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“Look up at the stars and not down at your feet. Try to make sense
of what you see, and wonder about what makes the universe exist. Be

curious.”

Stephen Hawking
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ABSTRACT

Since the first gravitational wave detection in 2015, a new field in astrophysics was
opened. A long way was taken for that detection to be made, a theoretical as well as
an experimental effort. But most importantly the analysis of the data generated by
the gravitational wave detectors (interferometers, such as LIGO and Virgo) is crucial.
The data can be described in time-domain and frequency-domain, but none of them
offers a good representation of time and frequency at the same time, because of the
Heisenberg-Gabor (HB) Principle. Another attempt is to use Wavelets, that is, to use
time series as an input for the Wavelet Transform that will represent the data in time-
frequency (wavelet domain) with "tiles", also known as Heisenberg Boxes with sides
given by time and frequency resolutions, respectively. The wavelet method minimizes
the area of the tile defined by the HB Principle. Therefore a code in Python is
developed to use any time series as input, to process the data (signal+noise) with
windowing, whitening, applying filters (an optional step) and finally performing the
Discrete Wavelet Transform (DWT). The DWT output is a list of coefficients, each
of which refers to a time bin and a frequency bin, the coefficients can be filtered
(another optional step) when using a fixed quantile threshold. Normally, the DWT
stops when it reaches the maximum level, but in this work a selection criterion
for the decompositions is provided using Shannon’s Entropy Criterion that chooses
which time and frequency resolutions will be used to represent the input, given
their product is constant. The lower the entropy, more the coefficient’s power is
concentrated in a lower number of tiles. The multiresolution representation adjusts
itself to make the best representation of every time series used as input. To test the
developed algorithm, the code was applied to 10 gravitational wave events detected
and published by the LIGO Scientific Collaboration (LSC), a time-frequency signal
was simulated from the best fit for the input and was superimposed to the wavelet
representations for comparison. A histogram of the decomposition’s coefficients were
made for each event, to qualify the goodness of the representations. As a result of
that, 6 events steps out as the ones that allows a better discrimination between
background and foreground. The most effective signal identifications of our method
happens for signals with large frequency variability, as for signals generated by late
inspiral and merger of compact binary coalescence.

Keywords: Gravitational Wave. Data Analysis. Signal. Time-frequency representa-
tions. Wavelets. Shannon’s Entropy Criterion.
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MULTIRESOLUÇÃO ADAPTATIVA PARA ANÁLISE WAVELET

RESUMO

Desde a primeira detecção de onda gravitacional em 2015, um novo ramo na astrofí-
sica se abriu. Um longo caminho foi percorrido para que a detecção fosse realizada,
tanto um esforço teórico quanto experimental. Mas, mais importante a análise de
dados gerados pelos detectores de ondas gravitacionais (interferômetros, como o
LIGO e o Virgo) é essencial. Os dados são descritos no domínio do tempo e no do-
mínio da frequência, mas nenhum deles oferecem uma boa representação de tempo
e frequência ao mesmo tempo, devido ao Princípio de Heisenberg-Gabor (HB). Ou-
tra tentativa é utilizar Wavelets, isto é, usar séries temporais como input para a
Transformada Wavelet que irá representar os dados em tempo-frequência (domínio
wavelet) com "azulejos", também conhecidos como "Caixas de Heisenberg"com lados
dados pela resolução no tempo e resolução em frequência, respectivamente. O mé-
todo wavelet minimiza a área desse azulejo definido pelo Princípio de HB. Portanto
um código em Python é desenvolvido para usar qualquer série temporal como input,
para processar os dados (sinal+ruído) com janelamento, branqueamento, aplicando
filtros (passo opcional) e finalmente executando a Transformada Wavelet Discreta
(TWD). O output da TWD é uma lista de coeficientes, cada um deles se refere a
um bin de tempo e um bin de frequência, os coeficientes são filtrados (outro passo
opcional) quando utiliza-se um limiar fixo de quantil. Normalmente, a TWD para
quando alcança o nível máximo, mas neste trabalho um critério de seleção é dado
pelo Critério de Entropia de Shannon que seleciona quais resoluções de tempo e
frequência serão utilizados na representação do input, dado o produto deles é cons-
tante. Quanto menor a entropia, mais a potência do coeficiente está concentrado
em um menor número de azulejos. A representação do sinal com multiresolução se
adapta para gerar a melhor representação de todas séries temporais usadas como
input. Para testar o algoritmo desenvolvido, o código foi aplicado à 10 eventos de
ondas gravitacionais detectadas e publicadas pela Colaboração Científica do LIGO
(CCL), um sinal em tempo-frequência foi simulado pelo melhor fit para o input e
superposto nas representações wavelet para comparação. um histograma dos coefici-
entes da decomposição foram feitos para cada evento, para quantificar e estabelecer
padrões para representações boa e mediana. Como resultado disso, 6 eventos se
destacam como os que permitem uma discriminação maior entre background e fo-
reground. As identificações de sinais mais eficazes de nosso método acontecem para
sinais com grande variabilidade de frequência, como para sinais gerados por inspiral
tardio e fusão de binária compacta coalescente.

Palavras-chave: Ondas Gravitacionais. Análise de dados. Sinal. Representações em
tempo-frequência. Wavelets. Critério de Entropia de Shannon.
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1 INTRODUCTION

The human race is always chasing the unknown, specially when it comes to under-
standing and discovering the universe. With a lot of hard work of scientists all over
the world, today we are capable of appreciating their effort and to keep pursuing
the solutions for the problems that remains.

One of these great scientists was Albert Einstein. When he developed The General
Relativity Theory in 1915, it unleashed a huge number of results and solutions for
problems that the Newtonian theory wasn’t capable of answering. Also, predictions
were made with that theory, such as the existence of gravitational waves (ABBOTT

et al., 2016).

By that time, since the scientists made a huge development on observing the universe
using the electromagnetic radiation (visible light, radio waves, X-rays, etc), it was
logical to treat the gravitational wave (GW) as an analog of this radiation. Therefore,
two groups were created: the skeptics, led by Herman Bondi, represented the ones
who really doubted that gravitational waves exists and non-skeptics, led by John
Wheeler and represented the ones who believe in it and relied in this analogy.

For many years, this discussion seemed to be endless, until the Chapel Hill Con-
ference in 1957 (THE. . . , 1957). Therefore the pioneer experimental effort of Joseph
Weber, who built the now known as the Weber Bar Experiment (CHO, 2016), started
the race for the detection of gravitational waves, encouraging the development of
other detection methods, such as the cryogenic resonator and the laser interferome-
ter, this last one being the most efficient way of detection.

Not until 50 years from Weber’s experiments, the first gravitational wave was de-
tected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) (AB-

BOTT et al., 2009), as it will be seen in Chapter 2.

What is interesting about studying gravitational waves is that it carries energy and
information about its source, so that means, it’s possible to measure this "ripples"
that are propagated in all directions in space-time and produced by an extremely
energetic process.

This is a different way of approaching astrophysical objects and also to study the
universe and its origin. But, the results of these detections must be carefully checked.

The results of the detections can be found in the LIGO website, the raw data are
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expressed as a time series of reconstructed metric perturbation, but it can also
be transformed to Fourier-domain (frequency-domain). The transition and relation
between time-domain and frequency-domain are explored in Chapter 3.

There is another option, which is to represent time series in time-frequency domain.
The Wavelet Transform (MALLAT, 2009) is a method of performing that task and
the mathematical form for this technique is quite similar to the Fourier Transform,
it represents an expansion in a base that depends on a time function called mother
wavelet.

Every mother wavelet is localized in time and frequency, but can also be translated,
stretched and contracted without changing its area, so that it can fill the entire
time-frequency plane, describing the signal in "tiles" with width given by the time-
resolution and height described with frequency-resolution. Chapter 4 will discuss
the wavelet method and its applications.

When using the wavelet method, the input is given by a list of coefficients, each
of which refers to a time bin and a frequency bin. The signal in wavelet domain
is represented as tiles with the same area, but different shapes, adjusting itself
according to the signal that is analyzed by the code.

In this work a code in Python is developed using an optimal criterion to choose
the best decomposition, or shape of the tiles for the decomposition, given using
Shannon’s Entropy, that is, calculating this quantity for each pair of coefficients and
comparing with the entropy of the layer before. The objective of this criterion is
minimizing the entropy value, which physically means representing data points in
the way that concentrates the intensity in the lowest number of tiles.

The resulting representation is multiresolution in time and frequency (STURANI;

TERENZI, 2007), corresponding to different time and frequency resolutions of the
Heisenberg boxes associated to the signal. The area of this box is constant, but with
the flexibility of changing the resolutions, the representation adjusts according to
the data used as input for the code. This tool is applied to 10 gravitational wave
events. The code sketch is described in details in Chapter 5, as well as the results
of the time-frequency representation of the GW events and the criterion used to
determine the goodness of the representation.

Chapter 6 presents the conclusion of the developed method in this dissertation and
some final remarks.
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1.1 Objectives

This dissertation aims to develop a tool that generates a multiresolution represen-
tation that adjusts to any time series used as input for the wavelet analysis. More
specifically:

• To develop a code in Python that processes the data and performs a Dis-
crete Wavelet Transform (DWT) using a selection criterion given by Shan-
non’s Entropy for the decompositions. To plot a multiresolution represen-
tation of the data in time-frequency with the outputs of the DWT. Apply
these steps to 10 GW events and validate the results.

• Identify the GW parameters such as Signal-to-Noise Ratio, length of the
signals, etc, for which the developed method is most accurate.
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2 GRAVITATIONAL WAVES

2.1 General Relativity

The theory of General Relativity (EINSTEIN, 1907) enabled important accomplish-
ments in physics, such as the prediction of gravitational waves (GWs) by Einstein
in 1918. In order to achieve a proper physical and mathematical definition of GWs,
it is important to have some concepts in mind, such as the Einstein Field Equation:

Rµν −
1
2gµνR = 8πG

c4 T µν . (2.1)

where Rµν is the Ricci curvature tensor, gµν is the spacetime metric, G is the the
gravitational constant and T µν is the energy-momentum tensor (see (D’INVERNO;

HARVEY, 1993) for more details).

When this equation was solved through different methods by great scientists such as
Karl Schwarzschild, Roy Kerr, it resulted in solutions that provided the theoretical
existence of astrophysical objects, such as black holes, wormholes, rotating black
holes, given the symmetry of the space-time (spherical, axial). Nevertheless, to derive
a solution that proves the existence of gravitational waves, the approach needed is
slightly different.

It is necessary to use a ’linearized theory’ to describe the spacetime metric gµν .
From this, gµν describes a small deviation from Minkowski’s flat metric ηµν =
diag(−,+,+,+) as the following:

gµν = ηµν + hµν , (2.2)

with hµν representing a perturbation of the spacetime metric, given that |hµν | << 1,
which implicitly conserves the weak field condition and constrains the coordinate
system to be approximately cartesian, so hµν is a tensor under Lorentz transforma-
tions but not under general coordinate transformations. It is also considered here
that higher order terms of this perturbation are discarded.

It’s possible to evolve this linearized theory by using the Einstein’s Equation (2.1)
with all the fixed conditions. The starting point is to define the components of the
affine connection (Christoffel symbols (HEINBOCKEL, 1996)) given by
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Γµνρ = 1
2η

µσ (∂ρhσν + ∂νhσρ − ∂σhνρ) = 1
2 (∂ρhµν + ∂νhµρ − ∂µhνρ) , (2.3)

where ∂µ represents the partial derivative ∂/∂xµ.

This leads to the construction of the Riemann tensor with the components of the
affine connection, as it is done next:

Rµνρσ = 1
2 (∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) , (2.4)

and from the equation above, the Ricci tensor can be written as

Rµν = Rρ
µρν = 1

2 (∂ρ∂νhρµ + ∂ρ∂µh
ν
ρ −�hµν − ∂ρ∂µh) , (2.5)

with the D’Lambertian operator representing the spacetime components of the wave
(� = ∇2 − 1

c2
∂2
t ) and hµµ standing for the trace of the metric perturbation.

Furthermore, the Ricci scalar, that is, the Ricci tensor contraction is defined as

R = (∂ρ∂µhρµ −�h) (2.6)

allowing the construction of the Einstein equation expressed in terms of the metric
perturbation. This procedure will be key to the understanding of gravitational waves.

A way of simplifying it is to work with the association h̄µν = hµν − 1
2ηµνh, where h̄

is denominated trace-reversed perturbation reduces the expression above to a much
simpler equation.

