψ, (3.67)

where As+1 and As−1 are multiplicative constants.

The explicit forms of the ð and ð̄ operators in spherical coordinates (TORRES

DEL CASTILLO, 2007) read

ð = ∂θ + i csc θ∂φ − s cot θ and ð = ∂θ − i csc θ∂φ + s cot θ, (3.68)

where (3.26) and (3.27b) were used. Using these last equations we found that (3.65)
results in

Ω = − cot θ. (3.69)

3.8 Transforming the Coordinate Basis

Here we will show the explicit form of the ∂q, ∂p and ∂qp operators in terms of the
ð, ð operators and its commutator [ð, ð]. Also, we will show that the commutator
[ð,ð] satisfies an eigenvalue equation, fixing the algebra for the eth operators.

Developing explicitly (3.63) and substituting the tangent vector components (3.25),
one has

ð sΨ = 1 + ζζ

2 ( sΨ,q + i sΨ,p) + sζ sΨ. (3.70)

and

ð sΨ = 1 + ζζ

2 ( sΨ,q − i sΨ,p)− sζ sΨ. (3.71)
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Then, from (3.70) and (3.71), one obtains

sΨ,q = ð sΨ + ð sΨ− s(ζ − ζ) sΨ
1 + ζζ

, (3.72a)

sΨ,p = i
ð sΨ− ð sΨ + s(ζ + ζ) sΨ

1 + ζζ
, (3.72b)

which written in terms of q and p result in

sΨ,q = ð sΨ + ð sΨ− 2isp sΨ
1 + q2 + p2 , (3.73a)

sΨ,p = i
ð sΨ− ð sΨ + 2sq sΨ

1 + q2 + p2 . (3.73b)

Thus, the base vectors (or conversely the differential operators) ∂q and ∂p can be
written as

∂q = 1
1 + ζζ

(
ð + ð− s(ζ − ζ)

)
, (3.74a)

∂p = i

1 + ζζ

(
ð− ð + s(ζ + ζ)

)
. (3.74b)

It is worth stressing that, in these expressions appear the spin-weight s associated
with the functions. Consequently, these operators must be applied carefully in future
computations, in order to avoid errors.

From (3.70), (3.71) and (3.72) it is possible to obtain immediately the expressions
for ∂qq, ∂qp and ∂pp. Here, we will start with ∂qq. There are at least two forms to do
it. Here, we follow two ways with the aim to check the resulting expressions. First,
the action of the derivative with respect to q on sΨ,q will be considered. Thus, using
(3.72a) one obtains

∂qq =
(

1
1 + ζζ

)
,q

(
ð + ð− s(ζ − ζ)

)
+
(

1
1 + ζζ

)
∂q
(
ð + ð− s(ζ − ζ)

)
, (3.75)

where (
1

1 + ζζ

)
,q

= − ζ + ζ(
1 + ζζ

)2 , (3.76)

and

∂q
(
ð + ð− s(ζ − ζ)

)
= ∂qð + ∂qð− s(ζ − ζ)∂q, (3.77)
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because (ζ − ζ),q = 0. The first term in (3.75) is given by

(
1

1 + ζζ

)
,q

(
ð + ð− s(ζ − ζ)

)
= −

(
ζ + ζ

)
ð +

(
ζ + ζ

)
ð− s

(
ζ2 − ζ2)(

1 + ζζ
)2 . (3.78)

Each derivative in (3.77) is computed considering (3.67) and (3.72a). Then

∂qð = ð2 + ðð− (s+ 1)(ζ − ζ)ð
1 + ζζ

, (3.79a)

and

∂qð = ðð + ð2 − (s− 1)(ζ − ζ)ð
1 + ζζ

. (3.79b)

Thus, substituting the relations (3.79) into (3.77) one obtains

∂q
(
ð + ð− s(ζ − ζ)

)
= 1

1 + ζζ

(
ð2 + ð2 + (ð,ð)− (2s+ 1)(ζ − ζ)ð

−(2s− 1)(ζ − ζ)ð + s2(ζ − ζ)2
)
, (3.80)

where we used the anti-commutator

(
ð,ð

)
sΨ = ðð sΨ + ðð sΨ. (3.81)

Then, the second order differential operator ∂qq can be written as

∂qq = 1(
1 + ζζ

)2

ð2 + ð2 + (ð,ð) + 2
(
sζ − (s+ 1)ζ

)
ð

− 2
(
sζ − (s− 1)ζ

)
ð + s

(
s(ζ − ζ)2 +

(
ζ2 − ζ2)). (3.82)

After that, ∂pp is computed using (3.72b), thus

∂pp = i

( 1
1 + ζζ

)
,p

(ð− ð + s(ζ + ζ)) +
(

1
1 + ζζ

)
∂p(ð− ð + s(ζ + ζ))

)
, (3.83)

where (
1

1 + ζζ

)
,p

= i(ζ − ζ)(
1 + ζζ

)2 . (3.84)
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Then the first term in (3.83) is given by

(
1

1 + ζζ

)
,p

(ð− ð + s(ζ + ζ)) = i
(ζ − ζ)ð− (ζ − ζ)ð + s(ζ2 − ζ2)(

1 + ζζ
)2 . (3.85)

The second term can be spanned as

∂p(ð− ð + s(ζ + ζ)) = ∂pð− ∂pð + s(ζ + ζ)∂p, (3.86)

where it is considered that (ζ + ζ),p = 0.

Each term in the last equation can be computed by using (3.67) and (3.72b), thus

∂pð = i
ð2 − ðð + (s− 1)(ζ + ζ)ð

1 + ζζ
, (3.87a)

and

∂pð = i
ðð− ð2 + (s+ 1)(ζ + ζ)ð

1 + ζζ
. (3.87b)

The substitution of (3.87) into (3.86) yields

∂p(ð− ð + s(ζ + ζ)) = i

1 + ζζ

ð2 + ð2 − (ð,ð) + (s− 1)(ζ + ζ)ð

− (s+ 1)(ζ + ζ)ð + s(ζ + ζ)ð− s(ζ + ζ)ð + s2(ζ + ζ)2

.
(3.88)

Then, substituting (3.85) and (3.88) into (3.83) one obtains the second order
operator ∂pp, which is given by

∂pp = − 1(
1 + ζζ

)2

ð2 + ð2 − (ð,ð) + 2(sζ + (s− 1)ζ)ð

− 2(sζ + (s+ 1)ζ)ð + s
(
s
(
ζ + ζ

)2
+
(
ζ2 − ζ2)). (3.89)

Now, we compute the mixed operator ∂qp by means of (3.67) and (3.72), i.e.,

∂qp =
(

1
1 + ζζ

)
,p

(
ð + ð− s(ζ − ζ)

)
+ 1

1 + ζζ
∂p
(
ð + ð− s(ζ − ζ)

)
. (3.90)
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The first term in the last equation is given by(
1

1 + ζζ

)
,p

(
ð + ð− s(ζ − ζ)

)
= i(

1 + ζζ
)2

(
(ζ − ζ)ð + (ζ − ζ)ð− s(ζ − ζ)2

)
,

(3.91)

where (3.84) has been used. The second term is computed making use of equations
(3.72) and (3.87), thus

1
1 + ζζ

∂p
(
ð + ð− s(ζ − ζ)

)
= i(

1 + ζζ
)2

ð2 − ð2 + [ð,ð] +
(
(2s+ 1)ζ + ζ

)
ð

+
(
(2s− 1)ζ − ζ

)
ð− s

(
2(1 + ζζ) + s(ζ2 − ζ2)

),
(3.92)

where we use the commutator

[
ð, ð

]
= ðð− ðð. (3.93)

Consequently, it is possible to write the operator ∂qp as

∂qp = i(
1 + ζζ

)2

ð2 − ð2 + [ð, ð] + 2(s+ 1)ζ ð + 2(s− 1)ζ ð

− s
(
2 + ζ2 + ζ

2 + s(ζ2 − ζ2)
). (3.94)

In order to test the consistency of this formalism, and with the goal to confirm
(3.94), we will compute the mixed operator ∂pq, i.e.,

∂pq =i
( 1

1 + ζζ

)
,q

(
ð− ð + s(ζ + ζ)

)
+ 1

1 + ζζ
∂q
(
ð− ð + s(ζ + ζ)

))
. (3.95)

The first term in the last equation is given by(
1

1 + ζζ

)
,q

(
ð− ð + s(ζ + ζ)

)
= − 1(

1 + ζζ
)2

((
ζ + ζ

)
ð−

(
ζ + ζ

)
ð + s

(
ζ + ζ

)2
)
,

(3.96)

where (3.76) was used. The second term in (3.95) is computed taking into account
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equations (3.72a) and (3.79)

1
1 + ζζ

∂q
(
ð− ð + s(ζ + ζ)

)
= 1(

1 + ζζ
)2

ð2 − ð2 + [ð,ð] + ((2s− 1)ζ + ζ)ð

+ ((2s+ 1)ζ − ζ)ð + s
(
2(1 + ζζ)− s

(
ζ2 − ζ2)).

(3.97)

Then, substituting (3.96) and (3.97) into (3.95) one obtains

∂pq = i(
1 + ζζ

)2

ð2 − ð2 +
[
ð,ð

]
+ 2(s− 1)ζ ð + 2(s+ 1)ζð

+ s
(
2− ζ2 − ζ2 − s

(
ζ2 − ζ2)). (3.98)

Now, noting that
[∂q, ∂p] sΨ = 0, (3.99)

because sΨ is supposed to be a complex function with at least continuous second
derivatives. Then, using (3.94) and (3.98), one has

sΨ,qp − sΨ,pq = i(
1 + ζζ

)2

([
ð, ð

]
−
[
ð,ð

]
− 4s

)
sΨ;

which implies that

([
ð,ð

]
−
[
ð,ð

]
− 4s

)
sΨ = 0,

i.e., the commutator of the ð and ð satisfy an eigenvalue equation,

[
ð,ð

]
sΨ = 2s sΨ. (3.100)

It is worth stressing that by using (3.67) one obtains

[
ð,ð

]
sΨ = ðð sΨ− ðð sΨ

= ð (As+1 s+1Ψ)− ð (As−1 s−1Ψ)

= As+1ð (s+1Ψ)− As−1ð (s−1Ψ)

= As (As+1 − As−1) sΨ, (3.101)
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which defines the constant of structure for the group of functions that satisfy (3.100),
i.e.,

As (As+1 − As−1) = 2s. (3.102)

Thus, the explicit form for the partial derivatives ∂q sΨ and ∂p sΨ as expressed
in equations (3.72) was obtained. With these expressions, the explicit form for the
second order operators ∂qq, ∂pp, ∂qp and ∂pq were expressed as in (3.82), (3.89),
(3.94) and (3.98) respectively. However, it is important to highlight that ∂q and ∂p
are commutable. With this last fact the commutation rule for ð and ð was derived,
which is given in (3.100). The last relation is particularly important because from
it, the eigenfunctions for this eigenvalue equation are constructed.

3.9 Legendrian Operator

This section is dedicated to the treatment of the Legendrian operator and its
relationship with the spherical harmonics 0Ylm. Here this operator is expressed in
terms of the raising and lowering spin-weighted operators ð and ð.

As it is well known, the Laplace equation

∇2Ψ = 0 (3.103)

can be written as
1
r
∂rr (rΨ) + 1

r2L
2Ψ = 0, (3.104)

where the Legendrian operator L2 is given by

L2 = 1
sin θ∂θ (sin θ∂θ) + 1

sin2 θ
∂φφ. (3.105)

The partial differential equation (3.103) is hyperbolic and hence their solutions can
be written as

Ψ(θ, φ) = R(r)
r

P (θ)Q(φ), (3.106)

which yields a set of ordinary differential equations for the functions R(r), P (θ) and
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Q(φ), namely

d2R(r)
dr2 + l(l + 1)R(r)

r2 = 0, (3.107a)

d2Q(φ)
dφ2 +m2Q(φ) = 0, (3.107b)

1
sin θ

d

dθ

(
sin θdP (θ)

dθ

)
+
(
l(l + 1)− m2

sin2 θ

)
P (θ) = 0. (3.107c)

The solutions for (3.107c), for any l ∈ Z+ and m ∈ Z in which − (l + 1) ≤ m ≤ l+1,
are the associated Legendre polynomials, Pm

l (x), which satisfy the orthogonality
relation ˆ 1

−1
dxPm

l′ (x)Pm
l (x) = 2

2l + 1
(l +m)!
(l −m)!δll

′ . (3.108)

With these polynomials and with the solution of (3.107b), i.e.,

Q(φ) = eimφ, (3.109)

a base for all angular functions are constructed. Such base is called spherical
harmonics (JACKSON, 1962), which read

Ylm(θ, φ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ. (3.110)

Thus, particular solutions for the Laplace equation can be constructed in the
following form

Ψlm = Rl(r)
r

Ylm(θ, φ).

Substituting the last equation into (3.104) and using (3.107a), one obtains that the
spherical harmonics are eigenfunctions of the Legendrian operator, corresponding to
the eigenvalues −l(l + 1), i.e.,

L2Ylm = −l(l + 1)Ylm. (3.111)

Now, it is possible to write (3.105) in the following form

L2 = 1− tan2 (θ/2)
2 tan (θ/2) ∂θ + ∂θθ +

(
1

2 tan (θ/2) cos2 (θ/2)

)2

∂φφ, (3.112)

where,
1− tan2 (θ/2)

2 tan (θ/2) = 1− ζζ

2
(
ζζ
)1/2 , (3.113)
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and (
1

2 tan (θ/2) cos2 (θ/2)

)2

=

(
1 + ζζ

)2

4ζζ
. (3.114)

The operator ∂θ can be written as

∂θ = q,θ∂q + p,θ∂p, (3.115)

where the factors q,θ and p,θ are computed using (3.1), namely

q,θ =

(
ζ + ζ

) (
1 + ζζ

)
4
(
ζζ
)1/2 , and p,θ =

i
(
ζ − ζ

) (
1 + ζζ

)
4
(
ζζ
)1/2 . (3.116a)

Using Equations (3.116), (3.115) takes the form

∂θ =

(
1 + ζζ

)
4
(
ζζ
)1/2

((
ζ + ζ

)
∂q + i

(
ζ − ζ

)
∂p
)
. (3.117)

Since the spherical harmonics defined in (3.110) have spin-weight s zero, then the
operators ∂q and ∂p, given in (3.74), are reduced to

∂q = 1
1 + ζζ

(
ð + ð

)
, and ∂p = i

1 + ζζ

(
ð− ð

)
. (3.118a)

Then, the operators given in Equations (3.118) allow to re-express (3.117) as

∂θ = ζ ð + ζ ð

2
(
ζζ
)1/2 . (3.119)

In order to compute the second order derivative ∂θθ, it is necessary to make the
calculation of the quantities q,θθ and p,θθ. Thus, from (3.116) one has

q,θθ =

(
ζ + ζ

) (
1 + ζζ

)
4 , and p,θθ = −i

(
ζ − ζ

) (
1 + ζζ

)
4 . (3.120a)

The second order operator ∂θθ is directly computed using (3.115), thus

∂θθ = q,θθ∂q + p,θθ∂p + q,θ∂θq + p,θ∂θp,

where

q,θ∂θ∂q = q2
,θ∂qq + q,θp,θ∂pq,
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and

p,θ∂θ∂p = p,θq,θ∂qp + p2
,θ∂pp.

Consequently, the second order operator ∂θθ reads

∂θθ = q,θθ∂q + p,θθ∂p + q2
,θ∂qq + 2q,θp,θ∂qp + p2

,θ∂pp. (3.121)

The commutator for the ð and ð given in (3.100) for zero spin-weighted functions
becomes [

ð,ð
]

0Ψ = 0, (3.122)

then the anti-commutator for these functions takes the form

(
ð,ð

)
0Ψ = 2ðð 0Ψ. (3.123)

For functions of this type, the second order differential operators ∂qq, ∂pp and ∂qp,
given in (3.82), (3.89) and (3.94) respectively, are strongly simplified to

∂qq = 1(
1 + ζζ

)2

(
ð2 + ð2 + 2ðð− 2ζ ð− 2ζ ð

)
, (3.124a)

∂pp = − 1(
1 + ζζ

)2

(
ð2 + ð2 − 2ðð− 2ζ ð− 2ζ ð

)
, (3.124b)

∂qp = i(
1 + ζζ

)2

(
ð2 − ð2 + 2ζ ð− 2ζ ð

)
. (3.124c)

Thus, the two first terms in (3.121) are obtained using (3.120) and (3.118), namely

q,θθ∂q + p,θθ∂p = 1
2
(
ζ ð + ζ ð

)
. (3.125)

The third term in (3.121) will be obtained by using Equations (3.116) and (3.124),
namely

q2
,θ∂qq =

(
ζ + ζ

)2

16ζζ
(
ð2 + ð2 + 2ðð− 2ζ ð− 2ζ ð

)
. (3.126)

The fourth term in (3.121) is obtained when (3.116), and (3.124) are employed, i.e.

2q,θp,θ∂qp =
2
(
ζ + ζ

) (
ζ − ζ

)
16ζζ

(
ð2 − ð2 + 2ζ ð− 2ζ ð

)
. (3.127)
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After substituting (3.124) and (3.116), the fifth term in (3.121) reads

p2
,θ∂pp =

(
ζ − ζ

)2

16ζζ
(
ð2 + ð2 − 2ðð− 2ζ ð− 2ζ ð

)
. (3.128)

Thus, adding (3.126) and (3.128) one obtains

q2
,θ∂qq + p2

,θ∂pp = 1
16ζζ

(((
ζ + ζ

)2
+
(
ζ − ζ

)2
) (

ð2 + ð2 − 2ζ ð− 2ζ ð
)

+ 2
((
ζ + ζ

)2
−
(
ζ − ζ

)2
)
ðð
)
.

Using the last equation and (3.127) results in

q2
,θ∂qq + p2

,θ∂pp + 2q,θp,θ∂qp

= 1
16ζζ

4ζ2
(
ð2 − 2ζ ð

)
+ 4ζ2 (ð2 − 2ζ ð

)
+ 8ζζðð

. (3.129)

Then, using (3.129) and (3.125), (3.121) takes the explicit form

∂θθ = 1
16ζζ

4ζ2ð2 + 4ζ2ð2 + 8ζζðð
. (3.130)

Now, the differential operator ∂φ can be written as

∂φ = q,φ∂q + p,φ∂p, (3.131)

where the coefficients q,φ and p,φ are

q,φ = i

2(ζ − ζ), (3.132)

and

p,φ = 1
2(ζ + ζ). (3.133)

Then, using the two last relations and (3.118) one obtains

∂φ = i
−ζð + ζð(

1 + ζζ
) . (3.134)
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The second order partial derivative ∂φφ can be computed as follows

∂φφ = q,φφ∂q + p,φφ∂p + q,φ∂φq + p,φ∂φp,

where

q,φ∂φ∂q = q2
,φ∂qq + q,φp,φ∂pq,

and

p,φ∂φ∂p = p,φq,φ∂qp + p2
,φ∂pp.

Then, for this reason

∂φφ = q,φφ∂q + p,φφ∂p + q2
,φ∂qq + 2q,φp,φ∂pq + p2

,φ∂pp. (3.135)

The factor q,φφ is computed from (3.132) and with the help of (3.133), thus

q,φφ = −1
2(ζ + ζ). (3.136)

The factor p,φφ is calculated from (3.133), i.e.,

p,φφ = i

2(ζ − ζ), (3.137)

where we have used (3.132). Thus, when (3.136), (3.137) and (3.118) are substituted
into the two first terms of (3.135) one obtains

q,φφ∂q + p,φφ∂p = − 1
2
(
1 + ζζ

) ((ζ + ζ
) (

ð + ð
)

+
(
ζ − ζ

) (
ð− ð

))

= −ζ ð + ζ ð(
1 + ζζ

) . (3.138)

The third term in (3.135) is computed using (3.124a) and (3.132), i.e.,

q2
,φ∂qq = −

(
ζ − ζ

)2

4
(
1 + ζζ

)2

(
ð2 + ð2 + 2ðð− 2ζ ð− 2ζ ð

)
. (3.139)
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The fourth term in (3.135) is obtained from (3.124c), (3.132) and (3.133), namely

2q,φp,φ∂pq = −
2
(
ζ − ζ

) (
ζ + ζ

)
4
(
1 + ζζ

)2

(
ð2 − ð2 + 2ζ ð− 2ζ ð

)
. (3.140)

The last term in (3.135) is computed from (3.124b) and (3.133), resulting in

p2
,φ∂pp = −

(
ζ + ζ

)2

4
(
1 + ζζ

)2

(
ð2 + ð2 − 2ðð− 2ζ ð− 2ζ ð

)
. (3.141)

The addition of (3.139) and (3.141) yields

q2
,φ∂qq + p2

,φ∂pp =− 1
4
(
1 + ζζ

)2

((ζ − ζ)2
+
(
ζ + ζ

)2
) (

ð2 + ð2 − 2ζ ð− 2ζ ð
)

+ 2
((
ζ − ζ

)2
−
(
ζ + ζ

)2
)
ðð

,
which added to (3.140) gives

q2
,φ∂qq + p2

,φ∂pp + 2q,φp,φ∂pq

=−
ζ2
(
ð2 − 2ζ ð

)
+ ζ

2 (ð2 − 2ζ ð)− 2ζ ζ ðð(
1 + ζζ

)2 . (3.142)

Substituting (3.138) and (3.142) into (3.135) one has

∂φφ = −
ζ ð + ζ ð + ζ2

(
ð2 − ζ ð

)
+ ζ

2 (ð2 − ζ ð)− 2ζ ζ ðð(
1 + ζζ

)2 . (3.143)

With these results, the explicit form of the Legendrian given in (3.112) in terms of
the ð and ð operators will be computed. The first term is obtained directly from
(3.113) and (3.119), namely

1
tan θ∂θ =

4
(
ζ ð− ζζ2 ð + ζ ð− ζ2ζ ð

)
16ζζ

. (3.144)

Also, using (3.114) and (3.143), the third term in (3.112) reads

1
sin2 θ

∂φφ = −
ζ ð + ζ ð + ζ2

(
ð2 − ζ ð

)
+ ζ

2 (ð2 − ζ ð)− 2ζ ζ ðð
4ζζ

. (3.145)
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Then, substituting (3.130), (3.144) and (3.145), one has

L2 = ðð. (3.146)

This result implies that, the eigenvalue equation (3.111) can be written as

ððYlm = −l(l + 1)Ylm. (3.147)

Notice that the functional dependence of the spherical harmonics was not written.
This was made intentionally because it is valid independently of the coordinate
system. We show that through the passage to stereographic coordinates, the
expressions of the angular operators ∂θ, ∂φ, ∂θθ, ∂θφ and ∂φφ in terms of the ð
and ð were obtained. The spin-weight of the functions in which these operators
can be applied was disregarded. Thus, at least for 0-spin weighted functions an
equivalent expression of the Legendrian was found. This relation can be extended
to s-spin weighted functions and therefore a Legendrian operator for these functions
can be constructed. There are at least two ways to do this in a completely consistent
manner. One of them is by expressing the operators ð and ð in spherical coordinates
and with them construct the second order operators ð2, ð2, ðð and ðð, and then
compute the eigenvalues of the commutator [ð,ð]. Another way is by expressing
these operators in stereographic coordinates and then construct the commutator
[ð,ð].

