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RESUMO

Preocupagdes em relacdo as mudancas climdticas tém motivado diversos estudos a fim de bus-
car novas alternativas para um desenvolvimento sustentdvel. Com o aumento da demanda por
energia, a fonte nuclear se tornou uma alternativa promissora devido a sua baixa pegada de
carbono e capacidade fornecimento continuo. Por outro lado, apesar de ser uma das fontes
mais seguras de geracdo de eletricidade, as usinas nucleares exigem um alto investimento de-
vido aos elevados requisitos de seguranca. Logo, uma das formas de aumentar a confiabilidade
dos sistemas e equipamentos nucleares ¢ utilizar a fluidodinamica computacional para predizer
os fendmenos fisicos que ocorrem e, dessa forma, tornd-los mais seguros, eficientes e baratos.
Assim, o presente trabalho tem por objetivo apresentar uma formulagdo estabilizada de elemen-
tos finitos baseada no uso de passos de tempo locais para resolver problemas de mecanica de
fluidos e transferéncia de calor em escoamentos incompressiveis em geometrias cartesianas e
axissimétricas. Nessa formulagdo, as equagdes de atualizacao do campo de pressao sdo obtidas
pela aplicacdo do método de Taylor-Galerkin enquanto que as equagdes de atualizacdo da velo-
cidade e temperatura sdo obtidas a partir da minimizac¢@o dos residuos quadraticos das equagdes
de quantidade de movimento e energia, respectivamente. Além disso, é derivado um esquema
de upwind que combina os efeitos da velocidade real e da velocidade de transporte produzindo
o efeito de captura de descontinuidade. Esse método foi implementado utilizando a linguagem
de programaciao FORTRAN90 e empregando a ferramenta de paralelizacio OpenMP. As solu-
coes numéricas apresentadas para os exemplos envolvendo transferéncia de calor em convec¢ao
livre, mista e forcada demonstram que o método apresentado possui 6tima concordincia com

os resultados presentes na literatura.

Palavras-chave: Formulagdo estabilizada; Conveccao natural e mista; Escoamento incompres-

sivel e transiente; Passo de tempo local.



ABSTRACT

Concerns about climate change have motivated numerous studies aimed at finding new alter-
natives for sustainable development. With the growing demand for energy, nuclear power has
become a promising option due to its low carbon footprint and ability to provide continuous
supply. On the other hand, despite being one of the safest sources of electricity generation,
nuclear power plants require high investment due to stringent safety requirements. Therefore,
one way to increase the reliability of nuclear systems and equipment is by using computational
fluid dynamics to predict the physical phenomena that occur, thereby making them safer, more
efficient, and more cost-effective. Thus, this work aims to present a stabilized finite element
formulation based on the use of local time steps to solve fluid mechanics and heat transfer pro-
blems in incompressible flows with cartesian and axisymmetric geometries. In this formulation,
the pressure field update equations are derived using the Taylor-Galerkin method, while the ve-
locity and temperature update equations are obtained by minimizing the squared residuals of
the momentum and energy equations, respectively. Additionally, an upwind scheme is derived,
combining the effects of the real and transport velocities to produce a discontinuity-capturing
effect. This method was implemented using the FORTRAN90 programming language and the
OpenMP parallelization tool. The numerical solutions presented for examples involving heat
transfer in free, mixed, and forced convection demonstrate that the proposed method shows ex-

cellent agreement with results found in the literature.

Keywords: Stabilized formulations; Free and mixed convection; Transient incompressible vis-

cous flows; Local time-steps.
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1 Introducao

1.1 Crise Climatica e Aumento da Demanda por Eletricidade

O aquecimento global, uma questdo urgente do nosso tempo, tem sido impulsionado
principalmente pelo aumento das emissdes de gases do efeito estufa (GEEs) na atmosfera da
Terra, em grande parte devido as atividades humanas. Esse fendmeno tem aumentado desde a
Revolugdo Industrial, quando a utilizacdo de combustiveis fosseis como carvao, 6leo e gés na-
tural comecgou a expandir. A partir dessa época, o nosso planeta tem experimentado as maiores

concentracdes de diéxido de carbono, metano e NOx dos tltimos 800 mil anos (NAP, 2020).

No final do século passado, diversas pesquisas cientificas e organiza¢des como o [PCC
(Intergovernmental Panel on Climate Change) das Na¢des Unidas confirmaram o impacto das
acOes humanas no aumento da temperatura global. Desde sua fundagdo, o IPCC tem conduzido
reunides internacionais para discutir as mudangas no clima destacando os problemas causados
por essa mudanga e fixando compromissos para reduzir as emissdes como o Protocolo de Kyoto
e 0 Acordo de Paris (IPCC, 2019).