This procedure was developed by Einstein in 1916. For further deductions, see
(DIRKES, 2018). Notice that in General Relativity, the right side of the equation
above is the energy-momentum tensor Tµν and it can be related to the Einstein
tensor Gµν with Gµν = 8πG

c4
Tµν , that way the field equation is defined as

Gµν = 1
2
(
∂ρ∂ν h̄

ρ
µ + ∂ρ∂µh̄νρ −�h̄µν − ηµν∂ρ∂σh̄ρσ

)
. (2.7)

It is clear that this expression is too complex to work with, so a couple of changes
has to be made in order to simplify it. In all physical systems, identifying symmetries
are an efficient way of decreasing its degrees of freedom, as it is shown next.
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2.2 Gauges transformations

Symmetries are essential when it comes to physics, a successful theory respects
conservation laws such as Noether’s and can be locally analysed by different con-
figurations. These configurations are related to each other through "gauge transfor-
mations" and it is a procedure made in order to restrain the physical’s degrees of
freedom, as it’s done in Maxwell’s electromagnetism theory (GRIFFITHS, 2010). In
General Relativity this concept is no different, gauges transformations represents a
coordinate transformation. So, the gravitational wave theory must be now rewritten,
Equation (2.7) more specifically, so physical aspects can be determined and a better
understanding of this phenomenon can be made.

First, an infinitesimal coordinate transformation x′µ = xµ + εµ is defined, which εµ

represents an infinitesimal displacement, so the metric becomes:

g′µν = gµν − ∂µεν − ∂νεµ. (2.8)

With this gauge freedom, it is wise to choose an approximate inertial frame of
reference to solve the D’Alembert’s equation, after all, the cartesian coordinates
are used for that purpose in special relativity (NUSSENZVEIG, 2014). A convenient
gauge choice would be De Donder gauge gαβΓγαβ = 0 or the linearized version
(analogous to Lorentz gauge):

∂ν h̄µν = 0. (2.9)

When the gauge is applied to Einstein tensor (Equation (2.7)), all that’s left is the
following:

�h̄µν = −16πG
c4 Tµν , (2.10)

since Gµν can be expressed in terms of Tµν , the equation above represents a wave, in
this case a gravitational wave h̄µν and the solution for it are given by a Green’s func-
tion. More preciously, a retarded Green’s function in three dimensions, analogous to
the potential of a moving charge in electrodynamics (GRIFFITHS, 2010):

h̄µν(t, ~x) = 4G
c4

∫
Tµν

(
t− |~x− ~x

′|
c

, ~x′
)

1
|~x− ~x′|

d3x′ (2.11)

written in cartesian coordinates. A particular solution for this equation is considering
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a system very far from the source, so Tµν = 0, it comes to

�h̄µν = 0. (2.12)

Since � = ∇2 − 1
c2
∂2
t , this wave is being propagated at the speed of light, and the

plane wave solution have the form:

h̄µν = Aµνe
ikαxα (2.13)

the polarization tensor indicated by Aµν contains information about the amplitude
and like the name says, the polarization of the wave. The wave vector is expressed
in terms of the frequency w and the speed of light c: kα = (w

c
, ~k). It’s important to

remember that these quantities are all constants and since it’s also imaginary, only
the real component of Equation (2.13) is used when the analysis are made.

The only gauge used until now is Lorentz’s, which restrained 10 degrees of freedom
of the gravitational wave tensor h̄µν into 6 degrees, so another attempt of limitating
the degrees of freedom even more will be made through the so-called TT gauge.

2.2.1 TT gauge

A condition for the polarization tensor is assigned from De Donder gauge (written
as Equation (2.9)) when the derivation of (2.13) is done:

Aµνk
µ = 0 (2.14)

since the scalar product of the polarization and the wave vector is zero, it implies
that these vectors are orthogonal to each other. Also, another statement can be
made: the number of independent components of Aµν are reduced to 4.

An analysis of the wave vector can be done taking into consideration the condition
above. From the scalar product definition:

kµk
µ = k2

0 − k2
x − k2

y − k2
z = 0, (2.15)

so it means the wave vector kµ is lightlike or null, confirming that the wave h̄ travels
at the speed of light and frequency w.

Until now, the wave amplitude had originally 10 components, with Lorentz gauge
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this number was restrained to 4 components. So this is where the TT gauge is applied
in vacuum it will reduce this number even more, with the following procedure.

Equation 2.9 rewriten with h̄µν = hµν when µ = 0 and with a fixed h0i is:

∂0h00 = 0 (2.16)

which physically means that the h00 component is the static part of the GW and
since the gravitational wave is time dependent, h00 = 0. All that is left are the
spatial components represented by h0µ = 0 and when Lorentz gauge is applied, the
condition changes into ∂hij = 0. Since the transverse-traceless gauge is applied, the
condition becomes:

hii = 0. (2.17)

The objective of these conditions are to reduce the degrees of freedom and after
these procedures there are 2 degrees of freedom left, leaving two polarization modes
for the gravitational wave.

This gauge provides an identity between the metric perturbation (hµν) and the
gravitational field (h̄µν):

h̄µν = hµν (2.18)

and for a better understanding, the wave vector under the TT gauge is defined as
hTTµν .

When resuming to how this gauge will affect the components number of the ampli-
tude Aµν tensor, symmetries are determined and this tensor will be described as 2
dimensionless amplitudes h+ and h×:

Aµν = h+ε
µν
+ + h×ε

µν
× , (2.19)

with the amplitude Aµν written as a linear combination of both components and
described with the unit polarization tensors εµν given by
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εµν+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ,

εµν× =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

this way it is possible to define the gravitational wave amplitudes, that is, the way
the wave moves from a source and crosses the universe. For a further discussion on
the subject, see (MAGGIORE, 2009).

2.2.2 Polarization modes

When it comes to gravitational radiation, that is, the emission from an astrophysical
source and propagation through a particle (graviton) or by a gravitational wave, its
polarization is essential to understanding where it came from and how similar this
ripples in space-time are to the electromagnetic radiation.

Resuming to the electromagnetic theory (GRIFFITHS, 2010), when a small source is
generating eletromagnetic waves, this radiation is mainly dipolar (since there’s no
magnetic monopole and higher multipolar orders are discarded). As for the grav-
itational radiation, when the multipolar decomposition is made, the lowest order
component is the quadrupole moment, which represents the vibrational modes a
gravitational wave possess (for further details, see (MAGGIORE, 2009)).

The next step would be to define these polarization modes for the gravitational
waves (CAI et al., 2017). This vibrational modes are represented by the amplitudes
h+ and h× that are orthogonal to each other, as it is shown on Figure 2.1.

A question to be asked at this point is: which astrophysical objects and at which
physical condition it will emit gravitational waves? The next section will give an
approach to answer this matter.
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Figure 2.1 - This figure shows the behaviour of a gravitational wave that propagates per-
pendicularly to this paper when it crosses matter. The polarization h+ is
represented in the upper level and in lowest level is h×.

SOURCE: Bishop e Rezzolla (2016)

2.3 Gravitational waves signals

This section is dedicated to the understanding of gravitational wave types generated
by specific astrophysical sources.

A GW source needs to generate a significant perturbation in space-time, so it is
necessary for this source to be composed of massive objects (one or more), moving
at a high velocity and when the parts of this source are accelerated it becomes
spherically asymmetric (this last condition is given by the third derivative of its
quadrupole momentum (BISHOP; REZZOLLA, 2016)).

There are four categories of gravitational waves signals and the sources that gener-
ates them are listed in Table 2.1 and described next in details:

11



Table 2.1 - Gravitational wave signals.

GW Signals Examples of sources
Continuous A rotating neutron star, binary systems far from coalescence

Compact Binary Inspiral
Binary Neutron Star (BNS)
Binary Black Hole (BBH)
Neutron Star-Black Hole Binary (NSBH)

Stochastic Big Bang, cosmic strings, superposition of many burst sources
Burst Impulsive or unmodeled sources

• Continuous: This type of gravitational wave signal is well modeled, pe-
riodic, and it has a long duration. The sources that generates this type
of wave are characterised by a particular final stage of a massive star: a
neutron star (NS). As it was said before, only an varying spherically asym-
metric object is able to emit a gravitational wave, after all, if that symmetry
exists, the space-time curvature will be constant and there wouldn’t be any
oscillations to be propagated.

In the case of a compact object such as a NS, imperfections in the spher-
ical shape while the star spins will contribute for the variation of the
quadrupole momentum. This way, the oscillations caused in space-time
will be generated continuously, with constant frequency (equal to twice
the NS rotation frequency) and amplitude.

There are some other Continuous GW sources, such as neutron star bina-
ries (BNS), but it’s important to emphasize that this objects has to be far
from coalescence (merging into one single object).

• Compact Binary Inspiral: This is the kind of GW that offers the highest
emission incidence detected by the LVK Collaboration. It is a well modeled
and short duration signal (in second generation detectors’ band). It can be
simulated with templates (FIELD et al., 2011) that helps identifying possible
GW candidates.

Its sources consists of compact objects such as black hole (BH), neutron
star (NS) but in a binary system. This system is composed by two of these
astrophysical objects and its coalescence is defined by three stages : inspiral
(the objects are orbiting one another and moving closer together), merger
(while the objects gets closer, the distance between them drops, the relative
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velocity between them rises, releasing orbital energy in a gravitational wave
form) and finally the ring-down (which is the final stage of this event, where
the merged object keeps oscillating until stops).

The coalescences can occur between stellar backholes, defined as black
holes of masses from 5 to 100 M� (M� stands for 1 solar mass) that can
generate an intermediate backhole, black holes with masses from 102 to
105−6 M� as GW190521 that generated an intermediate BH as the final
remnant of the coalescence.

In the case of a BNS, the final product will depend on the initial masses
of the binary components and the energy released in the whole process.

The first GW detection happened in 2015 and it consisted of a compact
binary coalescence composed by two black holes with initial masses of 29
M� and 36M�. The coalescence stages and more details about this event
are shown on Figure 2.2 and (ABBOTT et al., 2016). Gravitational wave
detections such as this, are represented by the following initials: GW150914
where GW indicates "Gravitational Wave", followed by the year, month
and day, respectively.

It’s important to know that each binary pair produces an unique GW pat-
tern, shorter signals tend to come from more massive objects (for example:
BBH) and longer signals explain that the maximum frequency emitted in
a coalescence is given by the inverse of the binary total mass.

• Stochastic: This gravitational wave signal is not modeled and it doesn’t
have a specific duration, they are rather present all the time.

The sources that produces this type of GW are related to the large num-
ber of random, independent events that happens in all directions of the
universe. Stochastic gravitational waves can be the key to the understand-
ing of the early universe and its evolution. After all, gravitational waves
were emitted at approximately 10−36s to 10−32s after the Big Bang and if
detected, it will carry information about the very beginning of the universe!

• Burst: This type of GW signal are transients signals in excess of the noise,
also not modeled, difficult to simulate. It has a short duration coming
from impulsive sources. So, a pattern of signals that hasn’t been modeled
yet must be recognized, and the sources can be systems not yet seen or
predicted. That’s why the analyses cannot be restrict anyhow while looking
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for the bursts. But its detection is essential to reveal valuable information
about the universe.

Figure 2.2 - The first gravitational wave detection: GW150914.

SOURCE: ABBOTT et al. (2016).

All these gravitational wave signals share the same problem: they all need to be
extracted from the detector’s data. Some of the data analysis techniques will be
shown in Chapter 3 for a better understanding of how the noise can interfere with
the signal and some filtering methods.

The science behind the gravitational wave detectors such as LIGO and VIRGO is
presented in the next section.
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2.4 Science Impact of the Gravitational Wave Detectors

The Ligo-Virgo-Kagra (LVK) Collaboration is not just making progress detecting
gravitational waves. Their contribution extends to the study of the sources that
produces this phenomenon. It unites observations with the electromagnetic radiation
such as X-rays, visible light, gamma rays, etc, so different perspectives of the same
object can be performed. This results in interactions never seen before, as the BNS
event GW170817 (that will be explored later in the results chapter) with their
electromagnetic response.

There is also a huge technology development that were improved and created, a few
examples are listed next:

• Computation and data analysis;

• High-performance optics;

• Ultrahigh vacuum components and techniques;

• Cryogenic technology;

• Interferometric displacement sensor,

elements that assisted in the creation of the most sensitive instrument ever built.

These technologies can help improve instruments used in another field of science.
In the next subsection, a better understanding of the instrumental aspects of the
detectors are briefly described.

2.4.1 Laser Interferometer Gravitational-wave Observatory (LIGO)

The next investigation point is to understand how the detection works. Many at-
tempts such as detectors using resonant masses were constructed, such as the brazil-
ian spherical resonant mass detector Mario Schenberg (OLIVEIRA; AGUIAR, 2016),
but eventually the scientists evolved with the interferometer idea of using it as a
"antenna" for gravitational wave detection.