3.10 The ð and ð in Spherical Coordinates

A further generalisation of all the last results can be done, by extending the operators
ð and ð to the case when function with spin-weight different from zero are considered.
In order to do so, it is necessary to consider the operators defined in Equations (3.68),
which can be written as

ð = (sin θ)s (∂θ + i csc θ∂φ) (sin θ)−s , (3.148a)

and

ð = (sin θ)−s (∂θ − i csc θ∂φ) (sin θ)s . (3.148b)

It is worth stressing that the operations in (3.148) are referred to operators, not to
scalar functions.
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From (3.68) one obtains the expressions for ∂θ and ∂φ, namely

∂θ = ð + ð
2 , ∂φ = i sin θ

2
(
ð− ð− 2s cot θ

)
, (3.149)

and the expressions for ∂θθ, ∂θφ and ∂φφ, namely

∂θθ =
ð2 +

(
ð,ð

)
+ ð2

4 , (3.150a)

∂φφ =− sin2 θ

4
(
ð2 −

(
ð,ð

)
+ ð2)− s2 cos2 θ

− sin θ cos θ
((
s+ 1

2

)
ð−

(
s− 1

2

)
ð
)
, (3.150b)

∂θφ =− i sin θ
4

(
ð2 − ð2)− is cos θð + ð

2

+ i cos θ
2

(
ð− ð− 2s cot θ

)
+ i sin θs(cot2 θ + csc2 θ)

2 , (3.150c)

(see Appendix B for further details of the derivation of these expressions).
These operators can be used to transform the field equations projected onto the
dyads, in terms of the angular variables θ and φ into the eth form, without using
the stereographic version of the eth operators. However, most of the characteristic
codes use stereographic and gnomonic projections.

3.11 Integrals for the Angular Manifold

In order to compute the inner product of the spin-weighted functions, we will need
useful expressions for the integrals involving angular variables, when the (q, p), (ζ, ζ)
and the (θ, φ) coordinates are used. These integrals are for example of the type

I =
‹

Ω

dΩf(θ, φ), (3.151)

where Ω is the solid angle. In spherical coordinates these quantities are expressed as

I =
¨

Ω

dφdθ sin θf(θ, φ). (3.152)

The domain of these integrals can be decomposed into two parts, involving each
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hemisphere, north and south, in the form

I =
¨

ΩN

dφdθ sin θf(θ, φ) +
¨

ΩS
dφdθ sin θf(θ, φ),

=
¨

ΩN

dφNdθN sin θNf(θN , φN) +
¨

ΩS
dφSdθS sin θSf(θS, φS), (3.153)

where ΩN and ΩS, label the north and the south regions in which the unitary sphere
was decomposed. Both domains share the same boundary that is the equator line.
Now, from the transformation of coordinates (3.1), it is possible to write that

q = tan (θ/2) cosφ and p = tan (θ/2) sinφ. (3.154)

Thus, the transformation of coordinates from spherical (θ, φ) to stereographic (q, p)
can be performed. First, (3.152) is expressed as

I =
¨

ΩN

dqNdpN sin θNJ(qN , pN)f(qN , pN)

+
¨

ΩS

dqSdpS sin θSJ(qS, pS)f(qS, pS), (3.155)

where J(q, p) is the Jacobian of the transformation of coordinates1, which is given
by

J(q, p) =

∣∣∣∣∣∣θ,q θ,p

φ,q φ,p

∣∣∣∣∣∣ .
From (3.154), the derivatives in the Jacobian read

θ,q = 2q(q2 + p2)1/2

1 + q2 + p2 , θ,p = 2p(q2 + p2)1/2

1 + q2 + p2 ,

φ,q = − p

q2 + p2 , φ,p = q

q2 + p2 ,

(3.156)

then
J(q, p) = 2(q2 + p2)−1/2

1 + q2 + p2 . (3.157)

1Here the indices to indicate the hemisphere is suppressed in the Jacobian, because it has the
same form in both.
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Note that

sin θ = 2(q2 + p2)1/2

1 + q2 + p2 , (3.158)

thus, the substitution of (3.157) and (3.158) into (3.153) yields

I =
¨

ΩN

dqNdpN
4f(qN , pN)

(1 + q2
N + p2

N)2 +
¨

ΩS

dqSdpS
4f(qS, pS)

(1 + q2
S + p2

S)2 . (3.159)

This last expression is particularly useful when a numerical evaluation of this kind
of integrals is performed. From (3.159), it is possible to obtain the expressions for
the same kind of integrals in terms of the complex stereographic coordinates (ζ, ζ),
namely

I =
¨

ΩN

dζNdζNJ(ζN , ζN) 4f(ζN , ζN)(
1 + ζNζN

)2

+
¨

ΩS

dζSdζSJ(ζS, ζS) 4f(ζS, ζS)(
1 + ζSζS

)2 , (3.160)

where, the Jacobian of the transformation of coordinates is given by

J(ζ, ζ) =

∣∣∣∣∣∣q,ζ q,ζ
p,ζ p,ζ

∣∣∣∣∣∣ .
The derivatives in this Jacobian are

q,ζ = 1
2 , q,ζ = 1

2 ,

p,ζ = − i2 , p,ζ = i

2 .
(3.161)

Thus, the Jacobian of the transformation of the coordinates becomes explicitly

J(ζ, ζ) = i

2 .

Then the integral (3.160) in terms of (ζ, ζ) is transformed as

I =
¨

ΩN

dζNdζN
2if(ζN , ζN)(
1 + ζNζN

)2 +
¨

ΩS

dζSdζS
2if(ζS, ζS)(
1 + ζSζS

)2 . (3.162)

The inner product of two functions that depend on the angular variables is defined
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as
〈f, g〉 =

‹

Ω

dΩfg. (3.163)

Thus, the inner product 〈 0Yl′m′ , 0Ylm〉, where 0Ylm = Ylm, can be computed in
spherical coordinates as usual, namely

〈 0Yl′m′ , 0Ylm〉 =
ˆ 2π

0
dφ

ˆ π

0
dθ sin θ 0Y l′m′(θ, φ) 0Ylm(θ, φ)

= δll′δmm′ . (3.164)

The explicit form of this inner product in stereographic coordinates (q, p) reads

〈 0Yl′m′ , 0Ylm〉 =
ˆ 1

−1
dqN

ˆ √1−q2
N

−
√

1−q2
N

dpN
4 0YNl′m′(qN , pN) 0YNlm(qN , pN)

(1 + q2
N + p2

N)2

+
ˆ 1

−1
dqS

ˆ √1−q2
S

−
√

1−q2
S

dpS
4 0YSl′m′(qS, pS) 0YSlm(qS, pS)

(1 + q2
S + p2

S)2 . (3.165)

Now, in order to extend the inner product shown above, to spin-weighted function
with spin-weight different from zero, it is important to observe that the ð and ð
operators can be written as

ð = P 1−s∂ζP
s, (3.166a)

and

ð = P s+1∂ζP
−s, (3.166b)

where, we have defined the zero spin-weighted function

P = 1 + ζζ. (3.167)

Noting that

ðζ = P∂ζζ = P, (3.168)

then we have

ðP = ððζ = ðð ζ = ðP∂ζζ = 0. (3.169)
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Also

ðζ = P∂ζζ = P, (3.170)

then we obtain

ðP = ððζ = ððζ = ðP∂ζζ = 0. (3.171)

Thus, equations (3.169) and (3.171) imply that

ð(PA) = PðA, ð(PA) = PðA, (3.172)

for any spin-weight function A.

Then, if two functions f and g with spin-weight s and s − 1, respectively, are
considered, the inner product of f and ðg reads

〈f, ðg〉 =
‹

Ω

dΩf ðg

=
¨

Ω

dζdζ
2i
P 2f P

1−s∂ζ (P sg)

= 2i
¨

Ω

dζdζ f P−(1+s)∂ζ (P sg) .

The last equation can be written as

〈f, ðg〉 =2i
¨

Ω

dζdζ
(
∂ζ

(
f P−(1+s)P sg

)
− P sg ∂ζ

(
f P−(1+s)

))
,

which results in

〈f, ðg〉 =2i

¨
Ω

dζdζ ∂ζ

(
f P−(1+s)P sg

)
−
¨

Ω

dζdζP sg ∂ζ

(
f P−(1+s)

) . (3.173)
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The first term in this equation corresponds to

2i
¨

Ω

dζdζ ∂ζ

(
f P−(1+s)P sg

)
= 2i

¨

Ω

dζdζP s−1P 1−s ∂ζ

(
P sf P−(1+s)g

)

= 2i
¨

Ω

dζdζP s−1ð
(
f P−(1+s)g

)

= 2i
¨

Ω

dζdζP s−1P−(1+s)ð
(
f g

)

= 2i
¨

Ω

dζdζP−2ð
(
f g

)

=
〈
1,ð(fg)

〉
.

Since f has spin-weight s and g has a spin-weight s− 1, then their product fg has
spin-weight s = −1, consequently ð(fg) is a zero spin-weighted function. Therefore,
it can be expanded in spherical harmonics in the form

ð(fg) =
∑
l,m

alm 0Ylm.

Thus,

〈
1,ð(fg)

〉
=
〈

1,
∑
l,m

alm 0Ylm

〉

=
∑
l,m

alm 〈1, 0Ylm〉

= 0. (3.174)

The second term in (3.173) is given by

2i
¨

Ω

dζdζP sg ∂ζ

(
f P−(1+s)

)
= 2i

¨

Ω

dζdζ gP−1P s+1 ∂ζ

(
P−sf P−1

)

= 2i
¨

Ω

dζdζ gP−1P s+1 ∂ζ
(
P−sf P−1

)
,
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where the integration variables ζ and ζ have been renamed, thus

2i
¨

Ω

dζdζP sg ∂ζ

(
f P−(1+s)

)
= 2i

¨

Ω

dζdζ gP−1ð
(
f P−1

)

= 2i
¨

Ω

dζdζ gP−2ð
(
f
)

= −
〈
ðf, g

〉
. (3.175)

Substituting (3.174) and (3.175) into (3.173) one obtains

〈f, ðg〉 = −
〈
ðf, g

〉
. (3.176)

Now, if f and g have spin-weight s and s+ 1, respectively, are considered, then the
inner product reads

〈
f, ðg

〉
=
‹

Ω

dΩf ðg

=
¨

Ω

dζdζ
2i
P 2fP

s+1∂ζ
(
P−sg

)

= 2i
¨

Ω

dζdζ fP s−1∂ζ
(
P−sg

)
.

This last equation can be written as

〈
f, ðg

〉
= 2i

¨

Ω

dζdζ∂ζ
(
fP s−1P−sg

)
− 2i
¨

Ω

dζdζP−sg∂ζ
(
fP s−1

)
. (3.177)

The first term in (3.177) is given by

2i
¨

Ω

dζdζ∂ζ
(
fP s−1P−sg

)
= 2i

¨

Ω

dζdζP−(s+1)P s+1∂ζ
(
P−sfP s−1g

)

= 2i
¨

Ω

dζdζP−(s+1)ð
(
fP s−1g

)
,

i.e.,

2i
¨

Ω

dζdζ∂ζ
(
fP s−1P−sg

)
= 2i

¨

Ω

dζdζP−2ð
(
fg
)

=
〈
1, ð

(
fg
)〉
.
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It is important to observe that, here fg has spin-weight s = 1. Consequently, ð(fg)
must be a spin-weight zero function. Therefore, it admits a decomposition in the
form

ð
(
fg
)

=
∑
l,m

a0lm 0Ylm,

then

〈
1,ð

(
fg
)〉

=
〈

1,
∑
l,m

a0lm 0Ylm

〉

=
∑
l,m

a0lm 〈1, 0Ylm〉

= 0. (3.178)

The second term in (3.177) is given by

2i
¨

Ω

dζdζP−sg∂ζ
(
fP s−1

)
= 2i

¨

Ω

dζdζP−sg∂ζ

(
fP s−1

)
,

where, the variables ζ and ζ in the integrals were interchanged. Thus

2i
¨

Ω

dζdζP−sg∂ζ
(
fP s−1

)
= 2i

¨

Ω

dζdζ gP−1P 1−s∂ζ

(
P sfP−1

)

= 2i
¨

Ω

dζdζgP−1ð
(
fP−1

)

= 2i
¨

Ω

dζdζgP−2ðf

= 〈ðf, g〉 . (3.179)

Thus, substituting (3.178) and (3.179) into (3.177) one obtains

〈
f, ðg

〉
= −〈ðf, g〉 , (3.180)

It is worth stressing that (3.176) and (3.180) indicate that the ð operator must be
conjugated and the sign interchanged, when the eth operator is passed from one
member to the other in the inner product.
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3.12 Spin-weighted Spherical Harmonics sYlm

When the Legendrian for zero spin-weighted functions (3.147) is derived s-times,
one obtains

ðsðð 0Ylm = −l(l + 1)ðs 0Ylm. (3.181)

The left hand side of this equation can be transformed using the commutator (3.100),
namely

ðsðð 0Ylm = ðs−1
(
ðð
)
ð 0Ylm

= ðs−1
(
ðð− 2

)
ð 0Ylm

=
(
ðs−1ðð2 − 2ðs

)
0Ylm

=
(
ðs−2

(
ðð
)
ð2 − 2ðs

)
0Ylm

=
(
ðs−2

(
ðð− 4

)
ð2 − 2ðs

)
0Ylm

=
(
ðs−2ðð3 − (2 + 4)ðs

)
0Ylm

...

=
(
ðððs − 2

s∑
i=1

i ðs
)

0Ylm

=
(
ðððs − s(s+ 1)ðs

)
0Ylm;

thus (
ðððs − s(s+ 1)ðs

)
0Ylm = −l(l + 1)ðs 0Ylm,

or
ðððs 0Ylm = − [l(l + 1)− s(s+ 1)] ðs 0Ylm. (3.182)

Then, using (3.67), it is possible to write

ðs 0Ylm = Cs sYlm, (3.183)

where Cs is some unknown complex quantity; this equation defines explicitly the
spin-weighted spherical harmonics, consequently

Csðð sYlm = −Cs [l(l + 1)− s(s+ 1)] sYlm,

or
ðð sYlm = − [l(l + 1)− s(s+ 1)] sYlm. (3.184)
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Using again the commutator (3.100) one obtains

ðð sYlm = − (l(l + 1)− s(s+ 1) + 2s) sYlm

= − (l(l + 1)− s(s− 1)) sYlm. (3.185)

Now, writing the last expression as

ðð s+1Ylm = − (l(l + 1)− s(s+ 1)) s+1Ylm

= ðAs sYlm,

one then obtains

Asð sYlm = − (l(l + 1)− s(s+ 1)) s+1Ylm. (3.186)

In order to determine the constant As, the inner product 〈Asð sYlm, Asð sYlm〉 is
computed, namely

〈Asð sYlm, Asð sYlm〉 = |As|2〈ð sYlm,ð sYlm〉

= −|As|2〈ðð sYlm, sYlm〉

= −|As|2〈− [l(l + 1)− s(s+ 1)] sYlm, sYlm〉

= [l(l + 1)− s(s+ 1)] |As|2〈 sYlm, sYlm〉

= [l(l + 1)− s(s+ 1)] |As|2. (3.187)

where, Equations (3.176) and (3.184) were used in addition to the fact that these
basis are orthonormal, i.e.,

〈 sYl′m′ , sYlm〉 = δll′δmm′ , ∀s ∈ Z.

When (3.186) is used, the same product gives

〈Asð sYlm, Asð sYlm〉

=〈− [l(l + 1)− s(s+ 1)] s+1Ylm,− [l(l + 1)− s(s+ 1)] s+1Ylm〉

= [l(l + 1)− s(s+ 1)]2 〈 s+1Ylm, s+1Ylm〉

= [l(l + 1)− s(s+ 1)]2 . (3.188)

Then, from (3.187) and (3.188) one obtains

|As|2 = l(l + 1)− s(s+ 1),
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or

|As|± = ± [l(l + 1)− s(s+ 1)]1/2 . (3.189)

Making here the choice As = |As|− and substituting it into (3.186) one has

ð sYlm = (l(l + 1)− s(s+ 1))1/2
s+1Ylm. (3.190)

Also, from (3.185) one obtains

ðð s−1Ylm = − [l(l + 1)− s(s− 1)] s−1Ylm,

= ðAs sYlm,

i.e.,

Asð sYlm = − [l(l + 1)− s(s− 1)] s−1Ylm. (3.191)

The inner product
〈
Asð sYlm, Asð sYlm

〉
can be computed by using (3.180) and

(3.185), namely

〈
Asð sYlm, Asð sYlm

〉
=|As|2

〈
ð sYlm,ð sYlm

〉
=− |As|2

〈
ðð sYlm, sYlm

〉
=− |As|2 〈− (l(l + 1)− s(s− 1)) sYlm, sYlm〉

=|As|2 (l(l + 1)− s(s− 1)) 〈 sYlm, sYlm〉

=|As|2 (l(l + 1)− s(s− 1)) ;

and from the right side of (3.191) one has

〈
Asð sYlm, Asð sYlm

〉
= 〈− [l(l + 1)− s(s− 1)] s−1Ylm,− [l(l + 1)− s(s− 1)] s−1Ylm〉

= [l(l + 1)− s(s− 1)]2 〈 s−1Ylm, s−1Ylm〉

= [l(l + 1)− s(s− 1)]2 .

Equating the two last relations one obtains

|As|2 = [l(l + 1)− s(s− 1)]
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or

|As|± = ± [l(l + 1)− s(s− 1)]1/2 .

Thus, making the choice As = |As|+ and substituting it into (3.191) one obtains

ð sYlm = − [l(l + 1)− s(s− 1)]1/2 s−1Ylm. (3.192)

Now, it is possible to re-write (3.190) as

ð sYlm =
(
l2 − s2 + l − s

)1/2
s+1Ylm

= ((l + s)(l − s) + l − s)1/2
s+1Ylm

= ((l + s+ 1)(l − s))1/2
s+1Ylm, (3.193)

in which one must observe that s ≤ l.
Then, from (3.183) and (3.193) one has

ðs 0Ylm

=ðs−1ð 0Ylm

=ðs−1 ((l + 1)l)1/2
1Ylm

=ðs−2 ((l + 2)(l + 1)l(l − 1))1/2
2Ylm

=ðs−3 ((l + 3)(l + 2)(l + 1)l(l − 1)(l − 2))1/2
3Ylm

...

= ((l + s) · · · (l + 2)(l + 1)l(l − 1)(l − 2) · · · (l − (s− 1)))1/2
sYlm

=
(

(l + s)!
(l − s)!

)1/2

sYlm; (3.194)

note that this relation is true if 0 ≤ s ≤ l.
Also, it is possible to write (3.192) as

ð sYlm = −
[
l2 − s2 + l + s

]1/2
s−1Ylm

= − [(l − s)(l + s) + l + s]1/2 s−1Ylm

= − [(l + s)(l − s+ 1)]1/2 s−1Ylm, (3.195)
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in which s ≥ −l.
Then, applying s times the ð operator to (3.195) one has

ðs sYlm = ðs−1ð sYlm

= − [(l + s)(l − s+ 1)]1/2 ðs−2ð s−1Ylm

= (−1)2 [(l + s− 1)(l + s)(l − s+ 1)(l − s+ 2)]1/2 ðs−2
s−2Ylm,

thus,

ðs sYlm

= (−1)3 [(l + s− 2)(l + s− 1)(l + s)×

(l − s+ 1)(l − s+ 2)(l − s+ 3)]1/2 ðs−3
s−3Ylm

...