Embora o compromisso firmado no Acordo de Paris tenha sido limitar o aumento da
temperatura global a 2°C em relacdo a niveis pré-industriais, as acoes humanas j4 elevaram a
temperatura da Terra em 0,87°C entre 2006 e 2015, em relagdo a média registrada entre 1850 e
1900 (Figura 1). Ainda segundo o IPCC (2019), o aumento de 2°C até 2060 representaria con-
sequéncias devastadoras para nosso ecossistema. Estima-se que 6% dos insetos, 8% de plantas e
4% de vertebrados percam metade de sua amplitude geogréfica por causa do aumento em 1,5°C
e para um aumento em 2°C essa estimativa passa para 18%, 16% e 8% respectivamente. Além
disso, no ambiente marinho, projeta-se uma diminui¢ao entre 70-90% dos recifes de corais para

um aumento de 1,5°C e mais de 99% para um aumento de 2°C.



Aquecimento global referente a 1850-1900 (°C)

Temperatura média mensal global
observada na superficie

uma probabilidade maior de limitaca agquecimento a 1
Nenhuma reducdo forcante radiativa
resulta em menor probabilidade de se limitar o aguecimento a 1,5°C

Figura 1: Mudanca observada na temperatura global e respostas modeladas para emissao de
CO2. Retirado de IPCC (2019).

Ainda que 2023 tenha sido o ano mais quente desde 1850 segundo o 2023 Global Cli-
mate Report (NOAA, 2024), as a¢des humanas que impactam negativamente o clima do planeta
continuam em niveis alarmantes. Um grande exemplo € o consumo de eletricidade, que € o
maior responsavel pelo aquecimento global, principalmente devido a dependéncia de combus-
tiveis fosseis para geracdo elétrica. De acordo com a IEA (International Energy Agency), a
matriz elétrica mundial € responsdvel por mais de 40% das emissdes de CO2, com a queima
de carvdo mineral sendo a maior culpada (IEA, 2020). A utilizacdo de carvao, 6leo e géds na-
tural para a producdo de eletricidade promove um aumento do efeito estufa e contribui para o

aumento da temperatura global.

Além disso, com o objetivo de reduzir as emissdes de carbono, a transicdo para uma
frota automotiva eletrificada tem sido amplamente promovida como uma solucdo sustentavel.
No entanto, essa mudan¢a vem acompanhada de um aumento significativo no consumo de ener-
gia elétrica. Os veiculos elétricos (VEs), embora mais eficientes que os movidos a combustao,
exigem uma infraestrutura robusta para recarga, além de fontes energéticas confidveis para aten-
der a crescente demanda. Segundo a [EA (2022), desde 2015, tem sido observado um rapido
crescimento no numero de veiculos elétricos, que alcangou cerca de 16,5 milhdes no final de
2021 e deve chegar a 145 milhdes em 2030. A medida que a frota global de VEs cresce, a
necessidade de reforcar a geracdo de energia aumenta e coloca ainda mais pressao sobre o atual

sistema ja sobrecarregado em diversas regioes.



Paralelamente, a expansdo da inteligéncia artificial (IA) também contribui significati-
vamente para o aumento do consumo energético. O treinamento de modelos avangados de
IA exige supercomputadores e Data Centers que consomem grandes quantidades de energia.
Mesmo a etapa de utilizagdo desses modelos — como a geracdo de respostas ou a andlise de
dados — demanda um uso continuo e intensivo de eletricidade. De acordo com a IEA (2023),
estima-se que os Data Centers espalhados pelo mundo consumiram entre 1 e 1,3% da energia
mundial em 2022, com projecdo de que esse consumo dobre até 2026. Além disso, um estudo
realizado pelo Lawrence Berkeley National Laboratory em 2023 aponta que os Centros de Pro-
cessamento de Dados americanos consumiram cerca de 4,4% da energia produzida nos Estados

Unidos, com estimativa de que esse nimero possa triplicar até 2028 (Shehabi et al., 2024).

No Brasil, assim como em outras grandes economias, o consumo de eletricidade tem
aumentado ano apds ano. Segundo a Empresa de Pesquisa Energética (EPE), os setores com
maior demanda por energia sdo o industrial e o de transportes, que inclui tanto as necessidades
da construgdo civil para infraestrutura quanto aquelas voltadas a ampliacdo da mobilidade da
populacdo. Ainda de acordo com a EPE, a taxa de motorizagao da populacdo brasileira - que era
de 5,3 habitantes por veiculo em 2012 - poderd atingir 1,6 em 2050, resultando em uma frota
de veiculos leves estimada em aproximadamente 129,5 milhdes. Além disso, o crescimento
populacional também contribui para o aumento da demanda por energia elétrica. Conforme o
censo realizado em 2022 (IBGE, 2024), a populacgao brasileira, atualmente com 212,6 milhdes

de pessoas, poderd alcancar 220 milhdes em 2041.

Diante desse cendrio, atender a crescente demanda de energia se torna um desafio ainda
mais complexo quando a questdo climética é levada em considera¢do. Dados da EPE (2016)
indicam que, no Brasil, cerca de 42,4% de toda a energia consumida em 2020 foi proveniente
de derivados de petrdleo. Diante desse cendrio, desde 1992, na Convengdo Quadro das Nagdes
Unidas sobre Mudangas Climaticas (UNFCCC), 197 paises concordaram que seria necessario

uma abordagem mais contundente para conter o aquecimento global.