The Laser Interferometer Gravitational-wave Observatory was constructed in the
late 1990s and started operating in 2003 (to see more details about it, see (ABBOTT et

al., 2009)). LIGO operates in two sites in the United States: Livingston and Hanford
as it is seen in Figure 2.3.
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Figure 2.3 - The two LIGO sites: (left) Hanford, near Washington and (right) Livingston
in Louisiana.

SOURCE: LIGO Caltech (2021).

The search for gravitational waves was made through observation periods, also called
"runs":

• O1: The first run started on September 12th, 2015 and ended on January
19th, 2019. The results were 3 gravitational wave detections, all of them
being generated by black hole mergers (BBH), including the first event
GW150914 (ABBOTT et al., 2016);

• O2: The second run started on November 30th, 2016 and ended on August
25th, 2017. A total of 8 detections were made, 7 generated by BBH and the
first neutron star merger (GW170817 (ABBOTT et al., 2017b)). The Virgo
detector (BRADASCHIA et al., 1990) participated in the last month of the
O2. Both O1 and O2’s catalog of events are presented at (ABBOTT et al.,
2019),

• O3: The third run is divided into O3a that started on April 1st and
ended on September 30th, 2019 and O3b from November 1st, 2019 and
was interrupted on March, 2020 due to COVID-19 pandemic (ROTHAN;

BYRAREDDY, 2020). So far, 39 events were detected in O3a as it is seen
at (ABBOTT et al., 2021). During the entire run, the VIRGO detector also
participated in the GW search.

There were 52 gravitational wave events detected in the three observation runs by
the LIGO-Virgo Collaboration so far, and they mark the collisions of two black holes,
a black hole and a neutron star, a black hole and a neutron star or two neutron stars,
as it is displayed in Figure 2.4.
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Figure 2.4 - The 52 gravitational wave events separated by their sources: black holes
and/or neutron stars.

SOURCE: NASA (2021).

The interferometer’s layout is presented in Figure 2.5. It is based on the Michelson
interferometer, from the Michelson-Morley experiment that was performed in 1887
to detect aether (LANGANGEN et al., 2012). Of course LIGO’s arms are a lot bigger
(4 meters) than Michelson’s of 1.3 meters, but they don’t differ only in scale, but
also with the arms acting as Fabry-Perot cavities (MAGGIORE, 2009).

The GW induces space ripples change the optical patch of laser light by that amount,
affecting the intensity of light coming out of the interferometer. Therefore all the
data generated by this interferometer is evaluated by performing aWindowed Fourier
Transform (a subject that will be addressed later) for little chunks of data, generating
a spectrogram.

In this configuration the mirrors serves as a gravitational test masses, and an ad-
vantage in using a resonant Fabry-Perot optical cavity in the arms is that the signal
is amplified by a factor of 100 for a 100Hz gravitational wave. By means of that,
the LIGO interferometer is considered the most sensible measurement device ever
created.
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Figure 2.5 - The gravitational wave interferometer’s configuration. a) presents the location
of both LIGO sites (H1 and L1) and its orientations. b) shows the curve
of amplitude spectral density of the instrument noise as a function of the
frequency for both sites.

SOURCE: NASA (2021).

2.4.2 VIRGO Interferometer

Located in Cascina, near Pisa in Italy, the VIRGO Interferometer (see Figure 2.6)
was built and started operating in the 2000s (BRADASCHIA et al., 1990). Its config-
uration is also based on the Michelson interferometer, similar to LIGO’s, but with
arms 3 meters long.

When the detector was first built, it was not sensitive enough to detect gravitational
waves. Therefore, in 2011 it went through improvements and became known as the
Advanced Virgo detector with a sensitivity increased by a factor of 10.

VIRGO joined LIGO’s run on 2017, participating in the detections ever since the
last month of O2. The first detection of this interferometer was GW170814 and it
is essential for the sky localisation of gravitational wave signals.

Other gravitational wave observatories are active nowadays, such as GEO600 in
Germany (LüCK, 1997), etc. Plans for a space detectors such as LISA (JOFFRE et

al., 2020), TianQin (HU et al., 2018) are being developed, as well as improved third
generation earth-based detector as Einstein Telescope (PUNTURO et al., 2010) and
others.
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Figure 2.6 - The VIRGO Interferometer located at Santo Stefano a Macerata, Cascina,
Italy.

SOURCE: Wikipedia (2021).

It is important to remember that when a gravitational wave candidate is identified,
this candidate must be detected in at least another gravitational wave detector
site. After all, a noise or a glitch can provoke the interference, but the concurring
presence of compatible signals in widely separately detectors lower significantly the
probability that they are noise artifacts.

The data analysis background used for the detections are presented in the next
chapter.
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3 DATA ANALYSIS BACKGROUND

The first step of analyzing a signal is to represent the points as a function of an
independent variable such as amplitude, time and frequency. In the next sections,
two methods are explored: the time-domain and the frequency-domain analysis.

3.1 Time-domain

When data is expressed in time-domain, the time series is a list of amplitude values
as a function of time. As the points of a function or a signal changes with time,
they can be distributed in a continuous or discrete way. These definitions are very
important when defining the parameters of a time-series which will be presented. For
discrete data, which will the be ones analyzed in this dissertation, the parameters
are shown next:

• N - number of samples: number of data points;

• T - time interval: total data interval;

• rate=N
T

- sampling rate/sampling frequency: number of samples per
unit of time;

• fNY Q = rate
2 - Nyquist frequency: the maximum frequency the signal

can assume;

• ∆tmin = 1
rate

- time resolution: minimum distance between two consec-
utive time bins,

• ∆fmin = 1
T
- frequency resolution: minimum distance between two con-

secutive frequency bins.

Treating data in time-domain can return some very interesting results, such as mea-
suring real-time waves in an oscilloscope. More specifically in astrophysics, a de-
tected signal in every frequency band contains noise (MAGGIORE, 2009). Sometimes
one can reach a limit where the signal is completely immersed in noise, therefore a
time-domain representation is not useful.

Data can be represented as a function of frequency, that is, in frequency-domain,
as it is shown next.
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3.2 Frequency-domain

Using a frequency-domain analysis, interesting features such as the frequency peaks
of the signal, the Power Spectral Density (ABBOTT et al., 2020) can be determined
and used in the analysis.

The frequency-domain representation can be understood as another point of view
of analyzing the signal, as it will be shown next. In Figure 3.1 there are three sine
waveforms, containing different amplitudes and noise in one of them. Let’s assume
these waves ought to be detected and analyzed.

Figure 3.1 - Three sine waveforms are to be analyzed. The parameters used in this plot
were: N=1024 samples, T = 8s, rate = 128Hz.

The time and frequency domains are related as it is shown in Figure 3.4, with time
being in the x-axis, frequency in y-axis and amplitude in z-axis. Therefore when a
time-domain analysis is done, the signal is represented as a sum in time-amplitude
plane, as it is shown in Figure 3.2.

Since the time-amplitude plane results are not conclusive, it might be useful to
represent the signal in a different way. For that reason, the signal can be represented
in Frequency-Domain, or the also called Fourier Domain.

There is a way to convert any data from time-domain to frequency-domain and it is
through the Fourier Transform. Consider a function f(t) described in time-domain
(it can be a time series describing a GW signal).
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Figure 3.2 - Time-Domain Analysis: The waveforms are combined in a sum, just as a
detector would do.

This function can be represented in frequency-domain using the following transform,
as it is shown next:

f̃(ω) =
∫ +∞

−∞
f(t)eiωtdt (3.1)

where f̃(ω) shows how many oscillations per unit of frequency ω are present in the
signal f(t) (BUTKOV; SPOSITO, 1969). As long as this new function in frequency can
be integrated, an Inverse Fourier Transform can be determined:

f(t) = 1
2π

∫ +∞

−∞
f̂(ω)e−iωtdω (3.2)

the equation above represents the decomposition of the signal f(t) in terms of sinu-
soidal waves sum (e−iωt) and if the signal is continuous, its amplitude corresponds
to f̃(ω).

If the data is discrete, a Discrete form of the Fourier Transform will be used in the
analysis. Therefore the Discrete Fourier Transform is defined as:

f̃ [ω] =
N−1∑
j=0

f [tj]e
i2πk
∆t (3.3)

this identity determines that a sequence of events f [tj] can be expressed as a sequence
of frequency samples.
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Similar to the Continuous Fourier Transform, an inverse form must exist, but for
discrete time, so the inverse form of Equation (3.3) is defined as follows:

f [tj] = 1
N

N−1∑
j=0

f̃ [ω]e− i2πk∆t . (3.4)

Assuming that f [t] is the function represented in Figure 3.2 (right), when the Fourier
Transform is made, the signal is represented in a frequency-amplitude plane, as it
is shown in Figure 3.3. The analyzed function is the sum of all the waveforms, in
this domain, it is given as a function of the frequencies. The highest frequency the
signal can assume is called the Nyquist frequency (fNY Q) which is given by half of
the sampling rate, according to the Nyquist–Shannon sampling theorem (YADAV,
2009).

When comparing the time-domain analysis with the frequency-domain analysis a
few conclusions can be identified, such as the waveforms in time-domain cannot
be identified individually, they present a pattern, which can be associated with a
sinusoidal signal, but it is still a combination of the signals. As for the frequency-
domain, it is very clear seeing the frequency peaks that there are three waveforms
that has different amplitudes.

Figure 3.3 - Frequency-Domain Analysis: The waveforms are represented individually in
frequency-domain as the grey lines, and the red line corresponds to the wave-
forms combined in a sum.
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In conclusion, for this case the Fourier-domain represents the data in a way that the
waveforms stands out from the other data points, and even the noise is well defined
in amplitudes close to zero.

3.3 Uncertainty principle

As it was presented in these past two sections, time and frequency domains are
deeply related, they form not just a 3D space, but also two "points of view" of
representing data, although, this connection brings limitations.

Figure 3.4 - An arbitrary signal represented in time-frequency domain (left) and the details
of the Heisenberg box representing a part of the signal (right).

Figure 3.4 shows geometrically how time and frequency are related. Until now, all
the analysis with simple functions such as the three waveforms in Figure 3.2 were
performed in time-domain or frequency-domain. That very same function can be
described in a time-frequency plane, but the difference is that the data will be
represented in coloured "tiles". Every tile has a well defined area, with sides expressed
by the resolution in frequency ∆f and time ∆t.

In 1946, Dennis Gabor was the first to treat signals as a quantum system and
as a result of this analogy (MACLENNAN, 1994), it became clear that the name
of this relation between time and frequency is the Heinsenberg-Gabor Uncertainty
Principle:

∆t∆f > 1
2 (3.5)
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where ∆t is the time resolution and ∆f is the frequency resolution. When performing
a wavelet analysis for a signal, the time-frequency representation is given through
the Heisenberg Boxes, or also called "tiles" whose area is given by 1/2. Furthermore,
this work offers a multiresolution representation (due to a stopping criterion for the
wavelet decompositions), that means, the signal is represented by multiple time and
frequency resolutions forming tiles of area 1/2.

With that flexibility, this allows the tiles to fit in according to the signal used as
input: if the tile is very long in frequency, it will be narrow in time, so the area can be
respected and so on. To quantify that, the smallest distance between two consecutive
time bins is given by ∆tmin = 1

rate
, in the case the associated frequency resolution

is the largest: 1/(2∆t) and when the smallest distance between two consecutive
frequency bins ∆fmin = 1

T
represents the signal, the longest distance in time is

presented.

In the Fourier-domain the data has a very accurate frequency resolution, but a very
poor one on time, as for the time-domain the frequency resolution is poor, in this
case ∆f = 1/(2T ), ∆t = T . Between time-domain and frequency-domain there are
many intermediate representations, but this dissertation uses the one that generates
a time-frequency representation which concentrates the signal at maximum, using
the lowest number of tiles.

The developed code in this work provides the multiresolution representation for the
signals, which adapts itself according to the Shannon’s entropy values, respecting
the area of the tiles and using this flexibility of time and frequency resolutions to
give the most refined representation of the input signal in the wavelet domain.

Unfortunately, it is still difficult to identify the event immerse in a huge amount of
noise. But there are a couple of filtering tools used in data analysis, such windowing,
whitening and applying a band-pass filter will be very useful before any further
analysis.

But before that, it is important to understand how a detector such as LIGO captures
data that hopefully contains a gravitational wave signal (with noise).

3.4 Noise spectral density

Working with a detector can be quite challenging when it comes to gravitational
waves, so setting up tools to detect and extract information from the acquired data
is essential (MAGGIORE, 2009). After all, noise is resulted from unpredictable ac-

26



tions inside and outside the detector and it is reflected in the output measurements.
Thereby the input and output will be carefully evaluated with the following proce-
dure.

It will be easier to consider the GW detector as a linear system and so as the relation
between signal and noise. Therefore, the first step is to define a mathematical form
for the detector’s input, as it is done next:

h(t) = Dijhij(t), (3.6)

where h(t) represents the input, Dij is denominated as the detector tensor (it is
a constant and related to its geometry) and the gravitational wave polarization is
denoted by the tensor hij.