= (−1)s [(l + 1) · · · (l + s− 2)(l + s− 1)(l + s)(l − s+ 1) · · · l]1/2 0Ylm

= (−1)s
[

(l + s)!
(l − s)!

]1/2

0Ylm. (3.196)

From (3.194) and (3.196) the spin-weighted spherical harmonics sYlm can be defined
by

sYlm =



(
(l − s)!
(l + s)!

)1/2

ðs 0Ylm for 0 ≤ s ≤ l

(−1)s
(

(l + s)!
(l − s)!

)1/2

ð−s 0Ylm for − l ≤ s ≤ 0
, (3.197)

in which ð−1 (ð−1) is the inverse operator of ð (ð), i.e.,

ðð−1 ≡ 1, ð ð−1 ≡ 1, (3.198)

such that [
ð,ð−1

]
sΨ = 0,

[
ð,ð−1]

sΨ = 0, (3.199)

for all spin-weighted functions.

Also, as an immediate consequence of (3.192) and (3.195) one has

ðð sYlm = ð
(
− [l(l + 1)− s(s− 1)]1/2 s−1Ylm

)
= − [l(l + 1)− s(s− 1)] sYlm, (3.200)
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and

ðð sYlm = ð
(
(l(l + 1)− s(s+ 1))1/2

s+1Ylm
)

= − [l(l + 1)− s(s+ 1)] sYlm, (3.201)

which show that the spin-weighted spherical harmonics sYlm are eigenfunctions of
the ðð and ðð operators. It is worth noting that (3.201) are the generalisation of
(3.147) when the spin-weight is considered.

3.13 Spin-weighted Spherical Harmonics sZlm

There exists another base of spherical harmonics in which the functions defined on
the surface of the sphere can be expanded, namely sZlm. They are defined as

sZlm =



i√
2

((−1)m sYlm + sYl −m) for m < 0

sYlm for m = 0
1√
2

(sYlm + (−1)m sYl −m) for m > 0.

(3.202)

Since these spherical harmonics are constructed from linear combinations of sYlm,
then they are also eigenfunctions of the ðð operator. Also, they are orthonormal
(ZLOCHOWER et al., 2003).
In order to show this, the sZlm are written as

sZlm = Alms sYlm +Blms sYl −m, for all m, (3.203)

therefore

〈 sZlm, sZl′m′〉 =
(
AlmsAl′m′s +BlmsBl′m′s

)
δll′δmm′ .

Evaluating the constants Alms and Blms from (3.202), it is possible to write

〈 sZlm, sZl′m′〉 =
ˆ

Ω
dΩ sZlm sZ l′m′

= δll′δmm′ .

Also, they are complete, in exactly the same form as the sYlm, i.e.,

∞∑
l=0

l∑
m=−l

sZlm(θ, φ) sZ lm(θ′, φ′) = δ(φ− φ′)δ(cos(θ)− cos(θ′)). (3.204)
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This expression is proved in a straightforward way, if it is assumed that any angular
function sΨ with spin-weight s can be expanded in terms of sZlm, i.e.,

sΨ =
∞∑
l=0

l∑
m=−l

sΨlm sZlm. (3.205)

then, the coefficients sΨlm are given by

sΨlm =
ˆ
dΩ sZ lm sΨ. (3.206)

Substituting (3.206) into (3.205) one obtains

sΨ(θ, φ) =
ˆ
dΩ′

∞∑
l=0

l∑
m=−l

sZ lm(θ′, φ′) sZlm(θ, φ) sΨ(θ′, φ′)

=
ˆ
dΩ′δ(φ− φ′)δ(cos(θ)− cos(θ′)) sΨ(θ′, φ′). (3.207)

The sZlm spherical harmonics will be important because the Einstein’s field
equations can be re-expressed in term of them. The reason to do that, is that the
sZlm decouple the m mode in the field equations.
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4 THE INITIAL VALUE PROBLEM AND THE NON-LINEAR
REGIME OF THE EINSTEIN’S FIELD EQUATIONS

This chapter considers the IVP (Initial Value Problem) in the general relativity
context. Essentially, there are three distinct kinds of formulations to evolve a
given space-time. The Regge calculus, the ADM (Arnowitt-Desser-Misner) or 3 + 1
formulations, and the characteristic or null-cone formalisms. The null cones in these
last formalisms can be oriented to the past, to the future or in both directions1.

Here only the two last formulations are shown, namely, the ADM based and the
characteristic formulations. In particular the emphasis lies on the null cone oriented
to the future formulation. In order to do that, this chapter is organised as follows.
In the first section the initial value problem is present. Subsequently, some aspects
of the ADM formulations are briefly shown. Finally, the principal aspects of the
outgoing characteristic formulation are present.

4.1 The Initial Value Problem

The initial value problem (IVP) consists, essentially, in the evolution of a space-
time characterised by a given metric gµν . Here, gµν and its first derivatives, gµν,γ, are
specified in an initial three dimensional hypersurface corresponding to t = t0. The
evolution of the space-time is then performed using the Einstein’s field equations. In
addition, in some cases the matter sources are evolved from the conservation laws.
The conserved quantities are used to constrain the system of equations, reducing in
this manner the degrees of freedom of these physical systems. One example of this
is the imposition of specific symmetries, such as axial or reflection symmetries.

There are several versions of the initial value problem. For example, in the 3 + 1
based formulations, which correspond to Hamiltonian formulations of the general
relativity, the metric and its derivatives must satisfy certain boundary conditions
during the evolution and satisfy some initial conditions in order to start the iteration.
Another example is the characteristic initial value problem in which the initial data
is specified on a time-like world tube and on an initial null hypersurface, for which
u = u0, where u indicates retarded time. A last example corresponds to the CCM
(Cauchy-Characteristic Matching) formalism in which ADM and Characteristic
formulation are used. In this formalism the metric and its derivatives are specified
across a world tube which separates the space-time into two distinct regions. The
initial conditions are given for the interior of the world tube starting an ADM based

1Ingoing, Outgoing and Bi-characteristic null-cone formalisms
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evolution, then the boundary conditions generated onto the world tube are used as
initial conditions to start a characteristic outgoing evolution which propagate the
gravitational radiation to the null infinity.

4.2 Arnowitt-Desser-Misner Formulations (ADM)

In this section two of the most used ADM based formulations in numerical relativity
applications are presented, the ADM formalism and the BSSN (Baumgarte-Shibata-
Shapiro-Nakamura) formulation. The ADM/BSSN equations and their derivations
are presented in some detail. In the ADM based formalisms, the space-time is
foliated into space-like hypersurfaces, which are orthogonal to a time-like geodesic,
parametrised by an affine parameter t. The BSSN formulation furnishes simulations
that result more stable than those based on the original ADM. The constraints and
the evolution equations for the metric of the hypersurfaces are given in detail.

4.2.1 (ADM) formalism

It is supposed that the manifoldM represents the space-time.M is associated with
the metric gµν . The space-time is foliated into 3-dimensional space-like hypersurfaces
labelled by Σ, which are orthogonal to the vector Ωµ (at least locally). Ωµ is defined
as the tangent vectors to a central time-like geodesic, in the form

Ωµ = t;µ. (4.1)

Here, t can be interpreted as a global time. Also, this time t corresponds to an
affine parameter to the arc length described by the central geodesic (ALCUBIERRE,
2008; BAUMGARTE; SHAPIRO, 2010). Recall that the intersections between the
hypersurfaces Σ are forbidden. See Figure 4.1
The norm ‖Ωµ‖ is computed from (4.1), namely

‖Ωµ‖2 = gµνt;µt;ν . (4.2)

From (4.2) a scalar function α, the lapse function, is defined such that

α2 = − 1
‖Ωµ‖2 . (4.3)
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M
Central time-like geodesic

space-like hypersurfaces

Σ1

Σ2

Σn

Figure 4.1 - Space-timeM foliated in 3D - hypersurfaces Σ.

Thus, α > 0 means that Ωµ is a time-like vector. Then at least locally the
hypersurfaces Σ will be space-like. On other hand, α < 0 means Ωµ is space-like.
Thus, at least locally, the hypersurfaces Σ will be time-like. It measures the lapse
between two successive hypersurfaces when measured by an Eulerian observer2.

A normalised and irrotational one-form ωµ = αΩµ, is also defined, i.e.,

ω[νωµ;δ] = 0. (4.4)

From the 1-forms ωµ the normal vectors to the hypersurfaces Σ can be built as

nν = −gµνωµ, (4.5)

where the minus indicates that these vectors are oriented to the future, i.e., they are
pointed in the sense in which t increases. Also, the one-forms ωµ and the vectors nν

satisfy
nνων = −gµνωµων = −1, nνnν = 1. (4.6)

The metric γµν corresponding to the hypersurfaces Σ, is the spacial part of gµν , thus,

γµν = gµν + nµnν . (4.7)

Note that nµγµν = 0 indicates that nµ is a normal vector to Σ. The inverse metric
γµν is given by

γµν = gµν + nµnν . (4.8)

2Namely also Normal observers, which are moving in normal direction to these hypersurfaces
Σ.
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From (4.7) one obtains the following projection tensor

γµν = δµν + nµnν . (4.9)

Then, the tensor that projects in the normal direction to the hypersurfaces is given
by

Nµ
ν = −nµnν . (4.10)

The covariant derivative compatible3 with γµν , is obtained from the projection of
∇µ on the hypersurfaces Σ, namely

3∇ν = −γµν∇µ. (4.11)

These three-dimensional covariant derivatives are expressed in terms of the
connection coefficients associated with the hypersurfaces Σ, i.e.,

3Γµνδ = 1
2γ

µθ(γθν,δ + γθδ,ν − γνδ,θ). (4.12)

On the other hand, the Riemann tensor 3Rγ
δνµ associated to the metric γµν is defined

by
2 3∇[µ

3∇ν]vδ = 3Rγ
δνµvγ and 3Rγ

δνµnγ = 0, (4.13)

which are satisfied by any space-like vγ and any time-like 1-forms nγ. Then, from
(4.13), the Riemann tensor 3Rγ

δνµ is defined from the Christoffel symbols 3Γµνδ as
follows

3Rγ
δνµ = 3Γγδµ,ν − 3Γγνµ,δ + 3Γγσν 3Γσδµ − 3Γγσδ 3Γσνµ. (4.14)

The expressions for the Ricci’s tensor 3Rµν = 3Rγ
µγν and for the scalar of curvature

3R = 3Rµ
µ are obtained from (4.14).

The 3-dimensional Riemann tensor 3Rγ
δνµ contains only pure spacial information.

Then, all quantities derived from it will contain information about the intrinsic
curvature of the hypersurfaces Σ. Thus, it will be necessary to introduce at least
one more geometric object to take into account the extrinsic curvature, Kµν . This
tensor is defined from the projection of the covariant derivatives of the normal vectors
onto the hypersurfaces Σ. Such projections can be decomposed into a symmetric and

3Compatible means 3∇δγµν = 0.
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antisymmetric part, as follows

γβδγ
α
νnα;β = γβδγ

α
νn(α;β) + γβδγ

α
νn[α;β],

= Θδν + ωδν , (4.15)

where Θδν(ωδν) corresponds to its symmetric (antisymmetric). Θδν(ωδν) is known as
the expansion tensor (rotational 2-form). Note that, given (4.4), ωδν = 0. Thus, the
extrinsic curvature is defined as

Kµν = −γβδγανnα;β,

= −1
2Lnγµν , (4.16)

where Lnγµν is the Lie derivative of γµν along the vector field n = nαeα. Here, eα is
any base, which eα = ∂α when a local coordinate basis is considered.

Note that the extrinsic curvature is symmetric and only spacial and it furnishes
information on how much the normal vectors to Σ change their directions. Figure
4.2 shows the change of the normal vectors to the hypersurfaces Σ. These normal
vectors are referred to two distinct and nearly hypersurfaces Σi+1 and Σi+2.

nα

nα2
nα1

δnα

Σi+1

Σi+2

Figure 4.2 - Change of the normal vectors to Σ. The difference δna only provides
information about the change in the direction of the vectors, because they
are normalised.

The extrinsic curvature Kµν and the metric gµν give information about the state of
the gravitational field at each instant of time. Consequently, it is possible to do the
analogy with the classical mechanics. Kµν is analogue to the velocities, whereas gµν
to the positions in a given set of particles.
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The projection of Rαβξϕ associated with gµν on Σ, are related to Kµν and 3Rµνηδ,
through

3Rµνηδ +KµηKνδ −KµδKην = γαµγ
β
νγ

ξ
ηγ

ϕ
δRαβξϕ. (4.17)

which is known as the Gauss equation.

The projection γαµγ
β
ηγ

ξ
νn

ϕRαβξϕ depends only on the derivatives of Kµν . These
quantities are functions only of γµν and its derivatives, thus

3∇ηKµν − 3∇µKην = γαµγ
β
ηγ

ξ
νn

ϕRαβξϕ, (4.18)

which in known as Codazzi equation.

Both (4.17) and (4.18) lead to the constraint equations, providing the integrability
conditions that are propagated along the evolution. The hypersurfaces Σ carry the
information about Kµν and γµν .

On the other hand, from the Lie derivative of the extrinsic curvature Kµν along nα,
one obtains

LnKµν = nαnβγσµγ
ϕ
νRαβσϕ −

1
α

3∇µ
3∇να−Kσ

νKµσ, (4.19)

which is known as the Ricci equation. This equation expresses the temporal changes
in Kµν as a function of Rαβσϕ, with two of their indices projected in the direction of
the time.

Now, contracting the Gauss equation (4.17) one obtains (ARNOWITT et al., 1959)

γανγβµRαβνµ = 3R +K2 −KσϕK
σϕ, (4.20)

where the trace of the extrinsic curvature isK = γαβKαβ. From the Einstein’s tensor

Gµν = Rµν −
1
2gµνR, (4.21)

one has
2nµnνGµν = γαµγβνRαβµν . (4.22)

Therefore (4.20) becomes

2nµnνGµν = 3R +K2 −KσϕK
σϕ. (4.23)
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If the energy density ρ is defined as the total energy density as measured by an
Eulerian observer, i.e.,

ρ = nµnνT
µν , (4.24)

then the projection of the Einstein’s field equations (2.23) on the normal vectors to
the hypersurfaces Σ reads

3R +K2 −KµνK
µν = 16πρ, (4.25)

which is a Hamiltonian constrain equation.

Now, contracting the Codazzi equation one obtains

3∇ϕK
ϕ
σ − 3∇σK = γασγ

βµnνRαβµν . (4.26)

However, from the Einstein’s tensor one has

γµσn
νGµν = γµσn

νRµν . (4.27)

Consequently, the Codazzi equation takes the form

3∇ϕK
ϕ
σ − 3∇σK = 8πSσ, (4.28)

where
Sσ = −γµσnνTµν , (4.29)

which corresponds to the momentum density as measured by an Eulerian observer.
Equation (4.28) is usually referred as to the momentum constrain.

Now, defining a vector tµ as follows

tµ = αnµ + βµ, (4.30)

where βα is the displacement vector. This vector indicates the displacement of the
Eulerian observers between two successive hypersurfaces (see Figure 4.3).

Note that the vector tα is dual to the one-form Ωα. Thus, from the extrinsic curvature
Kµν one obtains

Ltγµν = −2αKµν + Lβγµν , (4.31)

which is the evolution equation for the metric γµν associated with the hypersurfaces
Σ. Taken the Lie derivative of the extrinsic curvature Kµν along ta one has the
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nα

xi + βidtxi

αdt

xi
Σi+1

Σi+2

Figure 4.3 - Representation of two successive hypersurfaces and the displacement vector
βµ (red).

following evolution equation

LtKµν = αLnKµν + LβKµν . (4.32)

However, from the Ricci’s equation (4.19) and from the Einstein’s field equations
(2.23) results

nαnδγεµγ
β
νRαβδε = 3Rµν +KKµν −KµσK

σ
ν − 8πγσµγϕν

(
Tσϕ −

1
2gσϕT

)
, (4.33)

where T is the trace of the stress-energy tensor T = gµνTµν . Defining the spacial
part of Tµν and its trace respectively from

Sµν = γσµγ
ε
νTσε and S = Sµµ, (4.34)

and substituting into (4.32) one obtains

LtKµν = − 3∇µ
3∇να + α( 3Rµν − 2KµσK

σ
ν +KKµν)

−8πα
(
Sµν −

1
2γµν(S − ρ)

)
+ LβKµν . (4.35)

In (4.35) all the differential operators as well as the Ricci’s tensor are associated
to γµν . The evolution equations given in (4.31) and (4.35) are coupled and
they determine the evolution of γµν and Kµν . These equations together with the
Hamiltonian and momentum constraints contain the same information present in
the Einstein’s field equations. Furthermore, from these equations it is possible to
observe that the differential equations that govern the matter and the space-time
dynamics are differential equations of first order in time. In this sense, they are
different from the original field equations, which are of second order. As in any
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initial value problem, the evolution equations must conserve the constrain equations,
therefore, if γµν and Kµν satisfy the constrain equations, in some hypersurface Σi,
then the same constrains must be satisfied along the all temporal evolution, i.e. this
conditions must be satisfied for all the hypersurfaces Σ in which the space-time is
foliated.

At last, specifying the vector tµ = (1, 0, 0, 0), and introducing a 3-dimensional basis
vectors eµ(i), where i indicates each of three vectors and taking into account that
Ωµe

µ
(i) = 0, then it is possible to make the choice that the spatial components of

ni = 0. Consequently, the displacement vector contains only spacial components,
i.e., βµ = (0, βi), and therefore the normal vectors to the hypersurfaces read
nµ = α−1(1, βi). Therefore the metric of the space-time can be represented by the
matrix

gµν =
−α2 + βkβ

k βi

βj γij

 , (4.36)

or in the form of line element

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (4.37)

which is usually known as the line element in the 3+1 form.

4.2.2 The Baumgarte-Shibata-Shapiro-Nakamura (BSSN) Equations

A variant of the ADM formalism is the Baumgarte-Shibata-Shapiro-Nakamura
(BSSN) formalism (BAUMGARTE; SHAPIRO, 1998; SHIBATA; NAKAMURA, 1995). In
this formalism, the metric γij associated with the hypersurfaces Σ is conformal to
the metric γ̃ij and the conformal factor is given by eiφ, i.e.,

γij = eiφγ̃ij, ‖γ̃ij‖ = 1. (4.38)

The fundamental idea is to introduce this conformal factor and evolve both,
separately, the conformal factor and the metric. This procedure simplifies the Ricci’s
tensor and simplifies the numerical codes. In order to obtain the evolution equations,
the extrinsic curvature Kij is decomposed into its trace K, and the trace-free part,
Aij, namely

Kij = Aij + 1
3γijK. (4.39)
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In addition, Aij is expressed in terms of a trace-free conformal curvature, i.e.,

Aij = eiφÃij. (4.40)

Contracting the evolution equation for γij (4.32), one obtains

∂t ln γ1/2 = αK + 3∇iβ
i, (4.41)

and using (4.38), results in an evolution equation for φ, namely

∂tφ = −1
6αK + ∂iβ

i + βi∂iφ. (4.42)

Also, contracting the evolution equation for the extrinsic curvature (4.35) one
obtains

∂tK = − 3∇2α + α(KijK
ij + 4π(ρ+ S)) + βi 3∇iK, (4.43)

where
3∇2 = γij 3∇i

3∇j,

such that, substituting (4.39) and using (4.40) one has

∂tK = − 3∇2α + α
(
ÃijÃ

ij + 1
3K

2
)

+ 4πα(ρ+ S) + βi∂iK. (4.44)

Subtracting (4.42) from (4.32) one obtains the evolution equation for γ̃ij, i.e.,

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃kj∂iβ
k − 2

3 γ̃ij∂kβ
k, (4.45)

also, subtracting (4.44) from (4.35) results in the evolution equation for Ãij, namely

∂tÃij = e4φ
(
−( 3∇i

3∇jα)TF + α(RTF
ij − 8πSTF

ij )
)

+ α(KÃij − 2ÃinÃnj)

+βk∂kÃij + Ãik∂jB
k + Ãkj∂iB

k − 2
3Ãij∂kβ

k, (4.46)

where the superscript TF indicates trace-free, i.e,

3RTF
ij = 3Rij −

1
3γij

3R, STF
ij = Sij −

1
3γij

3R, (4.47)

and
( 3∇i

3∇jα)TF = ( 3∇i
3∇jα)− 1

3γij(
3∇2α). (4.48)
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Now, in terms of these variables, the momentum constrain becomes

γij 3∇̃i
3∇̃je

φ − 1
8e

φ 3R̃ + 1
8e

5φÃijÃ
ij − 1

12e
5φK2 + 2πe5φρ = 0, (4.49)

where the operator 3∇̃i = eiφ 3∇i, is the hamiltonian constrain, i.e.,

3∇̃j

(
Ãjie6φ

)
− 2

3e
6φ 3∇̃iK − 8πe6φSi = 0. (4.50)

4.3 Outgoing Characteristic Formulation

In this section one of the characteristic formalisms will be described, in which the
space-time is foliated into null cones oriented to the future. In order to do so,
the Bondi-Sachs metric and the characteristic initial value problem are described,
subsequently the non-linear field equations in the characteristic formalism are
presented and we finish this section rewriting these equations using the eth formalism
previously described.