1.2 O Papel da Energia Nuclear

Na década de 60 vérios paises promoveram o desenvolvimento e a aplicagdo da energia
nuclear para geracao de eletricidade. O emprego da energia nuclear pelas marinhas ao redor do
mundo produziu uma base de conhecimento para o tipo de reator que utiliza 4gua “leve” a altas
pressdes como fluido refrigerante e moderador. Atualmente, os reatores de dgua pressurizada
sdo os tipos de projeto mais populares, e sdo responsaveis por dois tercos de toda capacidade
nuclear instalada (Kok, 2017).



Com a crescente demanda mundial por energia elétrica e a necessidade de reduzir as
emissoes dos gases de efeito estufa, a matriz nuclear se tornou uma vantajosa solucao para esses
desafios. Devido as suas vantagens estratégicas como a producio de eletricidade com baixo
impacto ambiental e a alta confiabilidade, a energia nuclear tornou-se uma alternativa valiosa
quando comparada com outras fontes de energia de base como usinas termelétricas movidas
a combustiveis fosseis, que emitem grandes quantidades de CO2 e poluentes atmosféricos ao

longo de sua operacao.

A geracgdo nuclear, ao longo de todo o seu ciclo de vida, apresenta emissdes minimas
desde a construc¢do até o pleno funcionamento. Estudos indicam que a energia nuclear tem uma
pegada de carbono compardvel a de fontes renovaveis, como a edlica e a solar. Além disso, por
nao depender da queima de combustiveis fésseis, a energia nuclear reduz a emissao de poluentes
atmosféricos como 6xidos de enxofre e nitrogénio, contribuindo para a melhoria da qualidade

do ar e a sadde publica.

Outro fator determinante para a expansao desse tipo de producao de energia € sua grande
confiabilidade e capacidade de fornecimento continuo de eletricidade. Diferentemente da fonte
solar, edlica e hidrelétrica, cuja producao depende de fatores climdticos e sazonais, a geracao
nuclear opera de forma estdvel, garantindo eletricidade de base para os sistemas elétricos. Com
um fator de capacidade superior a 90%, as usinas nucleares podem operar ininterruptamente
por longos periodos entregando sua maxima poténcia, necessitando apenas de paradas para

manutengao e troca do combustivel.

Nesse contexto, paises que buscam seguranga energética a0 mesmo tempo em que Vi-
sam reduzir sua pegada de carbono tém adotado a energia nuclear em suas matrizes elétricas.
Segundo a AEA (2024), em 2023 havia 418 reatores nucleares operacionais, gerando um total
de 377,6 GW(e), e outros 59 reatores em construcdo em 17 paises, totalizando uma capacidade
prevista de 61,1 GW(e). Durante esse ano, a constru¢do de seis novos reatores foi iniciada,
sendo cinco deles na China e um no Egito. Dessa forma, fica evidente que essa fonte de energia

continua a se expandir globalmente.

Apesar das vantagens que a energia nuclear oferece, sua adesdo ainda enfrenta resis-
téncia. Questdes como o alto custo inicial, o gerenciamento de residuos radioativos e, princi-
palmente, preocupacdes com a seguranga continuam a gerar debates sobre seu papel na matriz
energética global. Acidentes como os de Chernobyl e Fukushima reforcaram o receio da po-
pulacdo com esse tipo de tecnologia. Nesse sentido, fabricantes e agéncias reguladoras foram
obrigados a aumentar ainda mais os requisitos de seguranca das usinas. Tudo isso fez com que
pesquisas envolvendo sistemas e componentes nucleares se multiplicassem por todo o mundo

na inten¢do de predizer possiveis falhas e aumentar a eficiéncia e a confiabilidade das plantas.



1.3 Fluidodinamica Computacional na Energia Nuclear

Para projetar usinas nucleares eficientes e seguras, i.e., funcionando em condig¢des oti-
mizadas durante a operagdo normal e garantindo que seja atingido um estado seguro durante um
transiente operacional ou acidente, necessariamente € preciso compreender as diversas formas
de escoamento de fluidos bem como entender o modo como ocorre a transferéncia de calor de
um meio para outro nos varios equipamentos e sistemas que compdem a planta. Nesse contexto,
a fluidodinamica computacional ou CFD (Computational Fluid Dynamics) tem se mostrado uma

ferramenta essencial, permitindo a simula¢do numérica dos componentes nucleares.

Com o crescimento da capacidade de processamento nas ultimas décadas, a fluidodina-
mica computacional, tem desempenhado um papel cada vez mais relevante na indudstria nuclear,
especialmente no projeto e na andlise de seguranga de reatores. Esse avango impulsionou o
desenvolvimento de cédigos termohidrdulicos altamente confidveis, capazes de reproduzir o
comportamento do escoamento sob diversas condi¢des de contorno, além de reduzir significa-

tivamente a dependéncia de experimentos no desenvolvimento de sistemas e equipamentos.