The data generated from the detector is a time series, as it was spoken before, it is
a collection of observations listed in time order. This time series is composed by a
gravitational wave (hopefully) and noise, as the following:

s(t) = h(t) + n(t) (3.7)

where the GW signal is represented by h(t) and n(t) the noise. The next step is to
understand the noise behaviour in the data, therefore it’s wise to assume that n(t)
is the detector’s noise and the only one in the data for now.

Since a spectrum is defined as the statistical average of the signal when analysed in
terms of frequencies components, the Power Spectral Density describes the power
distribution of a signal along its frequencies, a very useful way to identify any data
patterns and further more, the square root of this quantity is called Amplitude
Spectral Density, used in the calculation of the amplitude’s noise as it is shown
next:

Note that in real detections n(t) is a summation of many type of noises, such as
quantum, Newtonian, seismic, and even unknown sources, as it is shown in Figure
3.5, where in the y-axis the Amplitude Spectral Density defined as a function of the
frequency in the x-axis.

The power spectral density of the noise will be used in the analysis, more specifically
in the whitening process, and also to verify if the bandpass filter is being performed
correctly.
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Figure 3.5 - Noise sources from LIGO detectors. The low frequency noises affects mostly
the Livingston detector.

SOURCE: Abernathy et al. (2018).

Due to the physical range of frequencies is defined as f > 0, the Noise Spectral
Density represented by a discrete form of Sn is being estimated in one single-side,
that’s the reason for the factor 1

2 to be multiplying Sn as follows:

1
2Sn(f) =

〈
|ñ(f)|2

〉
∆f. (3.8)

and in a continuous form:

1
2Sn(f)δ(f − f ′) = 〈ñ∗(f)ñ(f ′)〉 . (3.9)

where ñ(f) is the noise data represented in Fourier-domain. Both forms of the above
physical quantity is measured in the same unit, as the inverse of frequency [Hz]−1.

This leads to some physical consequences, such as:

• White noise: A random noise that presents the same intensity at different
frequencies. It happens when the amplitude is independent of the frequency
f , therefore results in a constant noise spectral density function Sn.
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• Colored noise: A noise in which the amplitude depends on the frequency
f , so Sn is not constant anymore, it can vary according to the power-law
Sn(f) = 1/fβ, where β = 0 (white noise), β = 1 (pink noise) and so on.

The data analysis steps that LIGO-Virgo follows from the raw data to the detec-
tion and validation is presented in Figure 3.6, it is clear that many candidates are
identified as glitch or noise as going through all the steps of the analysis.

Figure 3.6 - Data processing steps performed by the LIGO-Virgo detectors.

SOURCE: ABBOTT et al. (2020).

There are other ways of representing a signal, not just a time-domain or frequency-
domain, as it was seen on Figure 3.4, with the "tiles". This method will be described
in details in the next chapter.
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4 WAVELET THEORY

4.1 Wavelets

As it was seen in the previous chapter, when trying to describe a signal using a
Fourier approach, it is only possible to extract information of the function in the
frequency-domain with a very good resolution in frequency, leaving the time resolu-
tion very poor. That means the signal would have the frequencies well determined
and the time the frequencies were registered uncertain. Luckily, another attempt to
analyze a signal is presented using the "tiles" of the time-frequency representation
shown in Section 3.3.

The method that fulfils this "tile representation" is called Wavelets. The idea is
to use a function (called mother wavelet) (MALLAT, 2009), that is a family of well
known waveforms in time and frequency, and correlate it with every data point taken
directly from the time series.

In order to perform this task, is it important to fix a time interval of the signal, this
is made through a Windowing Fourier Transform. And the family of well defined
waveforms was originated in Gabor’s studies of energy propagation and are called
time-frequency atoms.

A family of time-frequency atoms is represented by φγ where φγ ∈ L2(R). A linear
transform T of a signal f(t) ∈ L2(R) is given by

Tf(γ) =
∫ +∞

−∞
f(t)φ∗γ(t)dt, (4.1)

and its frequency form is

Tf(γ) = 1
2π

∫ +∞

−∞
f̂(ω)φ̂∗γ(ω)dω, (4.2)

if φγ(t) ≈ 0 the equations above will only depend on the translations of f(t) in the
time-frequency plane.

The objective of this analysis is to build a model for the "wavelet domain" to follow.
Therefore, a Windowed Fourier (KEMAO, 2007) can be related to the family of atoms
φγ as the following:

φγ(t) = gε,u = eiεtg(t− u) (4.3)

where g represents the time window translated by a quantity u and it is modulated
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by a frequency ε.

With the fixed relation, the next step is to define a walevet atom, which is a dilation
of this translated window by a factor s and relating this quantities with a function
ψ called mother wavelet, as it is done next:

φγ(t) = ψs,u(t) = 1√
s
ψ
(
t− u
s

)
. (4.4)

The energy expressed by wavelets and Windowed Fourier is well located in time and
frequency, which makes it easier for getting a good combination of frequency and
time localization for the data. It is different than the Fourier Transform in which
the energy is only well located in a limited band of frequencies.

By measuring energy in these atoms, there is a way to relate the energy, the time
and frequency in a plot using "tiles", technically the Heisenberg Boxes (MALLAT,
2009). It is necessary to define the coordinates that will be used to built this tile. In
order to do so, the Uncertainty Principle for signals, also called as Garbor limit is
essential in the definition of the resolution in time and frequency.

This is how the Heisenberg box ("tile") is built:

• The box is located in time (x-axis) and frequency (y-axis),

• It is centered in (u, s);

• The length along the time axis is ∆t(γ);

• The length along the frequency axis is ∆f(γ),

• The area of the tile is given by:

∆t∆f = 1
2 .

Attending all these restrictions, the Heisenberg boxes are shown in Figure 4.1.

Now that the wavelet domain is established, the next step is to perform the transition
between the data points in time-domain to the time-frequency plane.
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Figure 4.1 - The information in Equation (4.1) is represented in time-frequency plane
where it depends on the spread (εγ and uγ) of the atom φγ .

4.1.1 Wavelet transforms

In order to make signal analysis using wavelets, it is necessary to use all the the
wavelet atoms presented before. When the signal goes through a wavelet transform,
it gets decomposed in packets over a dilated and translated wavelet (MALLAT, 2009).

First, a wavelet is a function ψ ∈ L2(R) with average zero when it is normalized
and centered in the neighbourhood of t = 0:

∫ +∞

−∞
ψ(t) = 0. (4.5)

The next step is to write an equation that represents the wavelet transform, a wavelet
operator W will perform this task, as follows:

Wf(u, s) =
∫ +∞

−∞
f(t) 1√

s
ψ∗
(
t− u
s

)
dt (4.6)

where f(t) (time series) is being written directly in wavelet domain (time-frequency
representation). That expression can be rewritten using the Convolution Theorem
(BUTKOV; SPOSITO, 1969), taking the Linear Filtering into account to achieve the
following result:

ψ̄s(t) = 1√
s
ψ∗
(−t
s

)
, (4.7)

and its Fourier transform is given by

ˆ̄ψ(ω) =
√
s ψ∗(sω). (4.8)
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All these different forms of expressing Equation (4.6) has the same meaning: it is
representing the variation of the signal f(t) in the neighbourhood of u and s, so a
dilated and translated wavelet.

What is the difference between the Discrete Fourier Transform (DFT) and the
Wavelet Transform (WT)? Well, the DFT uses a time series and perform a trans-
form to the frequency-domain, as for the WT, every data point from the time series
are transformed directly into a time and frequency plane. In the DWT case they are
written as rectangles with well defined length and height, ∆t and ∆f respectively.

The next step is to investigate a bit more of how the time series is transformed to
the wavelet domain, as it will be seen in the following subsection.

4.1.2 Wavelet decomposition

In signal processing, the resolution is a key point to the analysis. When using
wavelets, the resolutions are given using time and frequency. When the signal is
represented using wavelets, the wavelet transform’s output will have to be carefully
filtered so the essential information of the signal can be obtained (MATVEEVICH,
2015).

The wavelet transform’s output gives the signal’s coefficients (nodes) written in a
subspace of level l and layer i defined by Wl

i. It can be represented as a binary tree
as Figure 4.2.

The decomposition splits original single freq bin into sub-bins, and merge time bins,
as it can be seen in Figure 2.4, until the samples can no longer be divided by 2,
that’s why the maximum level of decomposition of 2l samples is l.

The frequencies varies in (fmin and fmax), where fmin is zero and fmax is given by
the Nyquist Frequency and the time interval is the same as the raw data interval,
that is, how long the time series lasts.

The samples are arranged in 2l layers, where:

• at maximum level l, the time resolution is given by ∆tl = 2l∆t0, and the
frequency resolution is ∆fl = 2−lfmax, so that means if l = 0 the resolution
converges to the original signal representation,

• at the ith layer, the node’s frequency is in between the interval i2−l <
f

fmax
< (i+ 1)2−l.
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Figure 4.2 - This is an example of a signal wavelet decomposition of 3 levels. The original
data is expressed in the first upper bin (level zero) and while the decomposi-
tions are being performed, the bins are divided into low and high frequency.
All the bins can be identified with its respective decomposition level l and
frequency layer i.

Decomposition must stop at level l if the number of samples is 2l. In this dissertation,
it is introduced a way to evaluate if going forward with the decompositions are
advantageous or not for the representation in time-frequency of the signal.

The same way a signal can be decomposed in coefficients. These coefficients can be
reconstructed in a time series through the Inverse Wavelet Transform. In the next
section, these wavelet reconstructions are compared with the efficiency of a Fourier
Transform reconstruction, and other applications are presented.

4.2 Applications

The Wavelet representation is extremely useful when it comes to signal processing,
and the reason for that is with a few number of coefficients the signal can be rep-
resented really well. Further more, one can use the 3D Wavelet Transform to apply
in images, as it is seen in Figure 4.3.

It is important to remember that if 100% of the wavelet coefficients are used, it must
necessarily return to the original data, that goes for 2D or 3D. After all, there are
no data losses in this type of representation.

Another interesting application is comparing the different mother wavelets efficiency
used in the Wavelet Transform in images, as it is presented next (SHARIF; KHARE,
2014), where a image classification is made.
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Figure 4.3 - AVIRIS image and the results for the wavelet analysis.

SOURCE: Sharif e Khare (2014).

In Figure 4.3, (a) shows an image produced by AVIRIS, an Airborne Visible and
Infrared Imaging Spectrometer instrument (WANG et al., 2002) developed for Earth’s
remote sensing, and the objective of that scientific paper is to use wavelets in order
to identify the ground features presented in Figure 4.4. The ground truth is given by
(b) image, therefore the colors representing the data coefficients must be as close to
(b) as possible. The Haar and Daubechie wavelets are used and the reconstruction
plot is presented in (c), (d), (e) and (f).
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Figure 4.4 - Ground truth colours.

SOURCE: Sharif e Khare (2014).

The efficiency of all the mother wavelets used are listed in Figure 4.5, the classifica-
tion accuracy between the different mother wavelets are very close, as the computa-
tional time.

Figure 4.5 - Comparison of Wavelet filters.

SOURCE: Sharif e Khare (2014).
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Applications of the Wavelet Transform was presented so far using images. In the next
chapter the wavelet method will be applied for gravitational wave data. First, all the
data analysis features will be used as tools for the signal treatment, and when the
Discrete Wavelet Transform is performed, a decomposition stopping criterion called
Shannon’s Entropy will be used, creating a time-frequency representation with "tiles"
and compared to the original LIGO data.
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5 ADAPTIVE MULTIRESOLUTION FOR WAVELET ANALYSIS

5.1 Methodology

In this work, a tool for wavelet analysis is developed and applied for gravitational
wave events. The data analysis is performed through a code in Python programming
language and it follows the steps of the procedure presented in Figure 5.1.

Figure 5.1 - Data analysis steps performed in this project starting from acquiring the data
(input) and ending with the time-frequency data (output) plot. The dashed
blocks represents optional steps that the user can choose to use it or not. The
Inverse Discrete Wavelet Transform is executed for last in order to verify if
the code’s output returns to the input.

5.1.1 Data

The code steps defined in the above figure are applied for 10 gravitational wave
events, which are listed in Table 5.1 with the parameters masses and signal-to-noise
ratio (SNR).

39



Table 5.1 - The events used as input for the code and its features.