4.3.1 The Bondi-Sachs Metric

Bondi et al. (1962), Sachs (1962) in their remarkable work describe in detail the
radiation coordinates construction. Here, these details are reviewed in order to
understand the metric and its metric functions. Thus, it is supposed that the
manifold M is doted of a metric tensor such that gµν := gµν(xα) and have a
signature +2. We assume a generic scalar function that depends on these unknown
and arbitrary coordinates u := u(xµ), such that

u,µu
,µ = 0. (4.51)

Thus, denoting by kµ = u,νg
νµ, one has

kµk
µ = 0. (4.52)

The hypersurfaces for constant u are null; and its normal vectors kµ also satisfy

k;µk
µ = 0. (4.53)

Thus, the lines whose tangent is described by kµ are called rays (see Figure 4.4).
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World tube Γ

Null cones

u constant

u, r constants

Null ray
kµ

lµ
mµ

Figure 4.4 - Null coordinates construction. Tangent and normal vectors to the null
hypersurfaces emanated from a time-like world tube Γ.

From (4.53), the congruence of rays of null geodesic are also normal to the
hypersurfaces for u constant, thus these rays lie on the hypersurfaces and on the
normal plane to the null hypersurfaces. The parameter u must be such that the
expansion ξ and the shear σ of the congruences, formed by these rays (the null
cones) satisfy

ξ =
kα;α
2 6= 0, |σ|2 = kα;βk

α;β

2 − ρ2 6= ρ2. (4.54)

It is assumed that u satisfies these conditions for any coordinate system. The
parameter u will be selected as the retarded time. The scalar functions θ := θ(xα),
φ := φ(xα) can be selected such that

θ,αk
α = φ,αk

α = 0, θ,αθ,βθ,γθ,δg
αβgγδ −

(
θ,αθ,βg

αβ
)2

= D 6= 0, (4.55)

where D > 0. Thus θ and φ are constants along each ray, and therefore, can be
identified as optical angles. In addition, it is possible to choose the scalar function
r := r(xα), such that

r4 = 1
D sin2 θ

, (4.56)

in which case r is the luminosity distance, defining hypersurfaces for u, r constants
such that its area is exactly 4πr2. Defining xµ = (u, r, θ, φ) as coordinates with
µ = 1, 2, 3, 4, and xA = (θ, φ) with A = 3, 4, then the line element that satisfy above
conditions reads

ds2 =−
(
V e2β

r
− r2hABU

AUB

)
du2 − 2e2βdudr − 2r2hABU

BdudxA

+ r2hABdx
AdxB, (4.57)
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which can be written conveniently as

ds2 =−
(
V e2β

r

)
du2 − 2e2βdudr + r2hAB

(
UAdu− dxA

) (
UBdu− dxB

)
, (4.58)

where

2hABdxAdxB =
(
e2γ + e2δ

)
dθ2 + 4 sin θ sinh(γ − δ)dθdφ

+ sin2 θ
(
e−2γ + e−2δ

)
dφ2. (4.59)

Then, ‖hAB‖ = sin θ, that is just the determinant of the unitary sphere, if θ and φ
can be identified as the usual spherical angles. The line element (4.58) for r constant,
allows us to identify V e2β/r as the square of the lapse function, where V and β are
related to the Newtonian potential and to the redshift respectively, and Uµ is the
shift displacement between two successive hypersurfaces.

4.3.2 Characteristic Initial Value Problem

As already considered, the initial value problem version in the null cone formalism, is
called characteristic initial value problem. In this case, the initial data is specified on
a null cone and on the time-like central geodesic, or on a time-like hypersurface (the
time-like world tube), which is parametrised through the retarded time u, (see Figure
4.5). In the first version of the null cone formalism (Figure 4.5a), some evolutions
can be carried out in a satisfactory form without caustic formation. However, the
second scheme (Figure 4.5b) is usually implemented, in particular to avoid caustics.

Null cones

Time-like central Geodesic

World tube Γ

Null cones

(a) (b)

Figure 4.5 - Space-timeM foliated in 2D - null hypersurfaces Σ. (a) Null cones emanating
from a central time-like geodesic. (b) Null cones as emanating from a central
time-like world tube.
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The common usage for the characteristic formulation is in conjunction with an
ADM based formalism, in which the matter is considered inside the world tube
Γ (see Figure 4.6). The matter is evolved through a space-like foliation scheme for
the space-time. The principal application of such scheme is in binary systems with
transfer of momentum and mass.

World tube Γ

Null cones

Space-like hypersurfaces

Figure 4.6 - Space-time M foliated in 2D - null hypersurfaces Σ. Section showing the
space-like for t constant and characteristic hypersurfaces corresponding to
the retarded time u constant.

The ADM based code determines the initial data needed to perform the
characteristic evolution. Specifying it on the common time-like hypersurface Γ,
after that a pure null evolution scheme is used, for example in radial cases the null
parallelogram algorithm is applied, or off the spherical symmetry a Crank-Nicolson
or a leapfrog algorithms are used. However, in recent works the time evolution is
performed using a Runge-Kutta integration scheme (see e.g. the references (CAO,
2013; REISSWIG et al., 2013; HANDMER; SZILÁGYI, 2015)).

4.3.3 The Einstein’s Field Equations

The Einstein’s field equations in this formalism can be decomposed into
hypersurface, evolution and constraint equations (WINICOUR, 2012), namely

R22 = 0, R2A = 0, hABRAB = 0, (4.60a)

RAB −
1
2hABh

CDRCD = 0, (4.60b)

R2
A = 0, R2

u = 0. (4.60c)
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These equations form a hierarchical system of equations, which can be solved
systematically. The first set of equations, (4.60a) gives

β,r = 1
16rh

AChBDhAB,rhCD,r, (4.61a)(
r4e2βhABU

B
,r

)
,r

= 2r4
(
r−2β,A

)
,r
− r2hBChAB,r‖C , (4.61b)

2V,r = e2βR− 2e2ββ A
‖A − 2e2ββ‖Aβ‖A + r−2

(
r4UA

)
,r‖A

− r4e−2β

2 hABU
A
,rU

B
,r, (4.61c)

for which u is constant, the double vertical lines indicates covariant derivative
associated to hAB, and R is the Ricci’s scalar associated to hAB. The evolution
equations (4.60b) take the form

(rhAB,u),r −
(rV hAB,r),r

2r −
2eβeβ ‖AB

r

+ rhAC‖BU
C
,r −

r3e−2βhAChBDU
C
,rU

D
,r

2 + 2UB‖A

+
rhAB,rU

C
‖C + rUChAB,r‖C

2 + rhAD,rh
CD

(
UC‖B − UB‖C

)
= 0, (4.62)

in which time derivatives of the J function are involved, and the third set, the
constraint equations, must be satisfied for all null cones in which the space-time is
foliated, or conversely for all time in the evolution.

4.4 The Einstein’s Field Equations in the Quasi-Spherical Approxi-
mation

In this section some results in the quasi-spherical approximation are briefly
presented. Bishop et al. (1996) obtain a decomposition for the field equations using
the stereographic dyads qA, separating the linear from the non-linear terms. When
the non-linear terms are disregarded the quasi-linear approximation is obtained. In
order to show this, the field equations (4.60) are projected as

R22 = 0, R2Aq
A = 0, hABRAB = 0, (4.63a)

qAqBRAB = 0, (4.63b)

R11 = 0, R12 = 0, R1Aq
A = 0. (4.63c)
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It is introduced a quantity to measure the deviation from the sphericity in terms
of the connection symbols, considering the higher order terms and therefore,
maintaining the non-linear regime without loss of generality.
Thus, the difference between the connexion associated with the unit sphere metric
qAB and hAB reads

ΩC
ABzC = (∇A −4A) zB (4.64)

which can be written

ΩC
AB =

hCD
(
hDB|A + hAD|B − hAB|D

)
2 , (4.65)

where f|A = 4Af . The following quantity is introduced in order to reduce the order
of the differential equation (4.61b)

QA = r2e−2βhABU
B
,r. (4.66)

Also, the following spin-weighted quantities are introduced,

J = hABq
AqB

2 , K = hABq
AqB

2 , Q = QAq
A, U = UAqA, (4.67)

where, the complex scalar J , is a 2-spin-weighted function, and the complex scalar
functions Q and U are 1-spin-weighted functions. The Bondi’s gauge ‖hAB‖ = sin θ,
is translated through these spin-weighted quantities as

K2 − JJ = 1. (4.68)

where, the overline indicates complex conjugation. Here J = 0 implies spherical
symmetry.
Thus (4.61b) is reduced to the following equations

(
r2QA

)
,r

= 2r4
(
r−2β,A

)
,r
− r2hBChAB,r‖C , (4.69a)

UA
,r = r−2e2βhABQB, (4.69b)
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and the field equations (4.61) adopt the form

β,r = Nβ, (4.70a)(
r2Q

)
,r

= −r2qAqBChAB‖C + 2r4qA
(
r−2β,A

)
,r

+NQ, (4.70b)

U,r = r2e2βQ+NU , (4.70c)

V,r = e2βR
2 − e2ββ A

‖A − e2ββ‖Aβ‖A +
r−2

(
r4UA

)
‖A,r

2 +Nw, (4.70d)

whereas the evolution equation (4.62) becomes

2 (rJ),ur −
(
r−1V (rJ),r

)
,r

=− r−1
(
r2ðU

)
,r

+ 2r−1eβð2eβ

−
(
r−1w

)
,r
J +NJ , (4.70e)

where the non-linear terms are

Nβ = 1
16rh

AChBDhAB,rhCD,r, (4.71a)

NQ = qA
(
r2hBC

(
ΩD

CAhDB,r + ΩD
CBhAD,r

)
− r2

(
hBC − qBC

)
hAB,r|C

)
, (4.71b)

NU = r−2e2βqA
(
hAB − qAB

)
QB, (4.71c)

Nw = −eβ
((
hAB − qAB

) (
eβ
)
|B

)
|A
−
r4e−2βhABU

A
,rU

B
,r

4 , (4.71d)

NJ = qAqB

r

(
−2eβΩC

AB

(
eβ
)
|C
− hACΩC

DB

(
r2UD

)
,r

− (hAC − qAC)
(
r2UC

)
,r|B

+
r4e−2βhAChDBU

C
,rU

D
,r

2

−
r2hAB,rU

C
‖C

2 − r2UChAB,r‖C + 2r2hCDhAD,rU[B‖C] + hABF

2

)
, (4.71e)

F = −r2hAB,r

(
hAB,u −

V hAB,r
2r

)
− 2eβ

(
eβ
) A

‖A
+
(
r2UA

)
,r‖A

−
r4e−2βhABU

A
,rU

B
,r

2 . (4.71f)

The quasi-spherical approximation is then obtained when Nβ = NQ = NU = Nw =
NJ = 0, which is neither a linear version of the field equations, and nor a spherical
version of them. However, this approximation considers slightly deviations from the
sphericity.
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4.5 The Einstein’s Field equations Using the Eth Formalism

Bishop et al. (1997) show that the field equations (4.70a)-(4.70d) take the following
form when the eth formalism is used,

β,r = Nβ, (4.72a)

U,r = r−2e2βQ+NU , (4.72b)(
r2Q

)
,r

= −r2
(
ðJ + ðK

)
,r

+ 2r4ð
(
r−2β

)
,r

+NQ, (4.72c)

w,r = e2β

2 R− 1− eβððeβ + r−2

4
(
r4
(
ðU + ðU

))
,r

+Nw, (4.72d)

where the Ricci’s scalar associated to hAB take the form

R = 2K − ððK + ð2
J + ð2J

2 + ðJðJ − ðJðJ
4K . (4.73)

The evolution equation (4.70e) reads

2 (rJ),ur −
(
r−1(r +W ) (rJ),r

)
,r

=− r−1
(
r2ðU

)
,r

+ 2r−1eβð2eβ

−
(
r−1w

)
,r
J +NJ , (4.74)

where, the non-linear terms in (4.71) become

Nβ =
r
(
J,rJ ,r −K2

,r

)
8 , (4.75a)

NU =
e2β

(
KQ−Q− JQ

)
r2 , (4.75b)

NQ = r2
(
(1−K)

(
ðK,r + ðJ,r

)
+ ð

(
JJ,r

)
+ ð (JK,r)− J,rðK

)
+ r2

2K2

(
ðJ

(
J,r − J2J ,r

)
+ ðJ

(
J ,r − J

2
J,r
))
, (4.75c)

Nw = e2β

(1−K)
(
ððβ + ðββ

)
+
J
(
ðβ
)2

+ J (ðβ)2

2


− e2β

2
(
ðβ

(
ðK − ðJ

)
+ ðβ

(
ðK − ðJ

))
+ e2β

2
(
Jð2

β + Jð2β
)

− e−2βr4

8
(
2KU,rU ,r + JU

2
,r + JU2

,r

)
, (4.75d)

NJ =
7∑
i=1

NJi + J
∑4
n=1 Pn
r

. (4.75e)
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Here, were defined the following terms

NJ1 =− e2β

r

(
K
(
ðJðβ + 2ðKðβ − ðJðβ

)
+ J

(
ðJ − 2ðK

)
ðβ

− JðJðβ
)
, (4.76a)

NJ2 =−

(
ðJ

(
r2U

)
,r

+ ðJ (r2U),r
)

2r , (4.76b)

NJ3 =
(1−K)ð (r2U),r − Jð

(
r2U

)
,r

r
, (4.76c)

NJ4 =
r3e−2β

(
K2U2

,r + 2JKU,rU ,r + J2U
2
,r

)
2 , (4.76d)

NJ5 =−
rJ,r

(
ðU + ðU

)
2 , (4.76e)

NJ6 =
r
(
UðJ + UðJ

) (
JJ ,r − JJ,r

)
2 + r (JK,r −KJ,r)UðJ

− rU (ðJ,r − 2KðHJ,r + 2JðKK,r)

− rU
(
ðJ,r −KðJJ,r + JðJK,r

)
, (4.76f)

NJ7 =r (J,rK − JK,r)
(
U
(
ðJ − ðK

)
+ U

(
ðK − ðJ

)
+K

(
ðU − ðU

)
+
(
JðU − JðU

))
, (4.76g)

and the Pn terms in (4.75e) are defined as

P1 =
r2
(
J,u

(
JK

)
,r

+ J ,u (JK),r
)

K
− 8V β,r, (4.77a)

P2 = e2β
(
−2K

(
ððβ + ðβðβ

)
−
(
ðβðK + ðβðK

)
+J

(
ð2
β + (ðβ)2

)
+ J

(
ð2β + (ðβ)2

)
+ ðJðβ + ðJðβ

)
, (4.77b)

P3 =
ð (r2U),r + ð

(
r2U

)
,r

2 , (4.77c)

P4 = −
r4e−2β

(
2KU,rU ,r + JU

2
,r + JU2

,r

)
4 . (4.77d)

Notice that subsequent reductions to a first order equations were made (GÓMEZ,
2001), improving the performance and the accuracy of the characteristic evolution
codes, keeping the problem as a well-possess problem (GÓMEZ; FRITTELLI, 2003).
Also, it is worth mentioning that other approach, for Bondi observers, is obtained
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by considering the projection of the field equations onto the vectors mA, defined as

hAB = m(AmB). (4.78)

This kind of approach is used in the analysis of the gravitational radiation near the
null infinity (BISHOP et al., 1997).
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5 LINEAR REGIME IN THE CHARACTERISTIC FORMULA-
TION AND THE MASTER EQUATION SOLUTIONS

The linear regime of the Einstein’s field equations leads to different approximations
according to how it is made. Depending on the presence of matter, the curvature
of the background can be considered in this regime. The perturbations made to the
space-time are considered smaller enough to contribute to the curvature, propagating
away from the sources. If the curvature is considered then the advanced and retarded
Green’s functions must be taken into account into the gravitational wave solutions.

In this section, we show the Einstein’s field equations in the outgoing characteristic
formalism in the linear regime. These equations result from perturbations to the
Minkowski and Schwarzschild’s space-times. In order to do this, we shown that,
to first order, the Bondi-Sachs metric can be decomposed as a background metric
(Minkowski or Schwarzschild) plus a perturbation, which is expressed in terms of
the spin-weighted functions β, J , U and K previously defined. After that, the field
equations are computed and a decomposition into spin-weighted spherical harmonics
is performed, leading to a system of equations for the coefficients used in those
multipolar expansions. This system is solved in a completely analytical form, by
solving a specific equation obtained for the J metric variable, which is called master
equation. Using their solutions we compute the analytical solutions for the rest of
the metric variables for all multipolar orders in terms of Generalised Hypergeometric
(Heun) functions for the Minkowski (Schwarzschild) (CEDEÑO; ARAUJO, 2015a). A
simple example is reproduced using this formalism, that is a static spherical thin
shell (BISHOP, 2005), whose matter distribution is expressed as a function of the
spin-weighted spherical harmonics sZlm.

Here, we put the Bondi-Sachs metric (4.57) in terms of the spin-weighted scalars
J, w and β in stereographic-radiation coordinates, namely

ds2 = −
(
e2β

(
1 + w

r

)
− r2(JŪ2 + U2J̄ + 2KUŪ)

)
du2 − 2e2βdudr

−
2r2

(
(K + J̄)U + (J +K)Ū

)
1 + |ζ|2 dqdu

−
2ir2

(
(K − J̄)U + (J −K)Ū

)
1 + |ζ|2 dpdu+

2r2
(
J + 2K + J̄

)
(1 + |ζ|2)2 dq2

−
4ir2

(
J − J̄

)
(1 + |ζ|2)2 dqdp−

2r2
(
J − 2K + J̄

)
(1 + |ζ|2)2 dp2. (5.1)
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In the weak field limit, i.e., when slight deviations from the Minkowski background
are considered i.e., |gµν | � |ηµν |, and the second order terms are disregarded, the
Bondi-Sachs metric is reduced to

ds2 = −
(

1− w

r
− 2β

)
du2 − 2(1 + 2β)dudr − 2r2 (U + U)

1 + |ζ|2 dqdu

−2r2 i(U − U)
1 + |ζ|2 dpdu+ 2r2

(
2 + J + J

)
(1 + |ζ|2)2 dq2

−4ir2 (J − J)
(1 + |ζ|2)2dqdp− 2r2

(
−2 + J + J

)
(1 + |ζ|2)2 dp2, (5.2)

which can be clearly separated as,

ds2 = −du2 − 2dudr + 4r2

(1 + |ζ|2)2

(
dq2 + dp2

)
+
(
w

r
+ 2β

)
du2

−4βdudr − 2r2

1 + |ζ|2du
(
(U + U)dq − i(U − U)dp

)

−4ir2 (J − J)
(1 + |ζ|2)2dqdp+

2r2
(
J + J

)
(1 + |ζ|2)2

(
dq2 − dp2

)
, (5.3)

showing that it corresponds to a Minkowski background plus a perturbation.

5.1 Einstein’s Field Equations in the linear

In the linear regime, the field equations (4.63) are reduced to

8πT22 = 4β,r
r
, (5.4a)

8πT2Aq
A = ðJ,r

2 − ðβ,r + 2ðβ
r

+
(r4U,r),r

2r2 , (5.4b)

8π
(
hABTAB − r2T

)
= −2ððβ + ð2J + ð2

J

2 +

(
r4
(
ðU + ðU

))
,r

2r2

+ 4β − 2w,r, (5.4c)

8πTABqAqB = −2ð2β +
(
r2ðU

)
,r
−
(
r2J,r

)
,r

+ 2r (rJ),ur , (5.4d)

8π
(
T

2 + T11

)
= ððw

2r3 + ððβ
r2 −

(
ðU + ðU

)
,u

2 + w,u
r2 + w,rr

2r

− 2β,u
r
, (5.4e)

8π
(
T

2 + T12

)
= ððβ

r2 −

(
r2
(
ðU + ðU

))
,r

4r2 + w,rr
2r , (5.4f)
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8πT1Aq
A = ðJ,u

2 − ð2U

4 + ððU
4 + 1

2

(
ðw
r

)
,r

− ðβ,u +
(r4U),r

2r2

− r2U,ur
2 + U. (5.4g)

which are the field equations corresponding to the perturbed Minkowski or
Schwarzschild space-times depending on how the w metric function is defined. This
system of equations were originally obtained by Bishop in (BISHOP, 2005) and
confirmed by us.

5.2 Harmonic Decomposition and Boundary Problem

Now, an expansion of the metric variables in the form of a multipolar series is
performed, namely

sf =
∞∑
l=0

l∑
m=l
<
(
flme

i|m|φ̃
)
ðs Zlm, (5.5)

where sf = {β, w, J, J, U, U}, Zlm = 0Zlm, φ̃ is a general function of the retarded
time, i.e., φ̃ := φ̃(u), flm are the spectral components of the function sf , m ∈ Z,
m ∈ [−l, l] and l ≥ 0 indicating the multipolar order. In previous works similar
expansions were performed, where φ = νu (BISHOP, 2005; BABIUC et al., 2009;
BISHOP et al., 2011; CEDEÑO; ARAUJO, 2015b).