O uso de ferramentas CFD em projetos de reatores, como os resfriados a 4gua pressuri-
zada, tem permitido otimizar diversos componentes, como o design das varetas de combustivel
e o fluxo de refrigerante através do nucleo, entre outros, aumentando a eficiéncia e a seguranca
da planta como um todo. Além disso, essa ferramenta possibilita uma andlise detalhada dos
diferentes tipos de escoamentos que ocorrem durante o funcionamento dos reatores nucleares.
Esses escoamentos podem envolver o transporte de energia, incluir multiplas fases e ocorrer

tanto em regime laminar quanto turbulento.

Ademais, a anélise de seguranca € outro aspecto em que a CFD se destaca. Ela é am-
plamente utilizada para prever o comportamento de transiente e acidentes em usinas nucleares,
como quebras de linhas de alta energia, mau funcionamento de equipamentos como valvulas
ou até mesmo falhas operacionais. Essas simulacdes auxiliam na avaliacdo da capacidade de
uma planta resistir as falhas e na definicdo de estratégias para mitigar os danos decorrentes
dessas falhas. Exemplos de c6digos usados para modelar o comportamento térmico-hidraulico
durante transientes no circuito primario por empresas como a Westinghouse e instituigcdes como
a Electricité de France incluem: RELAP-5 , TRACE, CATHARE, GOTHIC e ATHLET (IAEA,
2022).

Por outro lado, a CFD também impulsiona a inovacdo no design de reatores. Proje-
tos como o ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration)

(Le Coz et al., 2011), um reator rdpido resfriado a sédio de Geracdo IV desenvolvido pela



Comissao de Energia Alternativa e Energia Atdmica da Franca (CEA), foram utilizados inten-
sivamente para desenvolver e validar c6digos usados para cdlculos do comportamento termohi-
drdulico dos sistemas e das margens operacionais relacionadas a seguranca do reator (Chenaud
et al., 2015).

Portanto, a fluidodindmica computacional consolidou-se como uma ferramenta indis-
pensdvel no desenvolvimento da energia nuclear. Sua aplicacdo ndo sé melhora a seguranca,
mas também reduz custos e acelera a inovagdo em projetos de reatores. A medida que a in-
dustria nuclear continua a evoluir, espera-se que seu papel se expanda ainda mais, contribuindo

para a viabilidade dessa forma de geracdo de energia.

14 Objetivo e Contribuicao

Como demonstrado nas secdes anteriores, a simulacdo numérica de escoamentos com
transferéncia de calor tem se tornado uma ferramenta indispensdvel na inddstria nuclear. A
termohidraulica, como € conhecida nessa drea, desempenha um papel fundamental no projeto e
na andlise de segurancga de reatores nucleares, uma vez que envolve o estudo de problemas de

escoamento em equipamentos como o vaso do reator, trocadores de calor, bombas etc.

Portanto, o objetivo desta dissertacdo € desenvolver uma formulagdo estabilizada do
método de elementos finitos, com captura de descontinuidade, para aplicagdo em problemas
de escoamento incompressivel governados por convec¢do-difusdo, considerando transferéncia
de calor e forgcas de empuxo decorrentes de gradientes térmicos, modelados pela hipétese de
Boussinesq visto que tais problemas ocorrem rotineiramente, tanto no desenvolvimento de no-

vos reatores quanto na andlise de desempenho e seguranca de plantas em operacao.

Essa formulacdo € aplicdvel tanto a geometrias cartesianas quanto axissimétricas, abran-
gendo uma ampla gama de problemas bidimensionais. Além disso, inclui termos de estabili-
zacdo que emergem naturalmente da discretizacdo temporal das equacdes governantes. Esses
termos permitem a estabilizacdo do campo de pressao e outros gradientes intensos, o que reduz

oscilacdes indesejadas nas solu¢des numéricas.

1.5 Organizacao da Dissertacao

Este trabalho estd organizado em sete capitulos estruturados de forma a apresentar o

desenvolvimento e os resultados obtidos.



No Capitulo 1, € apresentada a introdugdo, abordando o contexto geral dessa disserta-
cdo, a motivagdo para o desenvolvimento da formulac@o proposta e os objetivos especificos da

pesquisa.

O Capitulo 2 apresenta a revisdo bibliografica abordando o emprego da formulagdo

estabilizada com operador de captura de descontinuidade.

O Capitulo 3 trata da formulacdo matemética das equagdes governantes na forma di-
mensional e adimensional, abrangendo tanto geometrias cartesianas quanto axissimétricas. Sao
descritas as leis de conservacao e a hipdtese de Boussinesq, que considera as forcas de empuxo

geradas por gradientes térmicos.

No Capitulo 4, é apresentada a formulagao estabilizada do método de elementos finitos
definido as equacdes de atualizacdo da pressdo, velocidade e temperatura. Sdo discutidos o

modelo submalha, os campos de velocidade, o uso de passos de tempo locais e a sincronizagao.

O Capitulo 5 aborda a implementacdo computacional da metodologia proposta, in-
cluindo aspectos da malha adaptativa empregada, paralelismo computacional e etapas de pré

e pds-processamento utilizados nas simulacdes.