GW event Mass 1
(M�)

Mass 2
(M�)

Signal to Noise Ratio

GW150914 35.6 30.6 24.4
GW170104 30.8 20.0 13.0
GW170817 (glitch) 1.46 1.27 33.0
GW190408_181802 24.6 18.4 14.7
GW190412 30.1 8.3 18.9
GW190519_153544 66.0 40.5 12.0
GW190521 95.3 69.0 14.4
GW190521_074359 42.2 32.8 24.4
GW190630_185205 35.1 23.7 15.6
GW190701_203306 53.9 40.8 11.6

The raw data is first downloaded in LIGO’s Gravitational Wave Open Science Cen-
ter, the website gives the user the option of choosing the gravitational wave event
from two sampling rates (4kHz or 16kHz) and the data length in time (32s or 4096s).

The downloaded data are samples that varies in time, that is, a time series. At this
point, two chunks of data are chosen for different purposes:

a) Gravitational wave event: samples from few seconds before and after
the event that will be evaluated with and without a bandpass-filter and
submitted to the discrete wavelet decomposition with a selection criterion
and an adaptive filtering,

b) Noise: samples at least 20 seconds before the event for short-duration
signals (such as bursts) and 100 seconds for long-duration signals (such as
continuous waves), so there are no gravitational wave information within.
From this noise, the power spectral density is determined using 32 seconds
of samples divided in 8 chunks of 4 seconds for the Fourier Transform.

Starting from a), since the future steps in the analysis is to perform a Discrete
Wavelet Transform, it is important to use a data chunk of time interval described as
a number that is a power of 2. It is important to remember from the Gravitational
Wave Theory chapter that the amplitude of the data is dimensionless.

In Figure 5.2, 6 seconds before the GW150914 event and 2 seconds after were
chopped from the downloaded data and represented as a time-series. The ampli-
tude varies as a power of 10−19 and it is clear that the event is immersed in noise.
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Figure 5.2 - The GW150914 (H1) data expressed in time-domain, where t = 0 represents
the moment the event occurs. The parameters used here are rate = 4096Hz,
N = 32768 samples and T = 8s.

Before going to b), the next step is to avoid spectral leakage, an appearance of
spurious high frequency large amplitudes when performing a Fourier Transform using
non-periodic signal on a finite interval (DIGITALCOMMONS, 2009), a matter to be
discussed next.

5.1.2 Windowing

Given that the time-series was chopped from the raw data of 4096 seconds, the
borders might experience spectral leakage and that problem can be fixed using the
Windowing technique. In this code, the Tukey window was used for the gravita-
tional wave search (ABBOTT et al., 2020).

The Tukey window w(x), also known as the cosine tapered window, can be under-
stood as a cosine lobe of width pN

2 that is convolved with a Rectangular Window of
width N(1− p/2).

w(x)=


1
2

[
1− cos 2πn

pN

]
, 0 ≤ n < pN

2

1, pN
2 ≤ n ≤ N

2

w[N − n], 0 ≤ n ≤ N
2

.

The windowing consists in multiplying a function f(t) with the value zero in the
beginning and at the end of the window, eliminating the points that provokes the
spectral leakage located in both beginning and end of the time-series.
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While using the code, a shape parameter of the window must be given: p (as it is
seen in the mathematical definition). It stands for the window’s faction inside the
cosine tapered region. In the case of the Tukey Window, when this parameter p is
zero, the window is equivalent to a Rectangular Window and if it’s one, the window
is equivalent to a Hann Window, a window function, presented in Figure 5.3.

Figure 5.3 - The Tukey Window as a function of time, when analyzed with the shape
parameters p = 0 (Rectangular Window), p = 0.3 and p = 1 (Hann Window).

If a high number for the shape parameter was considered, the window starts to
influence the amplitudes near the gravitational wave event, as it is seen in Figure
5.4 that shows the result of the windowing procedure of the time-series. That is
consequence of using the window, more specifically, when the shape parameter for
the Tukey Window is 0.1, that means 0.5% of each end of the signal was affected
(not set to 0 but reduced in amplitude) within the procedure, if it’s 0.3, 15% of each
end was affected and so on. This procedure modulates the input signal in order to
the spectral leakage be evened out.

The amplitudes is expressed by a very small number, that can be a problem numer-
ically and it is clear that the noise’s amplitudes are as high as the signal’s. But it
can normalized using the Whitening technique, which will be seen next.
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Figure 5.4 - The GW150914 (H1) windowed data expressed in time-domain when using a
Tukey Window of shape parameters (p) 0.1 and 0.3.

5.1.3 Whitening

The whitening technique follows the procedure:

– Represent the time series containing signal and noise s(t) in frequency-
domain using the Fourier Transform: s̃(f);

– Calculate the Power Spectral Density for the Noise: Sn(f) from b);

– The whitened data in frequency domain (s̃w(f))is given performing
the operation: k s̃(f)

(Sn(f))
1
2
, where k is a constant given by Parseval’s

Theorem (IWASAKI, 2020),

– Since the next step is to use the DWT using a time series, it is neces-
sary to perform the Inverse Fourier Transform in s̃w(f) and divide by
dt (as a consequence of the Parseval’s Theorem), resulting a whitened
data in time-domain sw(t).

The whitening procedure is done to suppress the contribution to the time series
from frequency bins which are more noisy. The noise power spectral density was
generated by the code and presented in Figure 5.5 at a logarithmic scale.

When applying the whitening technique for the windowed GW150914 event (Figure
5.4, the result is expressed in Figure 5.6, where the noise’s amplitudes becomes
independent in frequency (just like a white noise) and in time-domain the noise
contribution appears to be uniform.
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Figure 5.5 - Power Spectral Density of the Noise as a function of the frequency.

Figure 5.6 - The GW150914 (H1) windowed and whitened data expressed in time-domain.

The LIGO detector’s frequency range is established between 10Hz to 10kHz (ABER-

NATHY et al., 2018). But there are a huge amount of instrumental noise between
10Hz and 30Hz. The events detected are located in a lower frequency band, more
specifically smaller than 1kHz, therefore it is useful to erase the contribution of fre-
quencies between those numbers. In order to perform this task, a bandpass filter is
applied to the whitened data.
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5.1.4 Bandpass filter

As the name says, a bandpass filter is a device of frequency filtering that is used
in signal processing (ZHILYAKOV et al., 2020), where a range of frequency is estab-
lished by the user and all the frequencies outside the bandwidth is rejected, that is,
attenuated.

In this work, one bandpass filter was applied for the data:

• Filter 1: [20,1000] Hz,

Filter 1 can be executed for all the analyzed LIGO data, since the code wouldn’t be
eliminating any gravitational wave information using this bandpass.

A way of observing the effect of this filtering, a comparison between the whitened
data with the whitened-bandpassed data of GW150914 in frequency domain is per-
formed and it can be seen in Figure 5.7.

Figure 5.7 - The GW150914 (H1) event whitened and whitened-bandpassed (Filter 1) data
comparison in frequency-domain.

It is easy to identify the attenuated frequencies out of the Filter’s 1 range. This will
be reflected in the time-frequency plot and the differences between using filter and
not using it will be discussed in those results.

A comparison in time-domain was also made, in order to verify the contribution in
amplitude the deleted frequencies has. Figure 5.8 shows the results of both whitened
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data and whitened-bandpassed data, the first one clearly has higher amplitudes
related to higher and smaller frequencies.

Figure 5.8 - The GW150914 (H1) event whitened and whitened-bandpassed data ex-
pressed in time-domain.

Now that the data has been windowed, whitened and bandpassed, the basic data
treatment is done, and the data is ready to go to the next step, which is the wavelet
analysis.

5.2 Discrete wavelet transform

In this section, all the details of Chapter 4 that describes in a mathematical form
the wavelet theory, will be used as a background for the numerical analysis.

Since the GW data are discrete, the discrete wavelet transform (DWT) is used in
the code in Python. It’s important to remember that the number of samples N to
be analyzed are all a power of 2.

The signal is represented in a wavelet domain, which in localized in time and fre-
quency. For every level and layer 3 parameters are generated:

• time coordinate: measured in seconds, it varies from [0,T];

• frequency coordinate: measured in Hz, it varies from [0,fNY Q],

• coefficient: a vector of the same length as the input and a dimensionless
parameter.
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When the DWT is performed and the decompositions are being made, it divides the
frequency bins and merges the time bins and Shannon’s entropy criterion selects the
maximum level of decompositions.

5.2.1 Shannon’s entropy criterion

The form of Shannon’s Entropy Criterion applied for a generic time-series is given
by the following equation:

E2(X) = −
∑
k

x2
k

|X|2
log2

(
x2
k

|X|2

)
, (5.1)

where the entropy E is being calculated for a generic functional X is the norm.

In this work the entropy is used after the primary data processing (chopping, win-
dowing and whitening) is performed. Since the next step is to apply the discrete
wavelet transform in the data, while the code generates the decompositions, the
entropy is calculated for the whitened data.

In the code, xk represents the coefficients, |X|2 = ∑
i x

2
i is the norm of the coefficients,

it is calculated from the sum of every two coefficients generated in the decomposition
in every layer.

The maximum entropy is obtained as follows:

E(W l
i ) = −

∑ 1
N

log
( 1
N

)
= log2 N, (5.2)

which means all coefficients are the same and it doesn’t corresponds to a specific
decomposition level.

The minimum entropy is given by

E(W l
i ) = − log2 1 = 0. (5.3)

which corresponds to when all coefficients are zero except one and again, it doesn’t
match a specific decomposition level.

Since the tiles representation is used, the intensity of the signal is described with
colours. More than that, an efficient signal representation using this criterion are:
coefficients concentrated in the tiles generating a darker color in it, and with most
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of the other coefficients approximately zero, that is close to white. The entropy will
be the key point for the analysis that will generate this representation, defining if
the decompositions will go forward or not.

The coefficients can be negative or positive, but all of them belong to the real axis.

The entropy is calculated for l = 0, then l = 1, if the entropy of level 1 is higher
than level zero, then the decomposition will stop and go back to level zero. This
procedure will be repeated for every layer (black node) in each decomposition level
of Figure 4.2 and its two "child" nodes at the following decomposition level. That
leads to different shape of the tiles, and since their sides are measured with time
and frequency resolutions, this representation will have a multiresolution that will
adapt for every data used as input.

Furthermore, another filtering can be performed with the coefficients, in order to
have a better multiresolution representation, this time using a tool called quantile.

5.2.2 Quantile threshold

In signal processing, quantiles are partitions in a distribution with equally probabil-
ities that represents a certain percentage calculated from 0. to 1. In Figure 5.9 the
quantile values are illustrated using a gaussian distribution.

Figure 5.9 - A quantile example using a simple gaussian distribution.

48



Mathematically, the quantile threshold is expressed as:

q =
∫ y

−∞
|f(x)|dx (5.4)

where f(x) is a distribution and for a certain quantile q the point that represents
this quantity in the distribution is given by y.

Therefore in the code, a fixed value for the quantile is defined and for each level, y is
calculated and used as a reference for the filtering. All the values smaller than y in
modulus for that level are filtered, that is, replaced by zeros. The quantile changes
in every level, leading to an adaptive filtering of the coefficients with the quantile
values within every layer.

Now that the code steps are defined, some of the successful representations are shown
next.

5.3 Results: time-frequency representations

At this stage, the code was applied for the 10 of the strongest gravitational wave
events and for each case, a list of coefficients was generated, with their corresponding
time and frequency coordinates, as it was explained in the previous section.

In the time-frequency plot, the time coordinates are distributed in the x-axis, the
frequency coordinates in the y-axis and the coefficients are represented as the colour
code in the tiles and the colorbar next to every plot displays the colour with the
lowest intensity represented by 0 and the highest represented by ±(0.2). All the plots
are put in the same scale to identify which are the most and least intense emissions.

It is important to underline that due to the entropy’s criterion applied in the code,
a multiresolution in time and frequency is generated, being represented as tiles with
different shapes, although respecting the area of 1/2. With this flexibility, as the
decompositions are being performed, it divides the frequency bins and merges the
time bins and the entropy’s criterion selects the maximum level of decompositions.

The actual gravitational wave chirp’s signal is represented as a function of the fre-
quency f(t) and it is calculated from the equation below:

ḣ+h× − ḣ×h+ = A2f (5.5)
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on the left side of the equation there are gravitational wave’s polarization modes
with its derivatives and on the right side A = h2

× + h2
+ represents the amplitude of

the GW and f the frequency.

A simulation for the GW signal is made by using LAL package to calculate polar-
izations, using only the initial sources masses or the final event’s mass and finally
applying all the parameters in Equation 5.5, resulting in the frequency as a function
of time f(t).

From the 10 events, each of them was tested without a bandpass filter and with
Filter 1. Table 5.2 displays the parameters used to generate the time-frequency
representations.

In every time-frequency plot, the time axis are generated using the GPS correspond-
ing to the time of the event as a reference, therefore the chirp instant corresponds
to the mark zero in the axis.