Notice that in (5.5) the spin-weight of the function sf is contained in the factor
ðsZlm. Therefore, substituting (5.5) into the field equations (5.4) one obtains
ordinary differential equations for their spectral components, in which the spin-
weighted factors have been eliminated, namely

βlm,r = 2π
ˆ

Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃rT22, (5.6a)

− (l + 2)(l − 1)Jlm,r
2 − βlm,r + 2βlm

r
+

(r4Ulm,r),r
2r2

= 8π√
l(l + 1)

ˆ
Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃T2Aq

A, (5.6b)

2l(l + 1)βlm + (l − 1)l(l + 1)(l + 2)Jlm +
l(l + 1) (r4 (Ulm)),r

r2

+ 4βlm − 2wlm,r = 8π
ˆ

Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃

(
hABTAB − r2T

)
, (5.6c)
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− 2βlm +
(
r2Ulm

)
,r
−
(
r2Jlm,r

)
,r

+ 2i|m|r ˙̃φ (rJlm),r

= 8π√
(l − 1)l(l + 1)(l + 2)

ˆ
Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃TABq

AqB, (5.6d)

− l(l + 1)wlm
2r3 − l(l + 1)βlm

r2 + i|m|l(l + 1) ˙̃φUlm + i|m| ˙̃φwlm
r2

+ wlm,rr
2r − 2i|m| ˙̃φβlm

r
+ 2βlm,r

r
+ βlm,rr − 2 ˙̃φβlm,r

= 8π
ˆ

Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃

(
T

2 + T11

)
, (5.6e)

− l(l + 1)βlm
r2 +

l(l + 1) (r2Ulm),r
2r2 + wlm,rr

2r

= 8π
ˆ

Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃

(
T

2 + T12

)
, (5.6f)

− i|m|(l + 2)(l − 1)Jlm ˙̃φ
2 + 1

2

(
wlm
r

)
,r
− i|m| ˙̃φβlm +

(r4Ulm,r),r
2r2

− i|m|r2 ˙̃φ
2 Ulm,r + Ulm = 8π√

l(l + 1)

ˆ
Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃T1Aq

A, (5.6g)

This system of coupled ordinary equations is separable through a simple procedure,
as we will show in the next section. Notice that an alternative procedure is presented
by Mädler in (MÄDLER, 2013).

5.3 The Master Equation

Here, we sketch the explicit steps to obtain a fourth order equation for Jlm. This
equation is called master equation and allows one to find the explicit solutions for
Ulm and wlm.

In order to do that we start making the change of variable x = r−1, then, the field
equations (5.6a) - (5.6d) become

βlm,x = −x2Alm, (5.7a)

(l + 2)(l − 1)xJlm,x + 2xβlm,x + 4βlm − 2Ulm,x + xUlm,xx = Blm, (5.7b)

− 2x3Jlm,xx − 4i|m| ˙̃φxJlm,x + 4i|m| ˙̃φJlm + 4Ulm − 2xUlm,x − 4xβlm
= 2xDlm, (5.7c)
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where the source terms Alm := Alm(x), Blm := Blm(x) and Dlm := Dlm(x) are
explicitly defined (CEDEÑO; ARAUJO, 2015a), namely

Alm = 2π
ˆ

Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃xT22, (5.8a)

Blm = 16π√
l(l + 1)

ˆ
Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃xT2Aq

A, (5.8b)

Dlm = 8π√
(l − 1)l(l + 1)(l + 2)

ˆ
Ω
dΩ Z lm

ˆ 2π

0
dφ̃ e−i|m|φ̃TABq

AqB. (5.8c)

In addition, solving (5.7b) for 4xβlm and substituting it into (5.7c), one obtains

− 2x3Jlm,xx − 4i|m| ˙̃φxJlm,x + x2(l + 2)(l − 1)Jlm,x + 4i|m| ˙̃φJlm
+ x2Ulm,xx − 4xUlm,x + 4Ulm + 2x2βlm,x = x(2Dlm +Blm). (5.9)

Thus, the derivative of (5.9) with respect to x yields a third order differential
equation for Jlm, i.e.,

− 2x3Jlm,xxx − 6x2Jlm,xx − 4i|m| ˙̃φxJlm,xx + x2(l + 2)(l − 1)Jlm,xx
+ 2x(l + 2)(l − 1)Jlm,x + x2Ulm,xxx − 2xUlm,xx
+ 4xβlm,x + 2x2βlm,xx = (2Dlm +Blm) + x(2Dlm,x +Blm,x). (5.10)

After this, notice that it is possible to obtain x2Ulm,xxx by just deriving (5.7b) with
respect to x, namely

x2Ulm,xxx = −x2(l + 2)(l − 1)Jlm,xx − x(l + 2)(l − 1)Jlm,x + xUlm,xx

− 6xβlm,x − 2x2βlm,xx + xBlm,x. (5.11)

Then, substituting it in (5.10) and simplifying one obtains

− 2x3Jlm,xxx − 6x2Jlm,xx − 4i|m| ˙̃φxJlm,xx + x(l + 2)(l − 1)Jlm,x
− xUlm,xx − 2xβlm,x = 2xDlm,x +Blm + 2Dlm. (5.12)

Making the derivative of (5.12) with respect to x, and substituting xUxxx from
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(5.11), one finds a fourth order differential equation for Jlm, namely

− 2x4Jlm,xxxx − 12x3Jlm,xxx − 12x2Jlm,xx − 4i|m| ˙̃φxJlm,xx − 4i|m| ˙̃φx2Jlm,xxx

+ 2x(l + 2)(l − 1)Jlm,x + 2x2(l + 2)(l − 1)Jlm,xx + 4xβlm,x − 2xUlm,xx
= 2xBlm,x + 2x2Dlm,xx + 4xDlm,x. (5.13)

Finally, solving (5.12) for Ulm,xx and substituting into (5.13), a differential equation
containing only Jlm with source terms is obtained, namely

− 2x4Jlm,xxxx − 4x2
(

2x+ i|m| ˙̃φ
)
Jlm,xxx

+ 2x
(

2i|m| ˙̃φ+ x(l + 2)(l − 1)
)
Jlm,xx = Hlm(x), (5.14)

where

Hlm(x) = 2xBlm,x + 2x2Dlm,xx − 8xβlm,x − 2Blm − 4Dlm (5.15)

represents the source terms (CEDEÑO; ARAUJO, 2015a).

In order to reduce the order of this differential equation, one defines
J̃lm = Jlm,xx, thus,

− 2x4J̃lm,xx − 4x2
(

2x+ i|m| ˙̃φ
)
J̃lm,x + 2x

(
2i|m| ˙̃φ+ x(l + 2)(l − 1)

)
J̃lm = Hlm.

(5.16)

For the vacuum, this differential equation turns homogeneous, i.e., Hlm = 0, and
hence (5.16) is reduced to the master equation presented by Mädler in (MÄDLER,
2013), i.e.,

−x3J̃lm,xx − 2x
(

2x+ i|m| ˙̃φ
)
J̃lm,x +

(
2i|m| ˙̃φ+ x(l + 2)(l − 1)

)
J̃lm = 0. (5.17)

Making l = 2, this master equation reduces to that presented previously in (BISHOP,
2005) for the Minkowski’s Background i.e.,

−x3J̃lm,xx − 2x
(

2x+ i|m| ˙̃φ
)
J̃lm,x + 2

(
i|m| ˙̃φ+ 2x

)
J̃lm = 0.

The derivation of the master equation for the Schwarzschild’s background follows
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the same scheme. In this case the master equation is given by

Jlm,xxxxx
4(2Mx− 1) + Jlm,xxx

(
2x3(7Mx− 2)− 2ix2 ˙̃φ |m|

)
+ Jlm,xx

(
2ix ˙̃φ |m|+ (l − 1)(l + 2)x2 + 16Mx3

)
= Glm(x), (5.18)

whereM is the mass of the central static black-hole and Glm(x) represents the source
term, which is given by

Glm(x) = Hlm(x)
2 . (5.19)

It is important to observe that M = 0 effectively reduces (5.18) to (5.14).
Defining J̃lm = Jlm,xx, the order of the differential equation (5.18) is reduced
(CEDEÑO; ARAUJO, 2015a), namely

J̃lm,xxx
4(2Mx− 1) + J̃lm,x

(
2x3(7Mx− 2)− 2ix2 ˙̃φ |m|

)
+ J̃lm

(
2ix ˙̃φ |m|+ (l − 1)(l + 2)x2 + 16Mx3

)
= Glm(x). (5.20)

5.4 Families of Solutions to the Master Equation

Now, the families of solutions to the master equations (5.14) and (5.18) associated
with the linear approximation in the Minkowski and the Schwarzschild’s space-times
are explicitly shown.

To proceed, consider that l is integer and greater than or equal to zero, i.e., l ≥ 0,
the constants of integration Ci are complexes Ci ∈ C, i = 1..4, and arabic lower case
letters represent real constants, i.e., a, b, c, d, e, f, · · · ∈ R

It is worth stressing that the applicability of the present work has some limitations,
since in the context of the characteristic formulation the matter fields must be known
a priori throughout the space-time.

Applications astrophysically relevant for this kind of solutions would be a spherical
thick shell obeying some dynamics. This shell can obey an equation of state for some
polytropic index. This assumption will destroy the analyticity nature of the master
equation and therefore its integration must be numerical. Different polytropic index
can lead to different solutions for J and therefore different gravitational patterns.
Another possible application would be a star formed by multiple thick layers obeying
different equations of state. Also, binaries radiating their eccentricities offers real
possibilities of application of the present formalism. In addition, objects gravitating
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around a Reisner-Norström black-holes allows one to explore interesting physics.
Applications in cosmology are also admitted in this formalism, for example, studying
the evolution of gravitational waves in a de Sitter space-time (BISHOP, 2015). There
are other possibilities of applications under a wide spectrum of considerations in
f(R) theories. Finally, it is important to note that numerous studies can be made
in the linear regime considering the numerical integration of the field equations, for
example, the gravitational collapse of a given matter distribution is only one of these
possibilities.

5.4.1 The Minkowski’s Background

First, let us consider the most simple case corresponding to the non-radiative,m = 0,
Minkowski’s master equation without sources (5.17). Assuming the ansatz
Jlm = xk, we obtain immediately

(k − l + 1)(k + l + 2) = 0,

whose roots lead to the general family of solutions,

J̃l0(x) = C1x
l−1 + C2x

−(l+2). (5.21)

Thus, integrating the last equation two times and rearranging the constants one
obtains families of solutions to (5.14) of four parameters for the vacuum, namely

Jl0(x) = C1x
l+1 + C2x

−l + C3x+ C4. (5.22)

When the source term is not null, we find that the non-radiative family of solutions,
m = 0, to the inhomogeneous equation (5.16) reads

J̃l0(x) =C1x
l−1 + C2x

−(l+2) + x−(l+2)
ˆ x

a

dy
H(y)yl−1

2l + 1 − xl−1
ˆ x

b

dy
H(y)y−(l+2)

2l + 1 ,

(5.23)

where a and b are real constants. Therefore, integrating two times with respect to x
and rearranging the constants we find the family of solutions to the inhomogeneous
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master equation (5.14), for m = 0,

Jl0(x) =C1x
l+1 + C2x

−l + C3x+ C4 +
ˆ x

a

dv

ˆ v

b

dww−(l+2)
ˆ w

c

dy
H(y)yl−1

4l + 2

−
ˆ x

d

dv

ˆ v

e

dwwl−1
ˆ w

f

dy
H(y)y−(l+2)

4l + 2 , (5.24)

where it is clear that the analyticity of the solutions depends on the existence and
analyticity of the integrals. If the source term is disregarded, then (5.24) is reduced
immediately to (5.22).

Now, we will consider the case for a radiative family of solutions, m 6= 0, |m| ≤ l for
l > 0, without source term. In this case (5.17) becomes a Bessel’s type differential
equation. Mädler (2013) previously showed that the general solutions to this master
equation can be expressed as a linear combination of the first and second kind
spherical Bessel’s functions. We find here that the family of solutions to the master
equation (5.17) can be expressed in terms only of the first kind Bessel’s functions,
as

J̃lm =
C12 1

2−2lz3/2e
1
2 i(πl+2z)Γ

(
1
2 − l

) (
KJ−l− 1

2
+ LJ 1

2−l

)
(l − 1)l

+
iC222l+ 5

2 z3/2eiz−
iπl
2 Γ

(
l + 3

2

) (
KJl+ 1

2
+ LJl− 1

2

)
(l + 1)(l + 2) , (5.25)

where the argument of the first kind Bessel’s functions Jn are referred to z, which
is defined as

z = |m|
˙̃φ

x
, (5.26)

and the coefficients K, L and S are given by

K = −i(l(l − 1) + 2iz)− 2z(l − iz), (5.27a)

L = −2z(z − i), (5.27b)

S = l(l − 1) + 2iz. (5.27c)

Integrating two times (5.25) and rearranging the constants we find the family of
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solutions that satisfies (5.14), i.e.,

Jlm =−
iC12 1

2−2l ˙̃φ2 |m|2 z−1/2e
1
2 i(πl+2z)Γ

(
1
2 − l

) (
−2zJ 1

2−l
+ SJ−l− 1

2

)
l2 (l2 − 1)

−
C222l+ 5

2
˙̃φ2 |m|2 z−1/2e−

1
2 i(πl−2z)Γ

(
l + 3

2

) (
2zJl− 1

2
+ SJl+ 1

2

)
l(l + 1)2(l + 2)

+ C3 + C4

˙̃φ|m|
z

. (5.28)

When matter is considered, we find that the family of solutions to (5.17) becomes

J̃lm =
2 1

2−2lz3/2 (C1 +D1) e iπl2 +izΓ
(

1
2 − l

) (
KJ−l− 1

2
+ LJ 1

2−l

)
(l − 1)l

+
i22l+ 5

2 z3/2 (C2 +D2) eiz− iπl2 Γ
(
l + 3

2

) (
KJl+ 1

2
+ LJl− 1

2

)
(l + 1)(l + 2) , (5.29)

where the coefficients K and L were defined above, and the terms representing the
sources are

D1 = −
ˆ |m| ˙̃φ/z
|m| ˙̃φ

dz̃
22l− 5

2 z̃−1/2e−
1
2 i(πl+2z̃)Γ

(
l + 1

2

) (
KJl+ 1

2
− LJl− 1

2

)
(l + 1)(l + 2) ˙̃φ2 |m|2

H

 ˙̃φ |m|
z̃

 ,
(5.30a)

and

D2 =− i
ˆ |m| ˙̃φ/z
|m| ˙̃φ

dz̃
2−2l− 9

2 z̃−1/2e
1
2 i(πl−2z̃)Γ

(
−l − 1

2

) (
KJ−l− 1

2
+ LJ 1

2−l

)
(l − 1)l ˙̃φ2 |m|2

H

 ˙̃φ |m|
z̃

 ,
(5.30b)

where the argument of the first kind Bessel’s functions Jn is z, which is defined
just in (5.26). It is worth noting that in this form, it is clear that (5.29) converges
immediately to (5.25), when the sources are not considered.

Integrating (5.29) two times we obtain the general family of solutions to the master
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equation with sources, which reads

Jlm =−
iC12 1

2−2l ˙̃φ2 |m|2 z−1/2e
1
2 i(πl+2z)Γ

(
1
2 − l

) (
−2zJ 1

2−l
+ SJ−l− 1

2

)
l2 (l2 − 1)

−
C222l+ 5

2
˙̃φ2 |m|2 z−1/2e−

1
2 i(πl−2z)Γ

(
l + 3

2

) (
2zJl− 1

2
+ SJl+ 1

2

)
l(l + 1)2(l + 2)

+
ˆ z

b

dy

ˆ y

a

dz̃

2 1
2−2lz̃3/2D1e

iπl
2 +iz̃Γ

(
1
2 − l

) (
KJ−l− 1

2
+ LJ 1

2−l

)
(l − 1)l

+
i22l+ 5

2 z̃3/2D2e
iz̃− iπl2 Γ

(
l + 3

2

) (
KJl+ 1

2
+ LJl− 1

2

)
(l + 1)(l + 2)


+ C3 + C4

˙̃φ|m|
z

. (5.31)

These families of solutions are particularly interesting and useful to explore the
dynamics of matter clouds immersed in a Minkowski’s background.

5.4.2 The Schwarzschild’s Background

Now, we show the non-radiative families of solutions, m = 0, for the vacuum
i.e., G(x) = 0, for equation (5.20). The solution is expressed in terms of the
hypergeometric functions 2F1(a1, a2; b; z), as

J̃lm =(−2)−l−2C1M
−l−2x−l−2

2F1(2− l,−l;−2l; 2Mx)

+ (−2)l−1C2M
l−1xl−1

2F1(l + 1, l + 3; 2l + 2; 2Mx). (5.32)

Integrating two times, we find the family of solutions to (5.18), namely

Jlm =C1(−1)−l2−l−2(Mx)−l 3F2(−l − 1, 2− l,−l; 1− l,−2l; 2Mx)
l(l + 1)M2

+ C2(−1)l+12l−1x(Mx)l 3F2(l, l + 1, l + 3; l + 2, 2l + 2; 2Mx)
l(l + 1)M + C3x+ C4,

(5.33)

where, pFq(a1, · · · ap; b1, · · · , bq; z) are the generalised hypergeometric functions.

When we consider the source terms, i.e., H(x) 6= 0, the non radiative solutions to
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(5.20) reads

J̃lm =(−1)1−l2−l−2M−l−2x−l−2
(
A2(−1)2l22l+1M2l+1x2l+1

2F1(l + 1, l + 3; 2l + 2; 2Mx)

−A1 2F1(2− l,−l;−2l; 2Mx)) + C1(−2)−l−2M−l−2x−l−2
2F1(2− l,−l;−2l; 2Mx)

+ C2(−2)l−1M l−1xl−1
2F1(l + 1, l + 3; 2l + 2; 2Mx), (5.34)

where A1, A2 are given by the integrals

A1 = −
ˆ x

a

dy
(−2)l+2H(y)M l+2yl 2F1(l + 1, l + 3; 2(l + 1); 2My)

B1 +B2
, (5.35a)

A2 =
ˆ x

b

dy
(−2)1−lH(y)M1−ly−l−1

2F1(2− l,−l;−2l; 2My)
B1 +B2

, (5.35b)

and the functions B1 and B2 are

B1 =(2My − 1)((l − 2) 2F1(3− l,−l;−2l; 2My) 2F1(l + 1, l + 3; 2(l + 1); 2My),
(5.36a)

B2 = 2F1(2− l,−l;−2l; 2My)(2 2F1(l + 1, l + 3; 2(l + 1); 2My)

+ (l + 1) 2F1(l + 2, l + 3; 2(l + 1); 2My))). (5.36b)

For the radiative (m 6= 0) family of solutions to the master equation (5.20) for the
vacuum, we find that its most general solution is given by

J̃lm =C1Le
2α
xM x−4 + C2K (2Mx− 1)4α−2 x−2−4αe

2α
xM , (5.37)

with

L = HC (−4α, β; γ, δ, ε, η) and K = HC (−4α,−β; γ, δ, ε, η) , (5.38)

where HC(α, β; γ, δ, ε, η) are the confluent Heun’s functions and their parameters are
given by

α = i ˙̃φmM, β = 2− 4α, (5.39a)

γ = 2, δ = 8α(α− 1), (5.39b)

ε = −(l + 2)(l − 1)− 8α(α− 1), η = 2Mx− 1
2Mx

. (5.39c)

Finally, we present the analytical family of solutions to (5.20) in the radiative case,
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m 6= 0, when the source terms are considered, i.e.,

Jlm =− 8Me
2a
Mx

(
−LMx+M2x2L+ L/4

)
A1x

−4 (2Mx− 1)−2

+ 2Me
2a
Mxx2−4a (2Mx− 1)4aA2Kx

−4 (2Mx− 1)−2

+ C1Le
2a
Mxx−4 + C2Ke

2a
Mxx−2−4a (2Mx− 1)−2+4a , (5.40)

where A1 and A2 are the integrals

A1 =
ˆ x

a

dx̃
x̃2H(x̃)e− 2a

Mx̃K

−4LKMx̃+ 8LKaMx̃− LS + 2LMx̃S +KR− 2KMx̃R
(5.41a)

A2 =
ˆ x

b

dx̃
4x̃4ae−

2a
Mx̃H(x̃) (Mx̃− 1/2)2 (2Mx̃− 1)−4a L

−4LKMx̃+ 8LKaMx̃− LS + 2LMx̃S +KR− 2KMx̃R
, (5.41b)

where S and R are the derivative of the Heun’s functions, i.e., S = K ′(x) and
R = L′(x), in which we suppress all indices except one which gives the functional
dependence.

5.5 Families of Solutions for l = 2

Now, we show that the families of solutions found here are reduced to those
previously reported in the literature for l = 2. Thus, for this particular value of
l we obtain that the family of solutions to the master equation for the vacuum,
(5.17) takes the explicit form

J̃lm = E1x+
E2e

2i ˙̃φ|m|
x

(
6x3 ˙̃φ |m| − 6ix2 ˙̃φ2 |m|2 − 4x ˙̃φ3 |m|3 + 2i ˙̃φ4 |m|4 + 3ix4

)
4x3 ˙̃φ5 |m|5

.