No Capitulo 6, sdo apresentados os resultados obtidos para a verificacdo do modelo,
os exemplos numéricos escolhidos incluem casos cldssicos de convec¢@o natural e mista, bem

como escoamento em dutos e o escoamento em uma regido do vaso de um reator nuclear.

Por fim, o Capitulo 7 retne as conclusdes do trabalho, destacando resultados mais rele-

vantes, e sugestdes para trabalhos futuros.



2 Revisao Bibliografica

2.1 Formulacao Estabilizada do Método de Elementos Finitos

O método de elementos finitos pode ser definido, de forma geral, como a aplicag¢do
dos principios variacionais ou do método de residuos ponderados a um conjunto de equagdes
diferenciais. Inicialmente, foi empregado para resolver problemas em mecanica dos s6lidos
dada sua vantagem em lidar com geometrias complexas e a capacidade de impor condi¢des de
contorno de maneira direta (Clough, 1960). Quando aplicado a uma equacdo diferencial, esse
método produz uma solucao aproximada com formato de combinagio linear de fun¢des forma,
onde para encontrar a solucdo € preciso determinar os coeficientes dessa combinacdo linear
(Strang e Fix, 1973).

O método de Galerkin, por sua vez, € uma formulagdo de residuos ponderados onde as
fungdes peso sdo as mesmas fungdes usadas para interpolar a solucdo aproximada. Para um
problema eliptico auto-adjunto, o método de Galerkin leva a melhor solu¢dao aproximada (a
chamada propriedade de melhor aproximacdo). No entanto, quando aplicado em problemas de
escoamento incompressivel que envolvem conveccao-difusio essa formulagdo falha, uma vez
que os operadores diferenciais nesse caso nao sao auto-adjuntos e o método de Galerkin perde

a sua propriedade de melhor aproximacgao (Johnson, 1987).

Logo, formulacdes estabilizadas em elementos finitos surgiram para superar as limi-
tacdes da formulacao Galerkin padrdo na solug¢do de problemas de Mecanica dos Fluidos en-
volvendo escoamentos incompressiveis dominados por convec¢do. Na abordagem classica de
Galerkin, € necessdrio que os espagos de interpolacdo para velocidade e pressdo satisfacam a
condicdo de Babuska-Brezzi (Brezzi e Fortin, 1991). No entanto, essa condicdo impde restri-
coes, ja que o campo de pressdo nao estd diretamente ligado a conservagdo de massa, dificul-

tando a aplicacdo desse método (Zienkiewicz e Nakazawa, 1986).

O uso de espacos de interpolagdo iguais para velocidade e pressao na solugdo desse tipo
de escoamento pode resultar em uma matriz global singular. Esse problema ocorre porque a
equacgao da continuidade, que impde a incompressibilidade do fluido, age como uma restricao
sobre o campo de velocidade. Assim, se os espacos de interpolacdo ndo forem compativeis,
garantindo um nimero adequado de graus de liberdade para a velocidade em relacdo a pres-
sdo, valores nulos podem ser introduzidos na diagonal principal da matriz global, tornando-a

mal condicionada e dificultando sua inversdo (De Sampaio, 1991b). Dessa forma, para utilizar



espacos de interpolacdo de mesma ordem para todas as varidveis, o que € atrativo computa-
cionalmente, é preciso utilizar de uma formulacdo estabilizada. Essas formula¢cdes como a
de Petrov-Galerkin adicionam termos de estabilizacdo que modificam os residuos ponderados,
introduzindo valores ndo nulos na diagonal principal da matriz global sem comprometer a con-

sisténcia da solugdo, evitando, assim, a forma¢ao de uma matriz singular.

Neste trabalho, é empregada uma formulagado do tipo Petrov-Galerkin para as equagdes
de Navier-Stokes incompressiveis em varidveis primitivas. O método é derivado do conceito
de minimos quadrados e permite o uso de interpolacdes de mesma ordem para velocidade e
pressdo (De Sampaio, 1991a). De fato, pode ser considerado uma generalizagdo da formulacio
apresentada por Hughes et al. (1986b), que contorna a condi¢do de Babuska-Brezzi no contexto

do escoamento de Stokes.

Nessa formulagdo, os termos de estabilizagao emergem naturalmente a partir da aplica-
cdo da minimizacdo da integral do quadrado dos residuos do balanco de quantidade de movi-
mento, que combina uma discretizacdo temporal baseada em diferencas finitas e espacial usando
elementos finitos, onde as fun¢des de ponderacao resultantes apresentam uma estrutura analoga
a funcao SUPG proposta por Brooks e Hughes (1982). Esses termos estabilizadores foram
adicionados a equacdo de conservacdo de massa, permitindo uma estabilizacdo do campo de

pressao (De Sampaio, 2005).