The events are named after the date of observation, for example: GW150914 stards
for "Gravitational Wave" and the detection date 2015-09-14). In some cases there
are more numbers after the date of detection, such as: GW190701_203306, that
means the detection occurred at the UTC time: 20h33’06”. This notation is neces-
sary in case other events are detected on the same day, for instance.
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Table 5.2 - The code was applied for these 10 gravitational wave events and the parameters
used to generate all the time-frequency representations are displayed in this
table.

GW event Rate T
Tukey Window

Parameter Filters q Result

GW150914 (H1) 4096 Hz 2 s 0.2 No BP
Filter 1 0.2 5.10

8 s 0.3 No BP
Filter 1 0.2 5.11

16384 Hz 2 s 0.2 No BP
Filter 1 0.2 A.1

GW170817 (L1) - glitch 4096 Hz 4 s 0.3 No BP 0.2 5.12

GW190521 (L1) 4096 Hz 2 s 0.15 No BP
Filter 1 0.2 5.13

GW190521_074359 (L1) 4096 Hz 2 s 0.15 No BP
Filter 1 0.2 5.14

GW170104 (H1) 4096 Hz 2 s 0.15 No BP
Filter 1 0.2 5.15

5.16

GW190408_181802 (H1) 4096 Hz 8 s 0.3 No BP
Filter 1 0.2 A.2

A.3

GW190519_153544 (L1) 4096 Hz 8 s 0.3 No BP
Filter 1 0.2 A.4

GW190630_185205 (L1) 4096 Hz 8 s 0.3 No BP
Filter 1 0.2 A.5

A.6

GW190412 (L1) 4096 Hz 8 s 0.3 No BP
Filter 1 0.2 A.5

A.6

GW190701_203306 (L1) 4096 Hz 8s 0.3 Filter 1 0.2 A.9
16 s 0.3 Filter 1 0.2 A.10
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5.3.1 GW150914

This event was detected on 14 September 2015, as a consequence of a two binary
black hole coalescence (ABBOTT et al., 2016), resulting in a black hole of 63.1 Msun

after the merger. It was the first detection of a GW event from the O1 and it was
announced by the LIGO and Virgo collaborations on 11 February 2016. For that
reason, the Physics Nobel prize was given to Kip Thorne, Barry C. Barish and Rainer
Weiss for contributing in the development and success of the Laser Interferometer
Gravitational-wave Observatory (LIGO) for the gravitational wave discovery.

In this project, since the resolutions of time and frequency are flexible and varies
according to the input data, it is interesting to evaluate the event using different
time intervals and sampling rates, after all, the minimum frequency resolution varies
according to T−1 and the minimum time resolution is equal to rate−1.

For this specific event, an evaluation using different time intervals (2s and 8s) and
sampling rates (4kHz and 16kHz) was performed for the Hanford detector’s data.
The area of the tiles is still 1/2, but when using a higher sampling rate or a longer
time interval, the maximum possible decomposition level is higher. As it will be seen
next, these analysis won’t significantly affect the time-frequency representations.

Figure 5.10 represents the event evaluated for 2s, 1 second before the event and
1 second after. The tiles with a more intense colour represents the high intensity
of the data points. When analyzing the data without a bandpass filter, the high
amplitudes corresponding to the noise in lower frequencies interferes in the time-
frequency plot. On the other hand, when Filter 1 is used, the amplitudes in lower
frequencies (below 20Hz and above 1000Hz) are suppressed, therefore, the noise is
attenuated, leaving the signal information to be analyzed by Shannon’s criterion
and placed in the concentrated tiles.

When using a time interval of 8 seconds, 7 seconds before the event and 1 second
after, the results are expressed in Figure 5.11, where it is clear that the intensity of
the signal is very high, reaching a maximum tile of 0.20. Since T was increased, a
tile with a smaller minimum frequency resolution than Figure 5.10 is expected and
can be observed in both plots in lower frequencies. No modification were performed
toward the time resolution, therefore the minimum distance between two consecutive
time bins are the same for both Figures.

The left figure presents the signal with no filtering and because the signal-to-noise

52



ratio is smaller in 8s of data, the noise fluctuations appears in lower frequencies and
is contained when Filter 1 is applied (right figure). In this filtered case, the noise
intensity gets lower in smaller frequencies and the tiles adapt better to follow the
signal’s shape: horizontal in the inspiral and vertical in the merger.

Figure 5.10 - The results for GW150914 (H1) when evaluated using T = 2s and a sampling
rate of 4kHz. There are two time-frequency plots, the left figure representing
the signal when no bandpass filter is applied and the right figure displays the
event using the [20,1000]Hz filter. In both plots the event’s f(t) is presented
as the blue curve.

Figure 5.11 - The results for GW150914 (H1) when evaluated using T = 8s and a sampling
rate of 4kHz. There are two time-frequency plots, the left figure representing
the signal when no bandpass filter is applied and the right figure displays the
event using the [20,1000]Hz filter. In both plots the event’s f(t) is presented
as the blue curve.

In both time intervals, a simulation for f(t) was generated and it is present in all
the plots as the blue curve. Even though noise fluctuations were detected when
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analyzing the data, all the representations are very similar and they are coincident
with the original chirp signal. Another point is that all representations are in a
qualitative agreement with the spectrograms generated by LIGO. Those are factors
that contributes for the idea that the developed code is accurate and provides solid
time-frequency representations.

The analysis for the GW150914 event at Hanford using a sampling rate of 16kHz is
presented in the first section of the attachment.

5.3.2 GW170817 (glitch)

The importance of the GW170817 (ABBOTT et al., 2017b) is far beyond than only
being the first binary neutron star coalescence (NSNS) detected, this was the first
event with a electromagnetic counterpart and the one with the longest duration
(approximately 32 seconds). The merger of these two compact objects happened on
17 August 2017 and is most likely to result in a kilonova (KATHIRGAMARAJU et

al., 2019) and this astronomical event is responsible for the generation of a short
gamma-ray burst and also an extensive electromagnetic response.

This event turned out to be a great breakthrough for multi-messenger astronomy,
given the scientists hopes of having to unite the gravitational waves and gamma-ray
search.

When the interferometer in Livingston detected the event, an interesting fact hap-
pened, a glitch appeared seconds before the chirp. The chirp itself couldn’t be
identified when the code was applied for the L1 data, but the glitch representation
is most accurate since it presents the highest SNR from the 10 events analyzed, as
Figure 5.12 displays.

The glitch analysis was generated using the duration of it, which is 4 seconds, more
specifically 3 seconds before the gravitational wave event and 1 second after.

In the figure, the colorbar scale is determined according to the highest coefficient
of approximately 14, which appears at the lower center of the plot at -1.02 seconds.
Using this scale it is clear that the background intensity is close to zero and there
is a very intense presence in lower frequencies. This case is different than the other
results, after all, it is representing not only the very low intensity gravitational wave
emission that can hardly be identified in the plot, but as well as the glitch. The
glitch presents a signal-noise-ratio of 33 in the Livingston detector, therefore it is
expected that it would stand out in the time-frequency plot and cover the event.
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Figure 5.12 - The GW170817 data with the glitch detected in the Livingston detector
represented in time-frequency using T = 4s and a sampling rate of 4kHz. The
plot covers a time interval of [-1.1,-0.95]s before the event, with 0 seconds
being the gravitational wave emission. The glitch is centered in -1.02 seconds
and the colorbar scale is defined from the maximum coefficient generated
during the wavelet decomposition.

The glitch’s position is very easy to identify, just like in the correspondent LIGO
spectrogram (ABBOTT et al., 2017b), it is centered a second before the gravitational
wave event, represented by -1s in the time-frequency plot.

The glitch extends itself from the minimum frequency (fmin) to the maximum
(fNY Q), that is [0,2048]Hz and possess the highest power in lower frequencies.

5.3.3 GW190521

This event marked another breakthrough in astrophysics for detecting the very first
intermediate-mass black hole. Before this discovery, the final masses after the com-
pact binary coalescences did not overcome 100Msun, but with masses of approxi-
mately 69 Msun and 95.3 Msun, the largest progenitors observed so far, generated a
black hole of 142Msun, providing 9 solar masses of energy radiated in the process in
gravitational wave form (ABBOTT et al., 2020) on 21 May 2019.

This gravitational wave was analyzed by chopping 2 seconds of the Livingston de-
tector’s data, 1 second before the event and 1 after and since this event was very
energetic and a signal with short-duration, the Tukey Window parameter was 0.15,
so that it wouldn’t eliminate the gravitational wave contribution.
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Figure 5.13 presents the results for this analysis when no bandpass filter is applied
and when Filter is used in the code. Both representations extends itself from fre-
quencies lower than 25Hz up to 130Hz and the tiles containing GW signal are very
clear and easy to identify.

Figure 5.13 - The results for the GW190521 event represented in time-frequency when
using T = 2s and a sampling rate of 4kHz. On the left, there is the time-
frequency plot when no bandpass filter is applied and on the right, Filter
1 was used ([20,1000]Hz). In both plots the event’s f(t) is presented as the
blue curve.

When no bandpass filter is used, the time-frequency plot maximum coefficient ex-
ceeds the module of 0.20, which are located in the both bottom left and right sides
in frequency near zero as the darker tiles corresponding to noise contribution.

When Filter 1 is applied, the noise fluctuations decreases and since a short time
interval of 2 seconds is used it is easy to see the clear improvement in the event’s
representation, filtering the lower frequencies, making the background stable and
highlighting the tiles containing the GW event with a high intensity.

5.3.4 GW190521_074359

An event detected in the O3a run, GW190521_074359 (ABBOTT et al., 2021) was
also generated by an inspiral and merger of a BBH source, leaving a black hole
of final mass 71.1 Msun also on 21 May 2019, more precisely at 07h43’59” . Even
though this signal is quite strong, the data contains a lot of noise, hence the noise
intensity in the tiles are sometimes comparable with the signal’s. When the filters
are applied, the signal components in lower frequencies appears more concentrated
in the tiles, which can be seen in Figure 5.14.
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The analysis performed used a time interval of 2 seconds and a Tukey Window
parameter of 0.2 and also filtering. The left figure presents noise coefficients in lower
frequencies whose intensity is as higher as the gravitational wave’s.

The noise amplitudes are can overcome the chirp’s when using all frequency bands.
On the other hand, when the filtering is applied, the amplitudes corresponding to
frequencies from the [20,1000]Hz interval are eliminated, therefore the right figure
offers a much more clearer representation, where the signal is extended from approx-
imately 25Hz up to almost 250Hz.

Figure 5.14 - Time-frequency representations for the GW190521_074359 event using T =
2s and a sampling rate of 4kHz. On the left, there is the time-frequency
plot when no bandpass filter is applied and on the right, Filter 1 was used
([20,1000]Hz). In both plots the event’s f(t) is presented as the blue curve.

An important observation is that when using Filter 1, the tiles are vertically longer
than the left Figure, that means the filter eliminated not only the frequencies outside
the filtering interval, but also some of the noise fluctuation. While the decomposi-
tions were being made, no important contribution was found in the background
corresponding to the chirp when the filter was applied, forcing the entropy criterion
to focus on the GW contribution and providing the better tile shape for representing
it.

When comparing the LIGO version of this data (ABBOTT et al., 2021) presented as
a spectrogram, the signal presents itself as vertically long, a property that the code
seems to fulfil a better time-frequency plot than a signal horizontally long.
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5.3.5 GW170104

This event was also detected on LIGO’s first run, O1, more specifically the third
event ever discovered. The event occurred due to an inspiral and merger of two back
holes (BBH) of masses 30.9 Msun and 20 Msun, resulting in a black hole of final
mass 48.7 Msun, with two solar masses being radiated in gravitational wave form
(ABBOTT et al., 2017a) on 4 January 2017.

Figure 5.15 presents the time-frequency representations for the GW170104 (H1) data
when evaluated using a time interval of 2 seconds, 1 second before the event and 1
seconds after. The Tukey window shape parameter used in the data processing was
0.15 and no bandpass filter was used to generate those representations.

Figure 5.15 - Time-frequency representations for the GW170104 (H1) event using T = 2s,
a sampling rate of 4kHz, with no bandpass filter and with different colorbar
scales. The right figure will be compared with the other events in order to
compare their intensities. In both plots the event’s f(t) is presented as the
blue curve.

The chirp varies in approximately [40,330]Hz, with a very concentrated tile which
intensity reaches coefficients of modulus 0.11 between frequencies of [130, 200]Hz.
In order to compare the intensity of the events presented in this dissertation, the
colorbar scale was also generated and presented on the right figure in Figure 5.15.

Figure 5.16 displays the results of the GW170104 event when using a Tukey window
shape parameter of 0.2, and a bandpass filter that attenuates frequencies out of the
[20,1000]Hz range. One can observe that in lower frequencies the decompositions
stopped in a lower level than Figure 5.15, after all, the tiles there are much more
divided in smaller ones.
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Figure 5.16 - Time-frequency representations for the GW170104 (H1) event using T =
2s, a sampling rate of 4kHz and a bandpass filter of [20,1000]Hz and with
different colorbar scales. The right figure will be compared with the other
events in order to compare their intensities. In both plots the event’s f(t) is
presented as the blue curve.