(5.42)
Now, substituting l = 2 in the family of solutions (5.25), one obtains

J̃lm =iC1
˙̃φ3 |m|3 e

2i ˙̃φ|m|
x

6x3 − 40iC2
˙̃φ3 |m|3 e

2i ˙̃φ|m|
x

x3 − C1
˙̃φ2 |m|2 e

2i ˙̃φ|m|
x

3x2 + 80C2
˙̃φ2 |m|2 e

2i ˙̃φ|m|
x

x2

− iC1
˙̃φ |m| e

2i ˙̃φ|m|
x

2x + 120iC2
˙̃φ |m| e

2i ˙̃φ|m|
x

x
+ 1

2C1e
2i ˙̃φ|m|
x − 120C2e

2i ˙̃φ|m|
x

+ iC1xe
2i ˙̃φ|m|
x

4 ˙̃φ |m|
+ iC1x

4 ˙̃φ |m|
− 60iC2xe

2i ˙̃φ|m|
x

˙̃φ |m|
+ 60ix

˙̃φ |m|
. (5.43)

Both family of solutions, (5.42) and (5.43), are completely equivalent. Note that,
the transformation between the constants, necessary to pass from (5.42) to (5.43) is
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given by
E1 = i (C1 + 240C2)

4 ˙̃φ |m|
, E2 = 1

3 (C1 − 240C2) ˙̃φ4 |m|4 . (5.44)

Note that for the Schwarzschild case, when no sources are present, the master
equation (5.20) for the vacuum and l = 2 takes the explicit form

x2(2Mx− 1)J̃lm,xx + 2x(7Mx− 2)J̃lm,x + (16Mx+ 4)J̃lm = 0, (5.45)

whose family of solutions is

J̃lm = C1

x4−
C2 (16M4x4 + 32M3x3 − 44M2x2 − 4Mx+ 12(1− 2Mx)2 log(1− 2Mx) + 7)

64M5x4(1− 2Mx)2 .

(5.46)
Now, specialising the solutions (5.32) for l = 2, we find a totally equivalent solution,
i.e.,

J̃lm = D1

16M4x4 +5D2 (2Mx (2M3x3 + 4M2x2 − 9Mx+ 3) + 3(1− 2Mx)2 log(1− 2Mx))
8M4x4(1− 2Mx)2 .

(5.47)
Thus, a simple Maclaurin series expansion of both solutions shows that the
relationship between the constants is

D1 = 64C1M
5 − 7C2

4M and D2 = − C2

10M . (5.48)

Finally, given that the known family of solutions for l = 2 is written in terms of
power series around r = 2M , as shown in (BISHOP, 2005), we expand the radiative
family of solutions for the master equation (5.18) around the same point r = 2M
for l = 2. Thus, we observe that the Confluent Heun’s function HC(−4α, β; γ, δ, ε, η)
is expressed as a Taylor series for the parameters (5.39) around η = 0, namely

HC(−4α, β; γ, δ, ε, η) '1 + ((4a+ 1)2 − 5 + (l − 1)(l + 2)) η
−3 + 4 a

+ 1
8(a− 1)(4a− 3)

((
256a4 + 192a3 + 32a2

(
l2 + l − 5

)
+ 4a

(
4l2 + 4l − 39

)
+ l4 + 2l3 − 17l2 − 18l + 72

)
η2
)
,

(5.49)

and for the Confluent Heun’s function HC(−4α,−β; γ, δ, ε, η), i.e.,

HC(−4α,−β; γ, δ, ε, η) '1− (4a+ l2 + l) η
4a− 1 − (12a− l4 − 2l3 + l2 + 2l) η2

8a(4a− 1) . (5.50)
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Then, from (5.49) and (5.50) we obtain that around r = 2M , (5.37) at first order
for l = 2 reads

J̃lm =C1

(
16e4α(4α + 12)ηM4

4α− 3 + 16e4αM4
)
−

24α+2C2e
4α (16α2 + 16α + 2) η4α−1

(
1
M

)−4α−2

4α− 1

+
24α−1C2e

4α (256α4 + 576α3 + 384α2 + 132α + 24) η4α
(

1
M

)−4α−2

α(4α− 1)

−
24α+1C2e

4α (256α5 + 896α4 + 1056α3 + 636α2 + 228α + 72) η4α+1
(

1
M

)−4α−2

3α(4α− 1)

+ 24α+2C2e
4αη4α−2

( 1
M

)−4α−2
, (5.51)

that are just the family of solutions for the master equation obtained using power
series around r = 2M .

5.6 Thin Shell

In this section we examine a static thin shell in a Minkowski’s background, initially
studied in (BISHOP, 2005), as an example of application of the solutions of the master
equation when the system is restricted to l = 2 and ˙̃φ = 0. This example illustrates
the process of solution of the field equations when a static matter distribution such as
a spherical thin shell is considered. The space-time is divided into two distinct empty
regions connected through the jumps imposed into the metric of the space-time and
its first derivatives. Here boundary conditions at the vertices of the null cones, at the
null infinity and on the shell surface are imposed. The master equation is solved for
each empty region, which are then connected through the jump conditions on the
metric and its derivatives. This procedure fixes the constants of integration, thus the
solution to the field equations is found. Physically we are interested in a spherical
distribution of matter of radius r0, centred at the origin of the coordinates for which
its density of energy is given by

ρ = ρ0δ(r − r0) 0Z2m. (5.52)

Here, the metric variables are restricted to be represented by

sf = < (f0) ðs Z2m, (5.53)

where f represents any of the β, w, U, J functions. Notice that the metric variables
do not depend on time, i.e., sf,u = 0.
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Then, substituting (5.53) into (5.4), the system of equations for the vacuum is
reduced to

dβ0

dr
= 0, (5.54a)

− 4rdJ0

dr
+ 4r2dU0

dr
+ r3d

2U0

dr2 + 4β0 = 0, (5.54b)

3r2dU0

dr
+ dw0

dr
− 12J0 + 12rU0 − 8β0 = 0, (5.54c)

− 2rdJ0

dr
+ r2dU0

dr
− r2d

2J0

dr2 + 2rU0 − 2β0 = 0, (5.54d)

− r2d
2w0

dr2 + 6w0 + 12rβ0 = 0, (5.54e)

6r2dU0

dr
+ r

d2w0

dr2 + 12rU0 − 12β0 = 0, (5.54f)

4r3dU0

dr
+ r

dw0

dr
+ r4d

2U0

dr2 + 2r2U0 − w0 = 0. (5.54g)

The master equation (5.17) for this case, is strongly simplified

x3d
2J2

dx2 + 4x2dJ2

dx
− 4xJ2 = 0, (5.55)

where we recall that x = 1/r. Thus, the family of solutions that satisfy (5.55) reads

J2(x) = C̃1x+ C̃2

x4 . (5.56)

Then, integrating (5.56) two times one obtains the family of solutions J0, i.e.,

J0(x) =
ˆ
dx

(ˆ
dx J2(x)

)
,

= C̃1x
3

6 + C̃2

6x2 + C̃3x+ C̃4, (5.57)

or in terms of r, it can be written as

J0(r) = C1 + C2r
2 + C3

r
+ C4

r3 , (5.58)

where we have done a redefinition of the constants of integration.

Integrating (5.54a), and with the family of solutions (5.58), we solve the equations
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(5.54b) and (5.54c), thus

β(r) = β0, (5.59a)

U0(r) = −3C4

r4 −
C5

3r3 + 2C3

r2 + 2C2r + C6 + 2β0

r
, (5.59b)

w0(r) = −6C2r
3 − 6C6r

2 − 6C4

r2 + 12C1r −
C5

r
+ C7 − 10rβ0. (5.59c)

When the family of solutions (5.58) and (5.59) are substituted into equations
(5.54d),(5.54d) and (5.54g) the following constraint conditions are obtained

6C6r
2 + C5

r
= 0, (5.60a)

12C6r
2 − 36C1r + 2C5

r
− 3C7 + 24rβ0 = 0, (5.60b)

−4C6r
2 + 4C5

3r − C7 = 0, (5.60c)

where the constraint given by (5.54f) is satisfied identically. Then, solving C5 in
(5.60a) and replacing it in (5.60b) and (5.60c) the constraint equations are reduced
to

C5 = −6C6r
3, (5.61a)

C7 + 4(3C1 − 2β0)r = 0, (5.61b)

−12C6r
2 − C7 = 0. (5.61c)

Substituting C5 into equations (5.59) we obtain

U0(r) = −3C4

r4 + 3C6 + 2C3

r2 + 2C2r + 2β0

r
, (5.62a)

w0(r) = −6C2r
3 − 6C4

r2 + 12C1r + C7 − 10rβ0. (5.62b)

Now, since we are considering a spherical and statically thin shell around the origin,
then we must consider two separate regions of the space-time formed by the world
tube which binds the matter distribution i.e., r < r0 and r > r0. (See Figure 5.1).
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Central geodesic

Null cone

Thin shell

Worldtube

J + Null Infinity

r = r0

Figure 5.1 - Sketch of the world tube generated by the thin shell. Here we note the two
regions (r < r0 and r > r0) in which the space-time is divided.

We will start with the interior region. In this case the family of solutions can be
written as

β0−(r) =β0−, (5.63a)

J0−(r) =C1− + r2C2− + C3−

r
+ C4−

r3 , (5.63b)

U0−(r) =− 3C4−

r4 + 3C6− + 2C3−

r2 + 2rC2− + 2β0−

r
, (5.63c)

w0−(r) =− 6r3C2− −
6C4−

r2 + 12rC1− + C7− − 10rβ0−. (5.63d)

It is expected that the space-time does not have singularities at the origin of the
three space, or in other words at the vertex of the null cones. Then, it is possible to
impose convergence of the metric functions given in (5.5) at this point. To do so, we
can expand the metric functions in power series of r around the vertex of the null
cones and check if they are convergent at this limit.

Substituting (5.63d) into (5.3) one obtains

g11− =6r2C2− + 6C4−

r3 − 12C1− −
C7−

r
+ 12β0− + 1, (5.64a)

g12− =− 1− 2β0−, (5.64b)
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g33− = 2
(1 + ζζ)2

[
<
(
r2C1− + r4C2− + rC3− + C4−

r

)
×

(
ð2 + ð2)

0Z2m + 2r2
]
, (5.64c)

g34− =− 2i
(1 + ζζ)2<

(
r2C1− + r4C2− + rC3− + C4−

r

)
×(

ð2 − ð2)
0Z2m, (5.64d)

g44− =− 2
(1 + ζζ)2

[
<
(
r2C1− + r4C2− + rC3− + C4−

r

)
×

(
ð2 + ð2)

0Z2m − 2r2
]
. (5.64e)

Notice that in this limit, i.e., r → 0, (5.64a) implies that

C4− = 0, (5.65)

C7− = 0, (5.66)

thus,

lim
r→0

g11− = lim
r→0

(
6r2C2− − 12(C1− + β0−) + 1

)
,

= −12(C1− − β0−) + 1. (5.67)

Then, if we expect a flat space-time in the null cone vertices, we must have

C1− = β0−. (5.68)

Also, the convergence of J0− is required at the vertex of the null cones. Thus, from
(5.63b) we see that

C3− = 0, (5.69)

and from (5.63c)
β0− = 0. (5.70)

Thus, from (5.68) one has
C1− = 0. (5.71)

It implies that (5.61b) is satisfied identically, whereas from (5.61c) one obtains

C6− = 0. (5.72)

Substituting these constants in the families of solutions (5.63) we obtain for the
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interior region that

β0−(r) =0, (5.73a)

J0−(r) =r2C2−, (5.73b)

U0−(r) =2rC2−, (5.73c)

w0−(r) =− 6r3C2−, (5.73d)

which means that the solution for the interior of the world tube depends only on
one parameter. When higher values of l are considered, analogue expressions for the
interior solutions are obtained. Thus, the reduction of the degree of freedom for the
system at the interior of the world tube is independent on the matter distribution
on the shell.

For the exterior region we have the same set of families of solutions given by (5.63),
but replacing the minus sign in the functions and in the constants by a plus sign,
i.e.,

β0+(r) =β0+, (5.74a)

J0+(r) =C1+ + r2C2+ + C3+

r
+ C4+

r3 , (5.74b)

U0+(r) =− 3C4+

r4 + 3C6+ + 2C3+

r2 + 2rC2+ + 2β0+

r
, (5.74c)

w0+(r) =− 6r3C2+ −
6C4+

r2 + 12rC1+ + C7+ − 10rβ0+. (5.74d)

We expect convergent solutions at the null infinity J+. At this limit, i.e., when
r →∞, we see from (5.74b) that

C2+ = 0. (5.75)

Thus,

lim
r→∞

J0+(r) = lim
r→∞

(
C1+ + C3+

r
+ C4+

r3

)
,

=C1+. (5.76)

We rename this constant as
C1+ = J0∞, (5.77)

indicating that it is the value of the J0(r) function at the null infinity.
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Using the last results we note that the solutions for U0, given by (5.74c), are
simplified to

U0+(r) = −3C4+

r4 + 3C6+ + 2C3+

r2 + 2β0+

r
. (5.78)

Now, it is required that the shift vector at the null infinity be null, thus

lim
r→∞

U0+(r) = 0, (5.79)

then,
C6+ = 0. (5.80)

Thus, (5.78) takes the form

U0+(r) = −3C4+

r4 + 2C3+

r2 + 2β0+

r
. (5.81)

The constraint (5.61c) fixes the value for C7+, namely

C7+ = 0, (5.82)

and the conditions (5.75) and (5.82) simplifies the solution for w0+ given by (5.74d),
i.e.,

w0+(r) = −6C4+

r2 + 12rC1+ − 10rβ0+. (5.83)

When (5.82) is used on the constraint (5.61b) we find the explicit value for β0+,
namely

β0+ = 3
2J0∞. (5.84)

With these constants, the families of solutions for the exterior region take the form

J0+(r) = J0∞ + C3+

r
+ C4+

r3 , (5.85a)

U0+(r) = −3C4+

r4 + 2C3+

r2 + 3J0∞

r
, (5.85b)

w0+(r) = −6C4+

r2 − 3rJ0∞. (5.85c)

It is worth noting that the family of solutions for the exterior region depends only
on two constants. For values of l > 2, the same situation is repeated, i.e., for each l
greater than two the exterior solutions will depend only on two constants.

Now, in order to fix the constants of integration C2−, C3+ and C4+, we impose the
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jump conditions across the world tube generated by the thin shell, i.e., at r = r0.
These conditions are

β0

∣∣∣r0+

r0−
= 2πr0ρ0, J0

∣∣∣r0+

r0−
= 0, U0

∣∣∣r0+

r0−
= 0, w0

∣∣∣r0+

r0−
= −2r0β0+, (5.86)

where β0+ = β0(r0+), and

dU0

dr

∣∣∣∣∣∣
r0+

r0−

= 2β0+

r2
0
,

dJ0

dr

∣∣∣∣r0+

r0−

= 0. (5.87)

From (5.86), (5.73a) and (5.74a) the function β(r) results in

β(r) = β0+Θ(r − r0), (5.88)

where Θ(r) is the Heaviside’s function, namely

Θ(r) =

0 for r ≤ 0

1 for r > 0
. (5.89)

Evaluating the continuity conditions (5.86) for J0 and w0 one has

r2
0C2− = J0∞ + C3+

r0
+ C4+

r3
0
, (5.90)

2r2
0C2− = −C3+

r0
− 3C4+

r3
0
. (5.91)

Adding them, we obtain
3r2

0C2− = J0∞ − 2C4+

r3
0
. (5.92)

Evaluating the continuity conditions for U0 (5.86) and for dU0/dr (5.87) one obtains

2r2
0C2− = 3J0∞ + 2C3+

r0
− 3C4+

r3
0
, (5.93)

− β0+ − 2C3+

r0
+ 6C4+

r3
0
− r2

0C2− = β0+. (5.94)

Thus, from (5.91) and (5.93) C3+ is determined, resulting in

C3+ = −r0J0∞, (5.95)
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which substituting in (5.94) one finds the following condition

6C4+

r3
0
− r2

0C2− = J0∞. (5.96)

Solving (5.92) and (5.96) we find

C4+ = 1
5r

3
0J0∞, (5.97)

C2− = 1
5r2

0
J0∞. (5.98)

Thus, we determine the three constants C2−, C3+ and C4+ for the shell and therefore
we determine completely the solution of the system.

Thus, the solution of the field equations reads

β(r) = 3
2J0∞Θ(r − r0), (5.99a)

J(r) = r2

5r2
0
J0∞ (1−Θ(r − r0)) + J0∞

(
1− r0

r
+ r3

0
5r3

)
Θ(r − r0), (5.99b)

U(r) = 2r
5r2

0
J0∞ (1−Θ(r − r0)) + J0∞

(
−3r3

0
5r4 −

2r0

r2 + 3
r

)
Θ(r − r0), (5.99c)

w(r) = −6r3

5r2
0
J0∞ (1−Θ(r − r0))− J0∞

(
6r3

0
5r2 + 3r

)
Θ(r − r0). (5.99d)

It is important to note that, from (5.84) and (5.86) one obtains

J0∞ = 4
3πr0ρ0, (5.100)

which relates the value of the J0 function at the null infinity with the density and
the radius of the shell.

We plot the solutions (5.99) in Figure 5.2, in terms of a compactified coordinate s,
which we define as

s = r

r +R0
(5.101)

where R0 is called a compactification parameter. The transformation (5.101) maps
the luminosity distance, 0 ≤ r < ∞, into a finite interval 0 ≤ s < 1. Note that, if
r + R0 = 0, then s would have singular points. Thus, considering that r ≥ 0, the
condition R0 > 0 guaranties that the transformation (5.101) will not have singular
points and therefore it will be invertible.
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(a) (b)

(c) (d)

Figure 5.2 - Metric variables as a function of the compactified coordinate s for a thin
shell of r = r0, centred at the origin. (a) β0 := β0(s), (b) J0 := J0(s), (c)
U0 := U0(s), (d) w0 := w0(s)
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6 APPLICATIONS

Here, we study two novel applications of the solutions to the master equation.
These applications are related to point particle binary systems. The first generalises
a previous study (BISHOP, 2005), now considering point particle binary systems
of different masses in circular orbits (CEDEÑO; ARAUJO, 2015b); and the second
considers binaries with elliptical orbits (CEDEÑO; ARAUJO, 2016). In both
applications, the gravitational radiation patterns are obtained from the Bondi’s
News functions. Here, we generalise the boundary conditions (BISHOP, 2005; BISHOP

et al., 2011; KUBEKA, 2012; KUBEKA, 2013) imposed across the world tubes generated
by the orbits of the binaries. The problem of the jump conditions imposed on
the metric and its derivatives across a given time-like or space-like hypersurface,
separating two regions of the space-time is not new (TAUB, 1957; ISRAEL, 1958;
ISRAEL, 1966; TAUB, 1980; BONNOR; VICKERS, 1981; GEORGIOU, 1994; GEORGIOU,
1996).

6.1 Point Particle Binary System with Different Masses

Here, a study found in literature, in which the authors (BISHOP et al., 2011)
considered particles with equal masses is generalised. It is worth stressing that one of
our aims is to study the well-known problem of a system of two point particles with
different masses orbiting each other in circular orbits. In the end, we show that the
Peters and Mathews result for the power radiated in gravitational waves (PETERS;
MATHEWS, 1963) can be obtained by using the characteristic formulation and the
News function.

In our study the particles are held together by their mutual gravitational interaction.
The particles are far enough from each other such that at first order, the interaction
between them can be considered essentially Newtonian. This assumption is valid
if one considers the weak field approximation, in which the Bondi-Sachs metric in
stereographic null coordinates is reduced to (5.3). Note that writing g11 ' −1 + 2Φ,
then Φ = β + w/(2r) represents the Newtonian potential, as usual in this kind of
approximation.

We consider that these two particles are in a Minkowski’s background, in exactly
the same way Peters and Mathews did in their paper of 1963 (PETERS; MATHEWS,
1963) and Bishop et. al. did in (BISHOP et al., 2011). Such a system allows one to
explore in full detail the boundary conditions across the hypersurfaces generated by
their orbits (see Figure 6.1).
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Figure 6.1 - Binary system with the world tubes of each orbit extended along the direction
of the retarded time, separating the space-time into three regions.

The density that describes the binary system is given by

ρ = δ(θ − π/2)
r2 (M1δ(r − r1)δ(φ− νu) +M2δ(r − r2)δ(φ− νu− π)) , (6.1)

where, ri (Mi) are the orbital radius (mass) of each particle and r1 < r2.

The orbit of each mass generates world tubes, which are extended along the retarded
time, allowing the separation of the space-time into three empty regions: inside,
between and outside the matter distribution.

In order to solve the field equations (5.4a)-(5.4g) for the vacuum, the metric variables
are expanded as in (5.5), taking φ̃ = νu. Thus, the substitution of equations (5.5) into
(5.4) provides the system of ordinary differential equations (5.6) for the coefficients
in the above expansions. The families of solutions, for l = 2, satisfying this system
of equations for the vacuum read

β2m(r) =D1β2m, (6.2a)

J2m(r) =2iD1β2m

νr |m|
− D1J2m(νr |m| − 1)(νr |m|+ 1)

6r3

− iD2J2me
2iνr|m|(νr |m|+ i)2

8ν5r3 |m|5
+ D3J2m(νr |m| − 3i)

νr |m|
, (6.2b)
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U2m(r) =2D1β2m(νr |m|+ 2i)
νr2 |m|

−
D1J2m

(
2ν2r2 |m|2 + 4iνr |m|+ 3

)
6r4

− D2J2me
2iνr|m|(2νr |m|+ 3i)
8ν5r4 |m|5

−
iD3J2m

(
ν2r2 |m|2 + 6

)
νr2 |m|

, (6.2c)

w2m(r) =− 10rD1β2m + 6rD3J2m(2 + iνr |m|)− 3iD2J2me
2iνr|m|

4ν5r2 |m|5

− iD1J2m((1 + i)νr |m| − i)(1 + (1 + i)νr |m|)
r2 , (6.2d)

where the constants of integration are represented by DnF lm; here n numbers the
constant and F corresponds to the metric function whose integration generates it.
This set of families of solutions depends only on four constants, namely, D1β2m,
D3J2m, D1J2m and D2J2m. This is so because the families of solutions for the
coefficients β2m, J2m, U2m and w2m resulting from (5.4a)-(5.4d) are constrained by
using (5.4e)-(5.4g). This fact is independent of l, and thus the set of families of
solutions for any l will have four degrees of freedom.