Geralmente, os termos de estabilizacdo aparecem multiplicados por pardmetros (ou es-
calas de tempo intrinsecas) que definem a quantidade de estabilizacdo necessdria, dependendo
do tamanho local da malha, da velocidade e das propriedades fisicas. No trabalho de Brooks e
Hughes (1982), esses autores determinaram o chamado parametro de upwinding 6timo, usado
para controlar oscilacdes na solugdo numérica de problemas de convecgdo-difusdo unidimen-
sionais e em estado estaciondrio. No entanto, em problemas de convecc¢ao-difusdo transitorios
e multidimensionais a estrutura dos termos de estabilizacdo e os parametros correspondentes
geralmente sdo propostos a priori e justificados a posteriori por meio de andlises numéricas e

experimentos computacionais (De Sampaio, 1991b).

Outra importante caracteristica do método proposto é que o passo de tempo utilizado
na discretizacdo temporal da equagdo de conservacdo de quantidade de movimento e energia
¢ empregado como parametro de estabiliza¢do. Isso implica que hd um pardmetro a menos
para definir em aplicacdes transitérias. Mais importante ainda, isso oferece uma indicagdo de
como escolher o passo de tempo/parametro de estabilizacdo. Na prética, o passo de tempo é
definido com base na estimativa das escalas de tempo dos processos de convec¢ao-difusdao de

momentum, que podem ser resolvidos pela malha local (De Sampaio, 1991a).
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Para introduzir a quantidade correta de estabilizacdo em todo o dominio de andlise, o
passo de tempo deve ser definido localmente, resultando em uma distribuicdo espacialmente
varidvel de passos de tempo. No trabalho de De Sampaio (2005), algoritmos especiais foram
empregados para acomodar essa distribuicao e sincronizar os cdlculos em problemas transientes.
Neste trabalho, € proposta uma abordagem similar mas com o uso de matrizes de escala de
tempo, para o cdlculo dos passos de tempo locais, € um esquema de sincronizacdo necessario
que sdo incorporados ao método para introduzir a quantidade correta de estabilizagdo em todo

o dominio.

Como resultado, desenvolveu-se um método que se assemelha a formulacOes estabi-
lizadas bem conhecidas, empregando um tnico passo de tempo para todo o dominio e uma
defini¢do local de parametros de estabilizacdo. No entanto, suas origens estdo baseadas no uso

de passos de tempo locais combinados com um esquema de sincronizagao.

2.2 Operador Captura de Descontinuidade

Como discutido anteriormente, o0 método de Galerkin € inadequado para a andlise de
problemas dominados por conveccdo. A chamada propriedade de melhor aproximagdo (John-
son, 1987), que a formulagao de Galerkin exibe para operadores auto-adjuntos, € perdida sempre
que termos de convecg¢do estido presentes. Na pratica, a aplicacdo da formulagdo de Galerkin a
problemas convectivos resulta em oscilagdes espaciais que podem poluir a solu¢do em todo o

dominio de analise.

Com o desenvolvimento do método SUPG, que introduz uma difusdo anisotrépica de
balanceamento (Kelly et al., 1980), um avanco significativo foi obtido no sentido de reduzir
essas oscilagoes. Nesse método, o upwinding € introduzido aproveitando a ideia do método de
diferenciacdo a montante inclinada de Raithby (1976). O método gera uma contribuicao difu-
siva que atua apenas na direcdo das linhas de corrente. Comparado com métodos de diferencas
finitas, o SUPG pode ser classificado como um esquema de upwind de segunda ordem. De
fato, a parte de Galerkin do método corresponde a diferenciagdo central, enquanto a dissipag¢ao

necessdria para estabilizar a formulagdo vem da parte de perturbagdo do residuo ponderado.

Apesar de o método SUPG apresentar boa estabilidade se a solucdo exata for regular,
para solucdes nao regulares, i.e., que possuem descontinuidades ou gradientes muito inten-
sos, podem aparecer oscilagdes localizadas em regides contendo camadas agudas, como por
exemplo, camadas limites e interfaces finas. Hughes et al. (1986a) abordaram esse problema

adicionando uma perturbacdo extra a funcdo peso do SUPG. O efeito dessa perturbagdo extra
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¢ introduzir difusdo ao longo da direcdo do gradiente da grandeza transportada, funcionando
como um operador de captura de descontinuidade que auxilia 0 método SUPG no controle de

oscilagdes em regides com camadas abruptas.

No trabalho de Galedo e Dutra do Carmo (1988), foi desenvolvido um esquema de
upwind tomando a ideia de que na solugdo exata, as linhas de corrente, em um problema pura-
mente convectivo, sdo a direcao fisica das grandezas transportadas, porém, no caso da solugao
numérica, a dire¢ao € aproximada. Nessa abordagem, os autores derivaram o upwind a partir da
definicdo de um campo de velocidade que satisfaz a equagdo de transporte em cada elemento
finito e minimiza a diferenca entre a velocidade real e a velocidade de transporte modificada
gerando um termo de estabiliza¢do Petrov-Galerkin, que incorpora a direcao a montante corri-
gida. Dessa forma, a medida que a solucdo numérica se aproxima da solugao exata, a dire¢do a
montante tende a direcao das linhas de corrente produzindo o efeito de captura de descontinui-
dade.