Since this specific chirp is long in frequency, that is, vertically long, the code rep-
resents it as a tile with a very intense colour that stands out in the analyzed time
window in all plots.

Even when using different Tukey windows shape parameters, the code offers a very
solid time-frequency plot, with small differences due to the noise fluctuations.

5.3.6 Noise

Instead of using a gravitational wave event as the code’s input, the noise is also evalu-
ated in time-frequency domain. Figure 5.17 displays the result of this representation
when using the Filter 1.

The frequencies varies between [0,2048]Hz. Frequencies below 20Hz and above
1000Hz are attenuated as a consequence of Filter 1. That is the reason for the tiles
in that region being lighter (lower intensity) than the ones between this interval.

It is easy to conclude that there are no evidence of a gravitational wave information.
After all, the maximum tile intensity is approximately 0.1 and there are no chirp
configuration of the tiles (cluster of tiles with high intensities) at any frequency
band.
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Figure 5.17 - Time-frequency representations for the noise 200s before the GW150914
event, using T = 8s, a sampling rate of 4kHz and a bandpass filter of
[20,1000]Hz.

5.4 Inverse discrete wavelet transform

It was said previously that there are no losses when performing the Wavelet Trans-
form in any time series, and to prove that is true, an addition to the code for the
calculation of the Inverse Discrete Wavelet Transform (IDWT) was executed.

The code uses as input all the coefficients generated from the DWT without any
filtering from the quantile and proceeds with the IDWT calculation. The output is
stored in an array (coeffs_rec) and compared with the original whitened-bandpassed
time series (w_databp), as Figure 5.18 presents. The numerical comparison was also
made through a simple calculation:

diff= ∑(w_databp - coeffs_rec)2 ≈10−30 ,

which is basically numerical error.

Another attempt was made with the IDWT extension: calculating the difference
between the original whitened-bandpassed data with the filtered data using quantile
generated by the IDWT, as it is seen next in Figure 5.19. This time it is clear
that the difference between the curves is not close to zero such as a numerical error
anymore:

diff= ∑(w_databp - coeffsfilter_rec)2 ≈10−2 .
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Figure 5.18 - Inverse Discrete Wavelet Transform for the GW150914 (H1) coefficients. The
difference between both original and IDWT data is represented with the diff
curve.

Figure 5.19 - Inverse Discrete Wavelet Transform for the GW150914 (H1) coefficients fil-
tered with quantile and a bandpass filter ([20,1000]Hz). The difference be-
tween both original and IDWT filtered data is represented with the diff
curve.

But if there was any doubt that the DWT code developed in this dissertation was
working properly, this question is resolved when seeing the results in Figure 5.18
with an error of zero when comparing the input data (DWT) with the output data
(IDWT).
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5.5 Analysis

All the steps of the code development were shown in details in this chapter and the
last procedure was to verify if the decompositions were being executed correctly,
with the Inverse Discrete Wavelet Transform the algorithm was proven correct, but
the accuracy in representing gravitational wave events must be analyzed.

5.5.1 Histogram

The analysis will be made from the histogram of the data’s coefficients, after all, it
contains all the information that generates the tiles in the time-frequency represen-
tations. This analysis was performed by generating a histogram for each of the 10
events presented during this dissertation, more specifically using the module of the
coefficients. In order to avoid high coefficients corresponding to noise contribution,
the bandpass filter data was used to generate the histograms.

After the histogram was made, the events were divided in two categories:

• GOOD REPRESENTATION: There are a clean separation between
the distribution of the background and foreground. In the histogram the
event’s coefficients can be easily identified as the highest or one of the
highest, in case the data contains glitches or tiles with a high intensity of
noise contribution, in general.

For example, when applying this procedure to GW150914, more specifically
for the coefficients that generated the Filter 1 result in Figure 5.11, the
result is displayed in Figure 5.20.

When the representation is considered good, then it is possible to identify
the signal and eventually the noise contribution in the histogram, as follows
in Figure 5.21.
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Figure 5.20 - Histogram of the GW150914 (H1) event’s coefficients module. The quantile
representing 0.90 and 0.95 of the coefficients curve is described as the green
and red lines, respectively.

Since the noise contributions were very easy to identify and presented as
a small quantity, the event’s coefficients were next to have the highest
intensity, therefore it was easy to analyze the histogram and jump into
those conclusions.

This procedure was applied for the other 9 events and the ones that
followed the same histogram pattern as GW150914 were: GW170104,
GW170817, GW190519_153544, GW190521 and GW190521_074359,
therefore they are considered a good representation that the code de-
veloped in this dissertation generated.
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Figure 5.21 - Histogram of the GW150914 (H1) data’s coefficients module. The coloured
boxes indicates the correspondent coefficient in the histogram to the the
time-frequency representation tile. The bigger time-frequency plot represents
all the coefficients below |0.13| and its correspondent in the histogram. The
quantile representing 0.90 and 0.95 of the coefficients curve is described as
the green and red lines, respectively.

• UNSEPARATED REPRESENTATION: Unlike the good represen-
tation, in this case the coefficients histogram presents itself as difficult
to identify the event’s contribution due to the intensity of the noise and
the gravitational wave’s are very similar, just like the GW190630_185205
event as the histogram shows in Figure 5.22.

It is clear that the noise and the signal’s contribution are very close in mod-
ule, with a smaller number of low coefficients, therefore trying to identify
the signal’s contribution is difficult. But, since the user can still identify
at least two significant coefficients that corresponds to the event’s tiles in
the histogram, the adaptive multiresolution representation for this event is
considered unseparated. Once again the same procedure was performed
for all the events, the other 3 events that presented Figure 5.22’s his-
togram pattern were: GW1900408_18102, GW190412 and GW190701_-
203306, considered then unseparated representations.
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Figure 5.22 - Histogram of the GW190630_185205 (H1) event’s coefficients module. The
quantile representing 0.90 and 0.95 of the coefficients curve is described as
the green and red lines, respectively. The highest coefficient is the only one
that can be identified and it is presented with the yellow box.

The question now is: are there any specific conditions which makes the code more ac-
curate and generates a good representation? In order to answer this, the parameters
in Table 5.1 were used to perform three analysis:

• Final Mass: the mass from the merger are put in the y-axis with its
respective gravitational wave event in the x-axis;

• Signal-to-Noise Ratio: the network SNR is displayed in the y-axis with
its corresponded gravitational wave event in the x-axis;

• Mass-SNR: the final masses are distributed in x-axis with its respective
signal-to-noise ratio from the evaluated gravitational wave events in the
y-axis,

the goal is to find an association with the gravitational wave parameters that when
used as input for the code, the output provides the most accurate time-frequency
representations.
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5.5.2 Final mass

For this first item, when analyzing Figure 5.23, no pattern is observed, that means
the code works for whichever final mass parameter, after all, a compact binary
inspiral source generating a compact object (for those cases, a black hole) with final
mass around 30Msun and an object with final mass around 100Msun both obtains a
good representation when those data are processed with the developed algorithm.

Figure 5.23 - Final mass analysis.

5.5.3 Signal-to-Noise Ratio

As for this second item, the signal-to-noise ratio is evaluated in Figure 5.24 and it
is clear that if the event is correlated with a SNR bigger than 20, the code provides
a good representation. This can be observed in the presented results, if the signal
is very intense, as the GW170817 glitch, the algorithm provides a multiresolution
time-frequency representation with a very concentrated signal in the tiles, as it was
previously shown.
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Figure 5.24 - SNR analysis.

5.5.4 Mass-SNR

As for the third and last item, the colours in Figure 5.25 stands for the evaluated
events. Even though a concentration of the red points indicating the good represen-
tation was not found, that means no pattern between the network’s SNR and the
final masses of the events could be identified, the code only has a SNR limitation
and it is not related to the final masses.

One last attempt is to use the mass ratio for the analysis, but even then no pattern
was detected as it is observed in Figure 5.26.
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Figure 5.25 - Mass-SNR analysis.

Figure 5.26 - Mass Ratio-SNR analysis.
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6 CONCLUSION

This dissertation had the main objective of developing a code in Python to per-
form a wavelet analysis using the Shannon’s Entropy as a selection criterion to
represent any time-series in time-frequency domain. The developed code can be ac-
cessed in the following Git-Hub repository: https://github.com/ana-guimaraes/
Adaptive-Multiresolution-for-Wavelet-Analysis.

This work first explored the theory of gravitational waves, starting from the very first
prediction through Einstein’s General Relativity Theory, giving the paths towards
the equation that describes a gravitational wave and its physical consequences such
as types of sources that generates different emissions and it answered the question
of how an interferometer with a Michelson-Morley configuration with Fabry-Perot
cavities such as LIGO and VIRGO detects it.

Then, the most important part of this work is the data analysis part. It is known
that a signal can be described in time-domain and frequency-domain, but the reso-
lution in both cases provides losses in frequency and time resolutions, respectively.
This work suggests a compromise: an analysis using a time-frequency domain with
the help of wavelets. An important advantage of using wavelets is that when the
Wavelet Transform is executed for a time-series, it transforms every data point di-
rectly into the time-frequency plane, providing the time-frequency resolution plot
using Heisenberg Boxes.

Since the wavelet domain represents a signal using tiles (or the technical term Heisen-
berg Boxes), with shape (width and height) given by time resolution and frequency
resolution, respectively, the association between these two parameters is given by
the Heisenberg-Gabor Uncertainty Principle, which establishes the area of this tile
as 1/2 for the wavelet domain. Using this fixed tile area, different time and frequency
resolutions can be used for representing a signal, and a selection criterion for the
decomposition is provided by the Shannon’s entropy for the decompositions. The re-
sults can be represented in multiresolution plots that uses this resolution flexibility
to adapt itself for whichever time-series is used as input and concentrates the signal
at maximum in the lowest number of tiles.

A code in Python was developed following the presented ideas, starting from the
initial data processing: acquiring the data, calculating the PSD for the noise, chop-
ping, windowing, whitening and bandpassing (an optional step) the data and finally
performing a wavelet analysis. Then, the Discrete Wavelet Transform was used with
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the Shannon’s Entropy as a selection criterion for the decompositions. The output
of this procedure are: time coordinates, frequency coordinates and coefficients (a
dimensionless parameter).

The three output information are put in a time-frequency plot, with the coefficients
representing by colour code. An additional optional step is to filter coefficients be-
low a quantile threshold, in order to eliminate the coefficients with relatively small
intensity. And to verify if the procedure was developed correctly, the Inverse Dis-
crete Wavelet Transform was executed using the time and frequency bins and the
coefficients as input, in order to resume to the original time-series.

This code was applied for 10 of the 52 gravitational (the additional 2 are the two
BH-NS published last week) detected by the LSC so far, chosen from the highest
SNRs. The time-frequency representations were sorted out in 2 categories: good and
unseparated representations, depending how effective the time-frequency represen-
tation is to separate the background and foreground.

The results for the time-frequency representation were satisfactory, the events with
the highest intensities, GW150914, GW190521 and the glitch from GW170817 pre-
sented a very accurate result, with well concentrated tiles representing the chirp,
making it easier to the user to identify in the data a gravitational wave information.

Specifically for the first event GW150914 (H1) that generated the most satisfactory
result, two attempts were performed: changing the time resolution using different
sampling rates (4kHz and 16kHz) and changing the time intervals (2 and 8 seconds)
for the frequency resolution. In all cases the code provided very similar results and
as a consequence of that, even changing the parameters, such as the time interval
that reduces the minimum frequency resolution generating a smaller tile in height
(frequency) and when changing the sampling rate, it reduces the minimum time
resolution and generates a smaller tile in width (time), the code still offers a solid
representation, which only validates this very interesting and useful tool.

Even for the least intense signal considered, GW190701_203306, the representation
was not able to separate satisfactorily foreground and background but showed well
the noise contribution grouped in frequencies below 70 Hz around the event.

It was also clear that the filtering in all cases helped eliminate the noise contribution
(as in lower frequencies and noise fluctuations), even though it is an ad hoc step, it
contributed attenuating the amplitudes of the frequencies outside the [20,1000]Hz
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range and provided a better time-frequency plot rather than without using it.

Also in all analyzed cases, the tiles representing the chirp was overlapped with the
instantaneous evolution of frequency of the emitted GW according to the waveform
best fit (f(t)) used as a visual reference.

The time-frequency representation were considered as good and not well separated,
depending on how effective the wavelet decomposition was in separating background
and foreground. It is clear that the good representations offers a histogram with
most of the coefficients close to zero, leaving the highest intensities to the event
and to occasional glitches that appears in the plot, as it is seen in the GW150914,
GW170104, GW170817, GW190519_153544, GW190521 and GW190521_074359
events.