A unique solution for the whole space-time cannot be determined by only imposing
regularity of the metric variables at the null cone vertices and at the null infinity.
Therefore, additional boundary conditions must be imposed. In particular, this can
be done by imposing boundary conditions on other hypersurfaces, such as in the
case of the thin shells studied by Bishop (2005), in which the additional conditions
are imposed across the world tubes generated by the shell itself. Once the above
constants are determined, one readily obtains the metric functions β, J , U , and w
for the whole space-time.

As divergent solutions are not expected at the vertices of the null cones, regularity at
these points must be imposed for the metric. In order to do so, an expansion of the
metric variables around r = 0 in power series of r is made and the divergent terms
are disregarded. This procedure establishes relationships between the coefficients,
leading to a family of solutions for the interior that depends only on one parameter
to be determined, where in particular βlm−(r) = 0. One obtains, for example, for
l = 2

β2m−(r) =0, (6.3a)

J2m−(r) = D2J2m−

24ν5r3 |m|5
(
2ν3r3 |m|3 − 3iν2r2 |m|2 e2iνr|m| − 3iν2r2 |m|2

+6νr |m| e2iνr|m| + 3ie2iνr|m| − 3i
)
, (6.3b)
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U2m−(r) =− iD2J2m−

24ν5r4 |m|5
(
2ν4r4 |m|4 + 6ν2r2 |m|2 − 6iνr |m| e2iνr|m|

−12iνr |m|+ 9e2iνr|m| − 9
)
, (6.3c)

w2m−(r) = D2J2m−

4ν5r2 |m|5
(
2iν4r4 |m|4 + 4ν3r3 |m|3 − 6iν2r2 |m|2 − 6νr |m|

−3ie2iνr|m| + 3i
)
. (6.3d)

For the intermediate region, the same structure of the general solutions is
maintained, for the case of l = 2 given by (6.2a)-(6.2d). That is so because there is
no reason to discard any particular term, or to establish any relationship between
the constants as occurs for the interior region. Since regularity is required at the
null infinity, the coefficient of the exponential factor (exp(2iνr|m|)) must be null
in the exterior solutions. This means that all constants of the form D2Jlm+, with
l = 2, 3, · · · , must be zero. Therefore, the number of degrees of freedom for the
exterior family of solutions is reduced in one parameter. Thus, a family of solutions
for the field equations (5.4a)-(5.4g), with eight parameters to be determined, for
describing the whole space-time is obtained. Now, in order to fix these eight
constants, it is necessary to impose additional boundary conditions in particular
across the time-like world tubes generated by their orbits.

These boundary conditions across the world tubes, i.e. when r = ri, i = 1, 2, come
from imposing discontinuities on the metric coefficients, i.e.,

[g11]ri = 0, [g12]ri = ∆g12|ri , [g1A]ri = 0, [g22]ri = 0,

[g2A]ri = 0, [g3µ]ri = 0, [g4µ]ri = 0, (6.4)

and on their first derivatives,

[
g′µν

]
ri

= ∆g′µν , µ, ν = 1, · · · 4, (6.5)

where the brackets mean [f(r)]ri = f(r)|ri+ε− f(r)|ri−ε. From the linearised Bondi-
Sachs metric (5.2), and from the two sets of jump conditions (6.4) and (6.5), the
coefficients βlm, Jlm, Ulm and wlm are restricted to satisfy

[wlm(rj)] = ∆wjlm, [βlm(rj)] = ∆βjlm,

[Jlm(rj)] = 0, [Ulm(rj)] = 0, (6.6)
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and for their first derivatives

[w′lm(rj)] = ∆w′jlm, [β′lm(rj)] = ∆β′jlm,

[J ′lm(rj)] = ∆J ′jlm, [U ′lm(rj)] = ∆U ′jlm, (6.7)

where j = 1, 2, and ∆wjlm, ∆βjlm, ∆w′jlm, ∆β′jlm, ∆J ′jlm and ∆U ′jlm are functions
to be determined.

Solving equations (6.6) and (6.7), simultaneously for both world tubes, the boundary
conditions are explicitly obtained. We find that

∆βjlm = bjlm, ∆wjlm = −2rjbjlm, (6.8a)

where bjlm are constants. Note that, this last fact implies that ∆β′jlm = 0. We obtain
that the jumps for the first derivative of the Jlm and Ulm functions are given by

∆J ′jlm = 8ν2rjbjlm |m|2

(l − 1)l(l + 1)(l + 2) , (6.8b)

∆U ′jlm = 2bilm
(

1
r2
i

− 4iν|m|
l(l + 1)ri

)
. (6.8c)

Thus, the boundary conditions (6.30b) and (6.30c) fix all parameters of the families
of solutions, providing the specific solutions for the coefficients βlm, Jlm, Ulm and
wlm. Therefore, these coefficients can be written as

flm(r) =f1lm(r) (1−Θ(r − r1)) + f2lm(r) (Θ(r − r1)−Θ(r − r2))

+ f3lm(r)Θ(r − r2), (6.9)

where flm represents βlm, Jlm, Ulm and wlm, with the first subscript on the right hand
side terms indicating the interior (1), the middle (2) and the exterior (3) solutions.

These solutions depend explicitly on two specific parameters, namely bjlm, with
j = 1, 2, which are related to the density of matter. The specific form of these
relationships is obtained by just integrating the first field equation (5.4a) across
each world tube. As a result one obtains

bjlm = 2πrjρjlm
(
1 + v2

j

)
, (6.10)
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where, ρjlm are given by

ρjlm = 1
π

ˆ
S

d(νu)
ˆ

Ω
dΩ
ˆ
Ij

dr 0Z lme
−i|m|νuρ, (6.11)

in which S = [0, 2π), vj is the physical velocity of the particle j in the space, and
Ij is an interval ε around rj that is given by Ij = (rj − ε/2, rj + ε/2), with ε > 0.

Before proceeding, it is worth noticing that the above procedure is a generalisation
of Section 3 of the paper by Bishop et al. (2011), in which the binary components
have equal masses. In particular, the boundary conditions are also generalised since
in the present case there exist two independent world tubes. Another interesting
aspect has to do with the fact that our solution is fully analytical.

Figure 6.2 shows some of the coefficients of the expansion of the metric variables in
terms of the compactified coordinate s (defined just below) for l = m = 2.

(a) (b)

(c) (d)

Figure 6.2 - Real part of some components of the metric functions ( l = m = 2 ) versus the
compactified coordinate s (see the text) for a binary system with M1 = 1/2,
M2 = 1. The angular velocity is computed by means of Kepler’s third law.
Here r1 and r2 are referred to the center of mass of the system.
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In order to include the null infinity, which is reached when r tends to infinity, a
radial compactified coordinate s is defined as follows

s = r

r +R0
,

where R0 is a compactification parameter. Thus, 0 ≤ s ≤ 1, where s = 0 and s = 1
corresponds to the null cone vertices and the null infinity, respectively.
Here M1 = 1/2, M2 = 1, R0 = 2, and the radius of each orbit is referred to the
centre of mass of the system, namely

rj = µ

Mj

d0, j = 1, 2, (6.12)

where µ is the reduced mass of the system and d0 is the distance between the masses.
The frequency of rotation ν is computed by means of Kepler’s third law, i.e.,

ν =
√
M1 +M2

d3
0

. (6.13)

It is worth noting that the jumps in βlm and wlm functions are present at exactly r1

and r2, whereas for Jlm and Ulm only their first derivatives present discontinuities,
in agreement with the boundary conditions (6.30b) and (6.30c).

To illustrate the behaviour of β, J , U and w we present them in Figure 6.3 as a
function of s and φ for a particular value of the retarded time u. These functions
are constructed by using Equations (5.5), and the solutions for the coefficients for
each l and m. In this case, we use l ≤ 8.

As expected, the metric functions β and w and the first derivatives of J and U

show jumps at (r, θ, φ) = (r1, π/2, νu) and (r, θ, φ) = (r2, π/2, νu − π), which are
just the positions of the masses, in agreement with the boundary conditions initially
imposed.

Note that since the first field equation for the vacuum β,r = 0 implies that βlm
are constants along r, as sketched in Figures 6.2, and that β is a gauge term for
the gravitational potential. Then, Φ can be redefined as Φ = w/(2r). These facts
make the choice of the angular velocity ν as obeying Kepler’s third law, completely
consistent and natural.
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(a) (b)

(c) (d)

Figure 6.3 - Snapshots of the metric variables as seen from the equatorial plane (θ = π/2),
as a function of s and φ for u = π/2. Here M1 = 16, M2 = 4/3, r1 = 1/13,
r2 = 12/13, R0 = 1/2 and ν = 2

√
13/3. (a) β(s, φ), (b) J(s, φ), (c) U(s, φ)

and (d) W (s, φ) = w(s, φ)(1− s2)/(s2R2
0).

6.1.1 Gravitational Radiation from the Binary System

Now, we proceed with the calculation of the power lost by the binary system via
gravitational wave emission. We show that the approach presented here is robust
because we can obtain the well-known result obtained by Peters and Mathews (1963)
for the power emitted by binary systems in circular orbits, now using the News
function.

Following Bishop (2005), the Bondi’s News function in the weak field approximation
is given by

N = lim
r→∞

(
−r

2J,ur
2 + ð2ω

2 + ð2β

)
. (6.14)
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Substituting here the metric variables given in (5.5), one obtains the News function
for l ≥ 2 and −l ≤ m ≤ l, namely

N = lim
r→∞

∑
l,m

<
((
−
i|m|νr2 (Jlm),r

2 + βlm + l(l + 1)Jlm
4

)
ei|m|νu

)
ð2

0Zlm. (6.15)

Now, substituting the coefficients of the metric variables for the exterior region, one
obtains

N = −iν
3

2S21√
6
− 4i

√
2
3ν

3
2S22 −

iν4
2S31√

30(ν − 3i)
−

8i
√

2
15ν

4
2S32

2ν − 3i

−
9i
√

3
10ν

4
2S33

ν − i
− iν5

2S41

3
√

10 (ν2 − 7iν − 14)
−

8i
√

2
5ν

5
2S42

3 (2ν2 − 7iν − 7)

− 81iν5
2S43√

10 (9ν2 − 21iν − 14)
−

256i
√

2
5ν

5
2S44

3 (8ν2 − 14iν − 7)

+ ν6
2S51√

210 (iν3 + 12ν2 − 54iν − 90)
+

16
√

2
105ν

6
2S52

4iν3 + 24ν2 − 54iν − 45

+
27
√

3
70ν

6
2S53

3iν3 + 12ν2 − 18iν − 10 +
1024

√
2

105ν
6

2S54

32iν3 + 96ν2 − 108iν − 45

+
625

√
5
42ν

6
2S55

25iν3 + 60ν2 − 54iν − 18 + · · · , (6.16)

where we define the spin 2 quantity 2Slm as

2Slm =

(
<(D1Jlm+e

i|m|νu) ð2
0Zlm + <(D1Jl−m+e

i|m|νu) ð2
0Zl −m

)
√

(l − 1)l(l + 1)(l + 2)
. (6.17)

Since the binary system is confined to a plane, then a natural choice to simplify the
problem of expressing the News function, without loss of generality, is to put the
masses to move on the equatorial plane θ = π/2. This means symmetry of reflection
for the density of matter and, consequently, for the space-time. Thus, this choice
restricts the components of the density, obtained from (6.11), to have the following
form

ρlm =


ρ̃lm

M2r
2
1δ (r − r2) +M1r

2
2δ (r − r1)

r2
1r

2
2

if l,m even

ρ̃lm
M1r

2
2δ (r − r1)−M2r

2
1δ (r − r2)

r2
1r

2
2

if l,m odd,
(6.18)

where ρ̃lm are numerical constants. Therefore, for binaries of different masses, the
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News function (6.16) is simplified to

N = −4i
√

2
3ν

3
2S22 −

iν4
2S31√

30(ν − 3i)
−

9i
√

3
10ν

4
2S33

ν − i
−

8i
√

2
5ν

5
2S42

3 (2ν2 − 7iν − 7)

−
256i

√
2
5ν

5
2S44

3 (8ν2 − 14iν − 7) + ν6
2S51√

210 (iν3 + 12ν2 − 54iν − 90)

+
27
√

3
70ν

6
2S53

3iν3 + 12ν2 − 18iν − 10 +
625

√
5
42ν

6
2S55

25iν3 + 60ν2 − 54iν − 18 + · · · (6.19)

When the explicit solutions are used, the News functions for the binary system take
the form

N = 8
√

2π
5 2L22 (M21 +M22) ν3 + 1

3i
√
π

35 2L31 (M31 −M32) ν4

− 9i
√

3π
7 2L33 (M31 −M32) ν4 + 8

63
√

2π 2L42 (M41 +M42) ν5

− 128
9

√
2π
7 2L44 (M41 +M42) ν5 1

180i
√

π

154 2L51 (M51 −M52) ν6

− 27
40i

√
3π
11 2L53 (M51 −M52) ν6 + 625

24 i
√

5π
33 2L55 (M51 −M52) ν6

+ · · · , (6.20)

where,
Mlj = Mjr

l
j(v2

j + 1), (6.21)

and 2Llm are defined as

2Llm =
(

2Zl −m<(ei|m|νu)−<(iei|m|νu) 2Zlm
)
. (6.22)

Note that, as consequence of (6.18), for M1 = M2 = M0 the terms with l odd
disappear from the News function (6.20). Thus, as expected, one obtains immediately

N = 16
√

2π
5 ν3M0r

2
0

(
V 2

0 + 1
)

2L22 + 16
63
√

2πν5M0r
4
0

(
V 2

0 + 1
)

2L42

−256
9

√
2π
7 ν5M0r

4
0

(
V 2

0 + 1
)

2L44 +
32
√

2π
13

1485 ν7M0r
6
0

(
V 2

0 + 1
)

2L62

−8192
495

√
π

195ν
7M0r

6
0

(
V 2

0 + 1
)

2L64 + 2592
5

√
2π
715ν

7M0r
6
0

(
V 2

0 + 1
)

2L66

+ · · · . (6.23)
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where V0 is the physical velocity of the masses, which is obviously tangent to the
circular orbit.

The energy lost by the system dE/du is related to the News function (BISHOP,
2005), via

dE

du
= 1

4π

ˆ
Ω
dΩ NN , (6.24)

which results for M1 6= M2 in

dE

du
=32

5 ν
6 (M21 +M22)2 + 2734

315 ν
8 (M31 −M32)2

+ 57376
3969 ν

10 (M41 +M42)2 + 4010276
155925 ν

12 (M51 −M52)2

+ · · · . (6.25)

Notice that the first term on the right side of the above equation is nothing but the
power lost obtained by Peters and Mathews (1963) for circular orbits and the other
terms stand for the octupole, hexadecapole, etc contributions.

6.2 Eccentric Point Particle Binary System

Here the eccentricity in the binary systems in the characteristic formulation is
introduced, generalising the study of the previous section. From the density of
energy and from an angular velocity that is variable on time, we deduce boundary
conditions at the orbits, generalising those boundary conditions found for circular
orbits. Also, we found the expression for the power emitted by the binary in
gravitational radiation from the characteristic formulation, in agreement with the
Peter and Mathews expression (PETERS; MATHEWS, 1963). In order to do that, we
consider in the News, those terms related to the angular velocity, disregarded in the
circular case (CEDEÑO; ARAUJO, 2016).

In this case, the density that describes the point particle binary is given by

ρ = δ(θ − π/2)
r2

(
M1δ(r − r1)δ(φ− φ̃) +M2δ(r − r2)δ(φ− φ̃− π)

)
, (6.26)

where, ri (Mi) are the orbital radius (mass) of each particle, r1 < r2 and φ̃ := φ̃(u)
is the angular position as indicated in Figure 6.4.
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(a) (b)

Figure 6.4 - (a) Eccentric binary system with the world tubes of their orbits extended
along the central time-like geodesic. (b) Top view of the point particle binary
system, where the angular position φ̃ is indicated.

The instantaneous radius of the particle’s orbits reads

rj = µd

Mj

, µ = M1M2

M1 +M2
, j = 1, 2, (6.27)

where the separation between the masses d, is given by

d = a(1− ε2)
1 + ε cos φ̃

, (6.28)

in which ε represents the eccentricity, and a is the semi-major axis which becomes the
radius of the orbits when the eccentricity is zero. For Keplerian orbits, the angular
velocity reads

˙̃φ =

√
a(1− ε2)(M1 +M2)

d2 , (6.29)

which depends on time. Note that (6.27)-(6.29) are the same expressions given in
(2.155).

Using the expansion (5.5) of the metric variables, substituting them into the field
equations and assuming the same boundary conditions presented in (6.6) and (6.7),
one obtains that the boundary conditions (6.8) can be easily extended for a general
function φ̃ := φ̃(u) and a radial function rj := rj(u), namely

∆βjlm = bjlm, (6.30a)

∆wjlm = −2rjbjlm, (6.30b)

∆J ′jlm = 8 ˙̃φ2rjbjlm |m|2

(l − 1)l(l + 1)(l + 2) , (6.30c)
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∆U ′jlm = 2bilm

 1
r2
i

− 4i ˙̃φ|m|
l(l + 1)ri

 , (6.30d)

where bjlm are constants, which implies that ∆β′jlm = 0. Also, the constants DnF lm

depend on two parameters, namely b1lm and b2lm. As an example, we show D1J2m+

for |m| 6= 0, i.e.

D1J2m+ =ir
2
1b12me

−2ir1
˙̃φ|m|

˙̃φ |m|
− ir2

1b12m
˙̃φ |m|

+ 2r1b12me
−2ir1

˙̃φ|m|

˙̃φ2 |m|2
+ 2r1b12m

˙̃φ2 |m|2

− 3ib12me
−2ir1

˙̃φ|m|

˙̃φ3 |m|3
− 3b12me

−2ir1
˙̃φ|m|

r1
˙̃φ4 |m|4

− 3b12m

r1
˙̃φ4 |m|4

− 3ib12m

r2
1

˙̃φ5 |m|5

+ 3ib12me
−2ir1

˙̃φ|m|

r2
1

˙̃φ5 |m|5
+ 3ib12m

˙̃φ3 |m|3
+ ir2

2b22me
−2ir2

˙̃φ|m|

˙̃φ |m|
− ir2

2b22m
˙̃φ |m|

+ 2r2b22me
−2ir2

˙̃φ|m|

˙̃φ2 |m|2
+ 2r2b22m

˙̃φ2 |m|2
− 3ib22me

−2ir2
˙̃φ|m|

˙̃φ3 |m|3
− 3b22m

r2
˙̃φ4 |m|4

− 3b22me
−2ir2

˙̃φ|m|

r2
˙̃φ4 |m|4

+ 3ib22me
−2ir2

˙̃φ|m|

r2
2

˙̃φ5 |m|5
− 3ib22m

r2
2

˙̃φ5 |m|5
+ 3ib22m

˙̃φ3 |m|3
. (6.31)

The parameters bjlm, j = 1, 2 are determined directly from (6.30a) and (5.6a). In
particular for the binary system,

bjlm = 2Mj

ˆ 2π

0
dφ̃

e−i|m|φ̃Z lm(π/2, φ̃+ πδ2j)
r2
j

. (6.32)

where it is important to note that the spin-weighted spherical harmonics Zlm become
real on the equatorial plane θ = π/2, but in general these functions are complex.

Specifically, the non-null bjlm, for the firsts l and m, are given in Table 6.1.

Table 6.1 - First non-null values for the constants bjlm.

l 2 2 3 3
m -2 0 -3 -1

aµ(ε2 − 1)bjlm
M2

j

i
√

15π
2

√
5π − i2

√
35π
2

i

2

√
21π
2
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Here, these coefficients are written only for m < 0, because the others can be
obtained, recalling that

sZ lm = (−1)s+m −sZl(−m). (6.33)

Thus, for m 6= 0, one has

bjlm = ibjl(−m) j = 1, 2. (6.34)

6.2.1 Gravitational Radiation Emitted by the Binary

The power emitted in gravitational waves is computed from the Bondi’s News
function (6.14). In terms of the coefficients sflm, this function reads

N =
∑
l,m

lim
r→∞
<

−ir2 ˙̃φ|m|Jlm,r
2 −

r2 ˙̃φJlm,φ̃r
2

+ l(l + 1)Jlm
4 + βlm

)
ei|m|

˙̃φ
)
ð2Zlm, (6.35)

where the sum indicates that the News is constructed from the contribution of several
multipole terms. Here it is important to note that the coefficients Jlm depend directly
on the source angular position, represented by φ̃. For this reason the retarded-time
derivative J,ur is re-expressed using the chain rule.