Além disso, no trabalho de De Sampaio e Coutinho (2001), a velocidade efetiva, similar
a empregada no trabalho de Galedo e Dutra do Carmo (1988) foi aplicada para ajustar a velo-
cidade real na direcao do fluxo difusivo. Logo, o problema de conveccao-difusdo aproximado
gerou a mesma estrutura de funcdo de peso do método de Hughes et al. (1986a), porém, nesse
caso, o operador de captura de descontinuidade resultante ndo cria o indesejavel efeito de du-

plicacdo da formulacdo original SUPG somado a captura de descontinuidade.
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3 Formulacao Matematica

O objetivo deste capitulo é apresentar a formulagdo matemdtica para escoamentos in-
compressiveis com transferéncia de calor em problemas bidimensionais, considerando tanto
geometrias cartesianas quanto axissimétricas. A ado¢do de um modelo bidimensional se jus-
tifica principalmente pelo fato de que muitos escoamentos, tanto na drea nuclear quanto em
outras dreas da engenharia, apresentam simetrias ou geometrias que permitem a simplificacdo
de um modelo tridimensional para uma representacdo bidimensional. Essa simplificacdo reduz
significativamente o custo computacional, viabilizando simula¢des com maior resolucdo espa-

cial e temporal.

Primeiramente, serd desenvolvida a formulacdo para coordenadas cartesianas, seguida
pela extensdo para coordenadas cilindricas. Em ambos os casos, o problema € definido em um
dominio € com fronteira I', contidos em um espago Euclidiano bidimensional. A formulagdo é
estruturada de forma a incorporar as caracteristicas especificas de cada sistema de coordenadas,
garantindo uma representacao adequada dos fendmenos fisicos. Para os dois modelos conside-
rados, foi adotada a aproximacao de Boussinesq, na qual as pequenas variagoes de densidade
devido ao gradiente de temperatura, sdo incorporadas nos termos de forca de empuxo das equa-

coes de momentum.

3.1 Modelo Cartesiano

As leis de conservacgao sdo os principios fisicos que regem o comportamento dos fluidos
e a transferéncia de calor em um determinado sistema. Essas leis sdo conhecidas como conser-

vagdo de massa, quantidade de movimento e de energia.

Escrevendo a equacgdo da Continuidade, de Navier-Stokes e de Energia em coordenadas

cartesianas temos:

du dv

a—i—a—y—O 3.1

p0<au du 8u)_% Ity Ip 0 (32)

EJFMaJFVa—y ox 9y +$+p0ﬁgX(T_To)
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dv  dv  dv 0Ty dTy dp B
Po (E+”$+V7y>_ ox oy "oy TPPRTTT)=0 G
dT T  IT\  dq. dqy
Pocy (_8t LR *Va—y) o Ty 70 G

onde as varidveis dependentes sdo: u e v as componentes da velocidade, p a pressdo e T a
temperatura. A massa especifica a temperatura de referéncia 7, e dada por p,, o coeficiente de

expansio volumétrica é dado por B = —p~'dp/dT e g é a aceleraciio da gravidade.

O tensor das tensdes viscosas pode ser escrito como:

u Ju dv v
T = Zﬂa—x Toy = U (3_x + 8_y) Ty = zﬂa—y (3.5)
e o fluxo de calor como:

oT oT
gx = — Ox gy = —k—=— (3.6)

onde u € a viscosidade, k € a condutividade térmica do fluido.

O modelo fica completo com a introdu¢do das condi¢des iniciais € de contorno dos
campos de velocidade e temperatura nas fronteiras. As condi¢des de contorno de velocidade e
tracdo na direcdo x sdo prescritas pelos valores dados nas fronteiras ndo sobrepostas I', e I,

talque I', UL, =Tel, NI =0, de acordo com:

u=1u(x,t), xel, (3.7

(—=p+ To)ne + Toyny =1:(X,1), X €y (3.8)

onde 7y € ny sdo as componentes na dire¢do x € y, respectivamente, do vetor normal a fronteira.

As condi¢des de contorno de velocidade e tragdo na direc¢do y sdo prescritas pelos valo-
res dados nas fronteiras ndo sobrepostas I'y, e Iy, tal que I', UI',, =I"e I, NI, = 0, de acordo

com:
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v=y(x,t), x€T (3.9

Ty + (—p + Tyy)ny =1,(X,1), x€ Ty (3.10)

As condig¢des de contorno de temperatura e fluxo de calor s@o prescritas pelos valores
dados nas fronteiras ndo sobrepostas I'r € I'y, tal que I'r UL’y =" e I'r NIy, = 0, de acordo

com:

T=T(x,t), xeI (3.11)

gxnx +qyny =q(x,t), xely, (3.12)

As condicdes de contorno de pressdo e velocidade normal sao prescritas pelos valores
dados nas fronteiras ndo sobrepostas I', e I'g, tal que I',UI'c =T"e I', NI’ = 0, de acordo

com

p=p(x1), xel, (3.13)

uny+vny, = G(x,1), xe€l'g (3.14)

Note que as Equagdes de conservacdo contém o gradiente de pressao e ndo a pressao
propriamente dita. Ou seja, pelo menos um valor de referéncia de pressdo deve ser prescrito a

fim definir um campo de pressao dnico.