An unseparated representation also offers high intensity coefficients that can be
identified as the event’s, but most of the coefficients are drowned in the noise contri-
bution, making it difficult to identify it all, as it is shown in the GW190630_185205,
GW1900408_18102, GW190412 and GW190701_203306 events.

After analyzing all the time-frequency representation, it is clear that the code works
at best when performing an analysis of a short-duration signal, with high intensity
(SNR) and the code represents signals better when they are stretched vertically, i.e.
have a rapidly varying frequency.

A final analysis was made by trying to correlate the gravitational wave’s parameters:
final mass, mass ratio with the SNR, with the code’s accuracy. Within all cases, the
code shows no correlation with the parameters, which means it is useful and works
with all GW’s informations.

In every events Shannon’s selection criterion was essential for the representation’s
refinement, concentrating the signal and the noise using the lowest number of tiles,
making it easier to identify their contributions. It is important to notice that the
developed tool is not only useful in the gravitational wave representation but also
for other types of data, after all, all it needs is a time-series as input.

A further step would be to create a clustering criterion for high intensity coefficients,
to identify candidate events.
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APPENDIX A

A.1 GW150914 - 16kHz

In Chapter 5, the GW150914 event was evaluated for a sampling rate of 4kHz and
different time intervals, so that the minimum frequency resolution can be temperated
with. Another attempt is to temper with the minimum time resolution, and since
∆tmin = 1/rate, an analysis with a sampling rate of 16kHz is performed.

In order to generate the time-frequency resolution, the developed code was applied
for the 16kHz GW150914 (H1) data, using 2 seconds of data, 1 second before the
event and 1 second after. The result is presented in Figure ??, where the signal was
analyzed without and with a bandpass filter.

As it was expected, the noise in frequencies below the bandpass filter range
[20,1000]Hz are attenuated, the intensity of the tiles representing the chirp reaches
almost a module of 0.15 and just like the 4kHz samples, it is coincident with the
original chirp signal in time-frequency plane, f(t), calculated with the LAL package.

The signal respects the same frequency limits of approximately [30,270]Hz and for
this event, the minimum time resolution wasn’t very useful, perhaps with a more
vertical event, this sampling rate could be more efficient.

Figure A.1 - Time-frequency representations for the GW150914 event using 2 seconds and
a sampling rate of 16kHz. The left figure shows the time-frequency plot with-
out filtering and the right figure presents the result for the wavelet repre-
sentation when using a [20,1000]Hz bandpass filter. In both plots the event’s
f(t) is presented as the blue curve.

The following events were all detected by the LIGO’s O3a run.
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A.2 GW190408_181802

As it was previously said, this event was one of the 39 events detected in the O3a
run. The gravitational wave was produced by the inspiral and merger of two back
holes of masses 35 Msun and 18 Msun, generating a black hole of mass 53.9 Msun

and about 2 solar masses in gravitational wave form on 8 April 2019 at 18h18’02”.

When downloading the data from LIGO’s website, it was observed that the event
is a bit long horizontally when compared to the others, and in order to make the
tiles smaller in frequency, that is, to define a minimum frequency resolution, a time
interval of 8 seconds was chosen to fulfil this task.

The results for this event evaluated with a time interval of 8 seconds, 7 seconds
before and 1 second after the event and without any bandpass filter is displayed in
Figure A.2, where the data contains a lot of noise, but it still possible to identify tiles
with a higher intensity corresponding to the chirp, as it is seen near the zero mark in
time and frequencies between (100,200)Hz. The tiles with the concentrated intensity
along the signal in time-frequency, f(t) (presented as the blue curve) corresponds
to the noise that the event presents when captured by the Hanford’s detector.

Figure A.2 - Time-frequency representation of the GW190408_181802 (H1) data using
T = 8s, a Tukey Window shape parameter 0.1, no bandpass filter and a
sampling rate of 4kHz. The left figure presents the maximum coefficients
corresponding to |0.8|, but since a comparison between the events intensity
is made, a plot with the colorbar of the other events is shown in the right
figure. In both plots the event’s f(t) is presented as the blue curve.

Due to noise fluctuations, when the bandpass filter is applied in this event, the
time-frequency representation, as it is shown in Figure A.3, shows a more intense
and concentrated tile in frequencies (90,110)Hz, an effect of the Shannon’s criterion
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for the filtered data, since the noise was eliminated with the bandpass filter. The
noise in the background now is represented as tiles (vertically) long in frequency,
attenuated the noise contribution and made the more intense tiles corresponding to
the event easier to identify.

Figure A.3 - Time-frequency representation of the GW190408_181802 (H1) data using
T = 8s, a Tukey Window shape parameter 0.1, a bandpass filter ([20,1000]Hz)
and a sampling rate of 4kHz. The left figure presents the maximum coefficients
corresponding to |0.8|, but since a comparison between the events intensity
is made, a plot with the colorbar of the other events is shown in the right
figure. In both plots the event’s f(t) is presented as the blue curve.

Once again, the time-frequency representations on the right side of Figures A.2 and
A.3 has the colorbar with intensity of module 0.2 in order to be compared with the
intensity of the other 9 events.

A.3 GW190519_153544

Another one of the 39 events from the detection list of the O3a run, this gravita-
tional wave event was generated by the inspiral and merger of a BBH source, which
produced a black hole of final mass 106.6 Msun on 19 May 2019 at 15h35’44”.

The event was evaluated for the two conditions: without bandpass filter and Filter 1
[20,1000]Hz and the results are presented in Figure A.4. It is clear the importance of
the filter for this case, it assists in the refinement of the signal in lower frequencies
and also decreases the noise contribution due to fluctuations in all frequency bands.

In both representations the maximum coefficient has a module of 0.16 and when
the filter is applied, it clear that the entropy criterion is essential to the much more
refined multiresolution plot.
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Figure A.4 - The time-frequency representations for the GW190519_153544 (L1) event,
when using T = 8s, a Tukey window shape parameter of 0.3 and a sampling
rate of 4kHz. On the left figure there is the result for this event evaluated
without a bandpass filter and on the right the result for the event when Filter
1 ([20,1000]Hz) is applied in the data processing. In both plots the event’s
f(t) is presented as the blue curve.

A.4 GW190630_185205

Another one of the events detected in the O3a run, this gravitational wave event was
generated by the inspiral and merger of a binary black hole of masses 35.1Msun and
23.7 Msun generating a black hole of mass 59.1 Msun on 30 June 2019 at 18h52’05”.

To generate the results for this event, considering that the inspiral is also horizontally
long, the best way to pick a time interval T is to take that into consideration in
order to generate a small minimum frequency resolution, but if T is too big, the
signal-to-ratio of the data will be very small, since too much noise will be taken
into account. For that reason, the results were generated using 8 seconds, 6 seconds
before the event and 2 after.

The time-frequency representations for this event are presented in A.2 and A.3,
where a deadlock is reached: when analysing the data without a bandpass filter, the
decompositions stopped at level 3 as A.5 (left) shows and the maximum coefficient
was 0.1 exactly near the mark zero in time. That means the entropy criterion chose
that time-frequency plot as the best representation due to the data parameters used.
A way to change this result is to switch the parameters such as Tukey window, use
another time interval and sampling rate, or applying a filter in order to attenuate
the amplitudes in certain frequencies. On the right side of A.5 is the result when
applying a bandpass filter as it was suggested.
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A filter that attenuates frequencies out of the [20,1000]Hz range is applied and as
a consequence of that, the tiles corresponding to the event becomes concentrated
around t = 0s. If that time-frequency plot was generated without the user knowing
it had a gravitational wave event inside, that configuration would raise the question
if an event was producing those concentrated and intense tiles.

Figure A.5 - The time-frequency representations for the GW190630_185205 (L1) event,
when using T = 8s, no bandpass filter a sampling rate of 4kHz. On the left
figure there is the result for this event evaluated without a bandpass filter
and on the right the result for the event when Filter 1 ([20,1000]Hz) is applied
in the data processing. In both plots the event’s f(t) is presented as the blue
curve.

When generating a window in time [-0.3,0.1]s and frequency [0,300]Hz to see the
event a bit closer, the result is presented in Figure A.6, where the tiles with a higher
intensity stands out representing the event.

Since this event is horizontally long as it is seen in the LIGO’s Collaboration paper
(ABBOTT et al., 2021), the code offers the best representation using Shannon’s En-
tropy selection criterion, but it is clear that the code provides a most accurate plot
when the chirp is vertically long. Even so, it still offers a solid representation.
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Figure A.6 - The time-frequency representations for the GW190630_185205 (L1) event,
when using T = 8s, a bandpass filter ([20,1000)]Hz, a sampling rate of 4kHz
and different colorbar scales. In both plots the event’s f(t) is presented as
the blue curve.

A.5 GW190412

This event was also detected in the O3a run (ABBOTT et al., 2021), it was the first
gravitational wave event generated by an inspiral and merger of a binary black hole
with very different sizes, more specifically approximately 30.1 Msun and 8.3 Msun.
This event happened on 12 April 2019.

In order to generate a time-frequency representation with the developed code, a time
interval of 4 seconds was used, 3 seconds before the event and 1 after the data from
Livingston. The selection criterion was again very useful, specifically for this case,
where just like GW190408_181802 there are a lot of noise in certain frequencies in
the raw data.

Figure A.7 shows the results for the time-frequency representation for the event
when no bandpass filter is used, it is clear that there are a lot of noises and the
amplitudes of all frequency bands weren’t attenuates, therefore the noise fluctuation
made it difficult to identify the chirp’s coefficients. Even then, when comparing to
the background, the user can presume there might be a gravitational wave signal
around the [30,400]Hz frequency range.

When applying a bandpass filter that attenuates frequencies outside the [20,1000]Hz
range, the final result was very refined, the selection criterion given by Shannon’s
entropy made the time-frequency plot to select the tiles where the intensity was high-
est, preventing the background to overcome the signal, providing the time-frequency
plot in Figure A.8. Lower frequencies tiles are much more attenuated, concentrating
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Figure A.7 - The time-frequency representations for the GW190412 (L1) event, when using
T = 4s; without a bandpass filter; a Tukey window shape parameter of 0.3, a
sampling rate of 4kHz and different colorbar scales. In both plots the event’s
f(t) is presented as the blue curve.

the tiles horizontally along the f(t) (blue curve).

The glitches that appears around (-0.20,0.15)s and (150,300)Hz is better represented
when the bandpass filter is applied, where it is concentrated in a long tile in fre-
quency. The same happens with the glitch around (-0.05,0)s and (350,520)Hz rep-
resented as tiles with a more intense colour and with a position better determined
in Figure A.8.

Figure A.8 - The time-frequency representations for the GW190412 (L1) event, when using
T = 4s, a bandpass filter ([20,1000)]Hz, a sampling rate of 4kHz and different
colorbar scales. In both plots the event’s f(t) is presented as the blue curve.
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A.6 GW190701_203306

The last event evaluated by the developed code is also one of the O3a detections
(ABBOTT et al., 2021). This gravitational wave event was generated by a binary black
hole of masses 53.9 Msun and 40.8 Msun produced a black hole of mass 94.3 Msun

and released energy in GW form on 1st July 1019 at 20h33’06”.

This particular case possess a lot of noise fluctuations around the time of the event,
therefore it is expected to see tiles with an intense colour grouped in lower frequen-
cies. Thus, the time interval used for this analysis was 8 and 16 seconds and only
filtered data was used, so there would be no mixing of noise fluctuation and the
representation of the noise that the data possess.

Figure A.9 displays the result of the GW190701_203306 (L1) event when using a
time interval of 8 seconds, a Tukey Window shape parameter of 0.3 and the bandpass
filter that attenuates frequencies out of the [20,1000]Hz range. As it was expected,
there are tiles grouped forming the noise configurations presented in LIGO’s spec-
trogram.

Figure A.9 - The time-frequency representations for the GW190701_203306 (L1) event,
when using T = 8s, with a bandpass filter ([20,1000]Hz) and a sampling rate
of 4kHz. In the plot the event’s f(t) is presented as the blue curve.

The result of the other attempt using a time interval of 16 seconds is presented in
Figure A.10, where the maximum coefficient has module 0.1, and the grouped tiles
are still present, which indicates that the code’s results are solid with slight differ-
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ences when the parameters changes. One last time the colorbar scale is presented
on the right figure to perform the intensity comparison of the events.

Figure A.10 - The time-frequency representations for the GW190701_203306 (L1) event,
when using T = 16s, with a bandpass filter ([20,1000]Hz) and a sampling
rate of 4kHz with different colorbar scales. In both plots the event’s f(t) is
presented as the blue curve.
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