When the solutions to the field equations, for r > r2 are substituted in (6.35), for
l = 2, one finds,

N =2i
√

2
3

˙̃φ
(
<(e2iφ̃D2J22+) 2Z2 2 + <(e2iφ̃D2J2−2+) 2Z2 −2

)
+ 1

2

√
3
2

˙̃φ
(
<(e2iφ̃D′2J22+) 2Z2 2 + <(e2iφ̃D′2J2−2+) 2Z2 −2

)
, (6.36)

where the prime indicates derivation with respect to φ̃. It is worth noting that the
D2Jlm+ depends on ˙̃φ, just as indicated in (5.17). Given that ˙̃φ := ˙̃φ(φ̃), then they
are functions of the retarded angular position. Likewise, it is important to note that
the absence of terms for |m| = 1 in the News expression is because bj21 = bj2−1 = 0
as indicated in Table 6.1. In addition, despite bjl0 6= 0 for l = 2, 3, · · · , the terms for
m = 0 do not enter in the News, which indicates that they are non-radiative terms.

In the limit of low velocities, r1
˙̃φ� c, r2

˙̃φ� c and for l = 2, we find that the power
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lost by gravitational radiation emission reads

dE

du
=

32M2
1M

2
2 (M1 +M2)

(
1 + ε cos φ̃

)6

5a5(1− ε2)5

+ 8M2
1M

2
2 (M1 +M2) ε2 sin2 φ̃(1 + ε cos φ̃)4

15a5(1− ε2)5 , (6.37)

which is nothing but the Peters and Mathews expression for the energy lost by
binary systems directly computed from the quadrupole radiation formulae (2.154)
(see (PETERS; MATHEWS, 1963)).

The agreement between our results and those by Peters and Mathews is in fact
expected, since the system under study is the same. On the other hand, this
agreement shows that characteristic formalism in the linear regime has been properly
applied in the present text. Recall that Winicour in the 1980s decade showed that
the Bondi’s News function in the Quasi-Newtonian regime (ISAACSON et al., 1985;
WINICOUR, 1987) is just

N =
...
Q, (6.38)

with
Q = qAqBQAB. (6.39)

Likewise, it is important to note that the first term in the power expression (6.37)
represents approximately 97% of the power emitted by the source. Thus, for ε < 0.5
a reasonable approximation is just given by the first term of (6.37).

It is worth noting that, for the case of circular orbits, the two first terms in the News
(6.36), lead directly to

dE

du
=32M2

1M
2
2 (M1 +M2)
5a5 . (6.40)

which corresponds in fact to the first term of (6.25).
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7 CONCLUSIONS, FINAL REMARKS AND PERSPECTIVES

In this work we report new solutions to the master equation when a flat background
is considered, generalising the results obtained by Mädler (MÄDLER, 2013) with the
inclusion of source terms. Likewise, we re-express the family of solutions for the
vacuum using only Bessel’s functions of the first kind (CEDEÑO; ARAUJO, 2015a).

We also report for the first time in the literature the exact solutions to the master
equation in terms of the Hypergeometric (Heun’s function) for the non-radiative
(radiative) modes with and without source terms when a Schwarzschild background
is considered. Considering the solutions for l = 2 we also show the equivalence
between our solution and those reported in the literature (CEDEÑO; ARAUJO, 2015a).
Thus, this work extends the results shown by Bishop (2005), who already found the
solutions to the field equations in the space-time exterior to a static and spherically
symmetric black-hole. He treats the case for l = 2, but only by expanding the
metric variables in power series around the coordinate singularity r = 2M , and in
an asymptotic expansion near the null infinity. However, his solutions depend on the
order of the expansion and in this sense they are approximations.

It is worth stressing that the importance of these analytical results is in the fact
that they can be useful in the construction of semi-analytical models for matter
distributions in the linear regime, like thin and thick shells or stars composed of
layers obeying some equation of state. However, as already mentioned, it is important
to bear in mind that the matter fields must be known a priori throughout the space-
time.

Another important aspect is that the solutions when matter is present are valid
only when the light ray bending is negligible and consequently the linear regime
is valid. Out of this consideration, caustics could be formed and, consequently, the
radiation coordinates becomes meaningless and, in this case, the space-time could
not be represented by this kind of metric.

We generalised a previous work by Bishop (2005), in particular that concerned
with binary systems composed of two components of equal masses in a Minkowski’s
background (CEDEÑO; ARAUJO, 2015b). Here we considered the case in which the
components of the binary systems have different masses, although still in circular
orbits.

We showed that, instead of two regions, as in the case of binaries with equal
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components, the space-time needs now to be separated in three regions, namely,
interior, between and outside the two world tubes. As a result, the matched
conditions need to be applied now for two hypersurfaces generated by the circular
orbits of the two (different) masses.

In that event, it has been necessary to generalise the boundary conditions satisfied
by the coefficients in the spin-weighted spherical harmonics expansion, on the two
hypersurfaces generated by the circular orbits of these two (different) masses. Also,
the procedure developed here allows one to perform calculations for arbitrary values
of the l and m modes.

It is worth stressing, that one of the most interesting aspects of this study has do
with the development of a procedure that can be applied in problems in which multi
layers are present.

We also calculate the energy lost by the emission of gravitational waves by means
of the Bondi’s News function. Again, we do that for arbitrary multipoles, in other
words, for different values of the l and m modes. The interesting point here is
that for different masses the emission of gravitational radiation occurs for all
values (multipoles) of l ≥ 2; for the particular case of binary systems with equal
components, the multipole terms for odd values of l vanish.

We also study for the first time in the literature a binary system composed of
point particles of unequal masses in eccentric orbits in the linear regime of the
characteristic formulation of general relativity (CEDEÑO; ARAUJO, 2016). This work
generalises previous studies (BISHOP, 2005) ((CEDEÑO; ARAUJO, 2015b)) in which
a system of equal (different) masses in circular orbits is considered. Also, it was
considered that in general the angular velocity is a temporal function, which allows
the inclusion of the terms responsible for the the contributions of the eccentricity in
the power emitted by the system.

We show that the boundary conditions on the time-like world tubes (6.30) can
be extended beyond circular orbits. Concerning the power lost by the emission of
gravitational waves, it is directly obtained from the Bondi’s News function.

Since the contribution of the several multipole terms (l > 2) to the power is smaller
than the contribution given by mode for l = 2, the terms for l > 2 are disregarded
in the power expression (6.37). In addition, the second term in (6.37) is smaller than
the first one. For example, for eccentricities ε . 0.5 the first term contributes with
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almost 97% of the power emitted in gravitational waves (CEDEÑO; ARAUJO, 2016).

It is worth noting that our results are completely consistent, because we obtain the
same result for the power derived by Peters and Mathews using a different approach.
Recall that the News function in the Quasi-Newtonian limit corresponds to the third
derivative with respect to the retarded time of the quadrupole moment contracted
with the tangent vectors qA, i.e., N =

...
Q, where Q = qAqBQAB (WINICOUR, 1987).

Finally, the present study constitutes a powerful tool to construct extraction schemes
in the characteristic formalism to obtain the gravitational radiation produced by
binary systems during the inspiralling phase. This can be done in regions that are
far enough from the sources where the space-time can be essentially considered flat.

This work contributes to extend analytical previous results obtained in (BISHOP,
2005; MÄDLER, 2013). This new extensions can be applicable to relevant
astrophysical sources as thick shells in which the dynamics obeys particular
equations of state. Also, it is possible to generalise this results to a star formed
by concentric thick layers. With the introduction of the eccentricity and an angular
velocity depending on the position, it is possible to generalise the form of such
layers to spheroidal layers in order to include this into the gravitational signature
of such kind of objects. In addition, from the linear version of the field equations it
is possible to integrate them numerically and reproduce the quasi-normal modes for
Schwarzschild and Reissner-Nordström solutions. There are also possible extensions
of this work in cosmology, in f(R) theories, using radiation coordinates and the eth
formalism. Finally, it is worth mentioning that from the linear version of the field
equations in the characteristic formalism and in order to avoid the numerical angular
treatment, it is possible to study the gravitational collapse of a matter distribution
by using the multipolar expansions present here.
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Appendix A - Explicit Form for the ð and ð Operators in Stereographic
Coordinates

Considering that the covariant derivative ΨB̃1m
Ã1n|D

associated to qAB is

ΨB̃1m
Ã1n|D

=ΨB̃1m
Ã1n,D

+ ΩB1
DCΨCB̃2m

Ã1n
+ · · ·+ ΩBm

DCΨB̃1(m−1)C

Ã1n

− ΩC
A1DΨB̃1m

CÃ2m
− · · · − ΩC

AmDΨB̃1m
Ã1(m−1)C

, (A.1)

then, when substituted into (3.59) yields

ð sΨ =qDΛ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n,D
+ qDΛ̃B̃1m

Λ̃Ã1nΩB1
DCΨCB̃2m

Ã1n
+ · · ·

+ qDΛ̃B̃1m
Λ̃Ã1nΩBm

DCΨB̃1(m−1)C
Ã1n
− qDΛ̃B̃1m

Λ̃Ã1nΩC
A1DΨB̃1m

CÃ2n

− · · · − qDΛ̃B̃1m
Λ̃Ã1nΩC

AmDΨB̃1m
Ã1(n−1)C

. (A.2)

Notice that the first term of the last equation can be written as

qDΛ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n,D
=qD (sΨ),D − q

DΛB1,DΛ̃B̃2m
Λ̃Ã1nΨB̃1m

Ã1n
− · · ·

− qDΛBm,DΛ̃B̃1(m−1)
Λ̃Ã1nΨB̃1m

Ã1n
− · · ·

− qDΛA1
,DΛ̃B̃1m

Λ̃Ã2nΨB̃1m
Ã1n

− · · · − qDΛAn
,DΛ̃B̃1m

Λ̃Ã1(n−1)ΨB̃1m
Ã1n

. (A.3)

Thus, substituting (A.3) into (A.2), reorganising the sums and changing the name
of some indices one obtains

ð sΨ =qD (sΨ),D − q
D
(
ΛB1,D − ΛCΩC

B1D

)
Λ̃B̃2m

Λ̃Ã1nΨB̃1m
Ã1n
− · · ·

− qD
(
ΛBm,D − ΛCΩC

BmD

)
Λ̃B̃1(m−1)

Λ̃Ã1nΨB̃1m
Ã1n

− qD
(
ΛA1

,D + ΛCΩA1
CD

)
Λ̃B̃1m

Λ̃Ã2nΨB̃1m
Ã1n
− · · ·

− qD
(
ΛAn

,D + ΛCΩAn
CD

)
Λ̃B̃1m

Λ̃Ã1(n−1)ΨB̃1m
Ã1n

. (A.4)

Recognising the covariant derivatives for the Λ symbols in the brackets, one obtains

ð sΨ =qD (sΨ),D − q
DΛB1|DΛ̃B̃2m

Λ̃Ã1nΨB̃1m
Ã1n
− · · ·

− qDΛBm|DΛ̃B̃1(m−1)
Λ̃Ã1nΨB̃1m

Ã1n
− qDΛA1

|DΛ̃B̃1m
Λ̃Ã2nΨB̃1m

Ã1n
− · · ·

− qDΛAn
|DΛ̃B̃1m

Λ̃Ã1(n−1)ΨB̃1m
Ã1n

. (A.5)
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Now, it is important to observe that

qDΛAk
|D = qAkqDqCΛC|D + qAkqDqCΛC|D

2 , (A.6)

since

qAqCqC|A = qAqCqC|A + qAqCqC|A
2

=
qA
(
qCqC|A + qCq

C
|A

)
2

= 0. (A.7)

Then, (A.6) reads

qDΛAk
|D =


qAkqDqCqC|D

2 for ΛAk = qAk

−
qAkqDqCqC|D

2 for ΛAk = qAk

, (A.8)

Also, since in stereographic coordinates

qAqCqC|A = qAqCqC,A − qAqCqDΩD
CA

= −2ζ, (A.9)

where
qAqCqDΩD

CA = 0, (A.10)

then, (A.8) is simplified to

qDΛAk
|D =


qAkζ for ΛAk = qAk

−qAkζ for ΛAk = qAk
. (A.11)

Thus, from (A.11), lowering the index with the metric qAB, one obtains that

qDΛAk|D =


qAkζ for ΛAk = qAk

−qAkζ for ΛAk = qAk

. (A.12)
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Writing (A.5) in the form,

ð sΨ =qD (sΨ),D −
(
qDΛB1|DΛ̃B̃2m

+ · · ·+ qDΛBm|DΛ̃B̃1(m−1)

)
Λ̃Ã1nΨB̃1m

Ã1n

−
(
qDΛA1

|DΛ̃Ã2n + · · ·+ qDΛAn
|DΛ̃Ã1(n−1)

)
Λ̃B̃1m

ΨB̃1m
Ã1n

, (A.13)

one observes that the first bracket corresponds to

qDΛB1|DΛ̃B̃2m
+ · · ·+ qDΛBm|DΛ̃B̃1(m−1)

=qDΛB1|DΛ̃B̃2x
Λ̃B̃(x+1)m

+ · · ·+ qDΛBx|DΛ̃B̃1(x−1)
Λ̃B̃(x+1)m

+ qDΛBx+1|DΛ̃B̃1x
Λ̃B̃(x+2)m

+ · · ·+ qDΛBm|DΛ̃B̃1x
Λ̃B̃(x+1)(m−1)

= ζ

−q̃B̃1x
q̃B̃(x+1)m

− · · · − q̃B̃1x
q̃B̃(x+1)m︸ ︷︷ ︸

x terms

+ q̃B̃1x
q̃B̃(x+1)m

+ · · ·+ q̃B̃1x
q̃B̃(x+1)m︸ ︷︷ ︸

m−x terms

,
i.e.,

qDΛB1|DΛ̃B̃2m
+ · · ·+ qDΛBm|DΛ̃B̃1(m−1)

= ζ(m− 2x)Λ̃B̃1m
; (A.14)

whereas the second bracket is

qDΛA1
|DΛ̃Ã2n + · · ·+ qDΛAn

|DΛ̃Ã1(n−1)

= −qA1ζq̃Ã2y q̃
Ã(y+1)nΨB̃1m

Ã1n
− · · · − qAyζq̃Ã1(y−1) q̃

Ã(y+1)n

+ qAy+1ζq̃Ã1y q̃
Ã(y+2)nΨB̃1m

Ã1n
+ · · ·+ qAnζq̃Ã1y q̃

Ã(y+1)(n−1)

= ζ

−q̃Ã1y q̃
Ã(y+1)n − · · · − q̃Ã1y q̃

Ã(y+1)n︸ ︷︷ ︸
y terms

+ q̃Ã1y q̃
Ã(y+1)n + · · ·+ q̃Ã1y q̃

Ã(y+1)n︸ ︷︷ ︸
n−y terms

,
or

qDΛA1
|DΛ̃Ã2n + · · ·+ qDΛAn

|DΛ̃Ã1(n−1) = ζ(n− 2y)Λ̃Ã1n . (A.15)
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Thus, substituting (A.14) and (A.15) into (A.13) one obtains a simple expression in
stereographic coordinates

ð sΨ =qD (sΨ),D − ζ(m− 2x+ n− 2y)Λ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n

=qD (sΨ),D + s ζ sΨ. (A.16)

From the definition for the eth bar operator,

ð sΨ = qDΛ̃B̃1m
Λ̃Ã1nΨB̃1m

Ã1n|D
, (A.17)

and using (A.1) one obtains that

ð sΨ = qD (sΨ),D − q
DΛB1|DΛ̃B̃2m

Λ̃Ã1nΨB̃1m
Ã1n
− · · ·

− qDΛBm|DΛ̃B̃1(m−1)
Λ̃Ã1nΨB̃1m

Ã1n
− qDΛA1

|DΛ̃B̃1m
Λ̃Ã2nΨB̃1m

Ã1n
− · · ·

− qDΛAn
|DΛ̃B̃1m

Λ̃Ã1(n−1)ΨB̃1m
Ã1n

, (A.18)

where

qDΛAk
|D = qAkqDqCΛC|D + qAkqDqCΛC|D

2 , (A.19)

and

qDΛBk|D =
qBkq

DqCΛC|D + qDqBkq
CΛC|D

2 . (A.20)

Thus, the two last equations result in

qDΛAk
|D =

q
Akζ if ΛAk = qAk

−qAkζ if ΛAk = qAk
, (A.21a)

and

qDΛBk|D =

qBkζ for ΛBk = qBk

−qBkζ for ΛBk = qBk

. (A.21b)

Then, the expression associated with the ð operator acting on the sΨ becomes

ð sΨ = qD (sΨ),D − ζ(2x−m) sΨ− ζ(2y − n) sΨ

= qD sΨ,D − sζ sΨ. (A.22)
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Appendix B - Angular Operators ∂θθ, ∂θφ and ∂φφ in terms of ð and ð

From
∂θ = ð + ð

2 , ∂φ = i sin θ
2

(
ð− ð− 2s cot θ

)
. (B.1)

and from Equations (3.68), it is possible to obtain the expressions for ð2, ð2, ðð and
ðð, which lead to the expressions for ∂θθ, ∂θφ and ∂φφ, namely

ð2 = (∂θ + i csc θ∂φ − (s+ 1) cot θ) ∂θ + i (∂θ + i csc θ∂φ
−(s+ 1) cot θ) csc θ∂φ − s (∂θ + i csc θ∂φ − (s+ 1) cot θ) cot θ. (B.2)

The first term in (B.2) is

(∂θ + i csc θ∂φ − (s+ 1) cot θ) ∂θ = ∂θθ + i csc θ∂φθ − (s+ 1) cot θ∂θ, (B.3)

the second term in (B.2) is given by

i (∂θ + i csc θ∂φ − (s+ 1) cot θ) csc θ∂φ
=i
(
− csc θ cot θ∂φ + csc θ∂θφ + i csc2 θ∂φφ − (s+ 1) cot θ csc θ∂φ

)
, (B.4)

finally the third term in (B.2) reads

− s (∂θ + i csc θ∂φ − (s+ 1) cot θ) cot θ

=− s
(
− csc2 θ + cot θ∂θ + i csc θ cot θ∂φ − (s+ 1) cot2 θ

)
. (B.5)

Thus, the substitution of (B.3)-(B.5) into (B.2) leads to

ð2 =∂θθ − csc2 θ∂φφ + 2i csc θ∂φθ − (2s+ 1) cot θ∂θ
− 2i(s+ 1) cot θ csc θ∂φ + s

(
(s+ 1) cot2 θ + csc2 θ

)
. (B.6)

From (3.68) we construct ð2 as follows

ð2 =∂θ [∂θ − i csc θ∂φ + s cot θ]− i csc θ∂φ [∂θ − i csc θ∂φ + s cot θ]

+ (s− 1) cot θ [∂θ − i csc θ∂φ + s cot θ] . (B.7)

The first term in (B.7) corresponds to

∂θ [∂θ − i csc θ∂φ + s cot θ] =∂θθ − i csc θ∂θφ + i csc θ cot θ∂φ
− s csc2 θ + s cot θ∂θ, (B.8)
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the second term in (B.7) is given by

− i csc θ∂φ [∂θ − i csc θ∂φ + s cot θ]

=− i
[
csc θ∂φθ − i csc2 θ∂φφ + s csc θ cot θ∂φ

]
; (B.9)

finally the third term in (B.7) is given by

(s− 1) cot θ [∂θ − i csc θ∂φ + s cot θ]

=(s− 1)
[
cot θ∂θ − i cot θ csc θ∂φ + s cot2 θ

]
. (B.10)

Thus, substituting (B.8)-(B.10) into (B.7), one obtains

ð2 = ∂θθ − csc2 θ∂φφ − 2i csc θ∂θφ + (2s− 1) cot θ∂θ
− 2i(s− 1) cot θ csc θ∂φ + s

(
(s− 1) cot2 θ − csc2 θ

)
. (B.11)

Also, from (3.68) one obtains

ðð =∂θθ + csc2 θ∂φφ + cot θ∂θ + 2is csc θ cot θ∂φ − s
(
s cot2 θ + 1

)
, (B.12)

and

ðð =∂θθ + csc2 θ∂φφ + cot θ∂θ + 2is cot θ csc θ∂φ − s
(
s cot2 θ − 1

)
. (B.13)

In order to check the above expressions, the commutator
[
ð,ð

]
is computed, resulting

in the well-known result [
ð,ð

]
= 2s,

and its anti-commutator reads

(
ð,ð

)
= 2

(
∂θθ + csc2 θ∂φφ + cot θ∂θ + 2is cot θ csc θ∂φ − s2 cot2 θ

)
. (B.14)

160



Thus, from (B.6), (B.11), (B.12), (B.13) the explicit form of the second order angular
operators in terms of the spin-weighted operators are given by

∂θθ =
ð2 +

(
ð,ð

)
+ ð2

4 , (B.15a)

∂φφ =− sin2 θ

4
(
ð2 −

(
ð,ð

)
+ ð2)− s2 cos2 θ

− sin θ cos θ
((
s+ 1

2

)
ð−

(
s− 1

2

)
ð
)
, (B.15b)

∂θφ =− i sin θ
4

(
ð2 − ð2)− is cos θð + ð

2

+ i cos θ
2

(
ð− ð− 2s cot θ

)
+ i sin θs(cot2 θ + csc2 θ)

2 . (B.15c)
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