3.1.1 Equacoes Governantes na Forma Adimensional

De forma a adimensionalizar as equagdes de conservacdo governantes, 0 que permite
identificar os nimeros adimensionais relevantes que caracterizam o tipo de regime de esco-
amento, € preciso escrever as varidveis de forma conveniente em relacdo as escalas de re-
feréncia do problema. Sendo assim, as componentes da velocidade, pressdo e temperatura

na forma adimensional sdo: u* = u/u,, v = v/u,, p* = p/pou’ e T* = (T —T,)/AT com
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AT = (Tipax — Tinin)- Além disso, u, é a velocidade de referéncia, Ty € Tyin SA0 as temperaturas
maxima e minima do problema, respectivamente. As coordenadas espaciais sdo adimensiona-
lizadas com o comprimento caracteristico L, i.e., x* = x/L e y* = y/L. Ademais, o tempo e a

aceleracdo da gravidade adimensionalizados sdo expressos na forma: t* =t u,/Le g* =g/ ||g

)

respectivamente.

Deste modo, as equacdes governantes na forma adimensional podem ser escritas, a partir
deste ponto, omitindo-se o simbolo **’ das varidveis adimensionais. Essa convengao é adotada
por simplicidade de nota¢gdo, mantendo-se o entendimento de que todas as varidveis envolvidas

nas equagdes subsequentes estdo expressas em sua forma adimensional.

Ju dv

$+8_y_0 (3.15)

+ 25 4 Rig,T =0 (3.16)
X

=tV — = — ==+ = +RiggT =0 (3.17)
y

OT T 9T dqx dqy
E+”$+Va_y+ﬁ+a_y_o (3.18)

Com as equagdes constitutivas da tensdo cisalhante escritas na seguinte forma:

. _28u . 1 8u+8v . _28\/ (3.19)
" Redx Y Re \dx dy " Redy '
e do fluxo de calor como:
1 9T 1 9T
_ il - _ - 2
ax RePr dx @ RePr dy (3-20)

onde Re = p, ||u|| L/u é o niimero de Reynolds, Ri = BAT ||g|| L/u2 é o numero de Richardson

e Pr=c,u/k é o nimero de Prandtl.

E importante destacar que para problemas que envolvem convecgdo mista e forcada, em

que a velocidade de referéncia utilizada depende das caracteristicas do caso estudado, o em-
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prego das equagdes na forma adimensional € bastante conveniente. No entanto, para problemas
que envolvem apenas convecgao natural, € necessario obter a escala de tempo da velocidade de
forma indireta, i.e., u, = \/W Ou seja, para o caso de convec¢do natural, os nime-
ros de Richardson e Reynolds, que aparecem nas equacdes adimensionais, se tornam Ri =1 e
Re = /Ra/Pr, respectivamente, onde Ra = p,c, ||g|| BATL?/uk é o nimero de Rayleigh.

3.2 Modelo Axissimétrico

Para o modelo axissimétrico, as equagdes de continuidade, Navier-Stokes e energia para

um fluido incompressivel podem ser escritas em coordenadas cilindricas como:

dx r OJr

du +18(rv) _0 321

E'Fua-l-\/z +$— 9 7 or +poBg(T—T,) =0 (3.22)

(8u du 8u> dp ISx  19(rSy)

FTREF PRI ) - il P P 62

oy (3\/ v 3\/) dp 9Sy 19(rS,) 599_0

p(,cp(gT or a—T>+aqx+la(rq’):o (3.24)

E+u§+v5r Jdx r Odr

onde u € a componente da velocidade na direcdo axial, v € a componente da velocidade na

direcdo radial, p a pressdo, e T a temperatura.

No modelo axissimétrico, a equagdo de quantidade de movimento na dire¢do angular
nao € resolvida devido a consideracao de simetria em relacao ao eixo. Além disso, as equagdes
constitutivas incorporadas nas equagdes de conservacdo acima sao escritas para a tensdo cisa-

lhante como:

du v
Sxr =21 =~ Syr=H (E‘Fa Srrzz.um Seo :Z,Ll; (3.25)

Ju Jdv dv
ox

e para o fluxo de calor como:
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oT oT
qx = —kg qr=— a7 (3.26)

Novamente, o modelo fica completo com a introducao das condi¢des iniciais e de con-
torno dos campos de velocidade e temperatura nas fronteiras. As condi¢des de contorno de
velocidade e tracao na direcdo axial sdo prescritas pelos valores dados nas fronteiras ndo sobre-

postas I', e I, tal que I', UI; =T e I',NI;, = 0, de acordo com:

u=u(x,t), xel, (3.27)

(—p+ Sxx)ng + Sxrny = 1x(X,1), x €T, (3.28)

onde n, e n, sdo as componente axial e radial, respectivamente, do vetor normal a fronteira.

As condicdes de contorno de velocidade e tracdo na dire¢do radial sdo prescritas pelos
valores dados nas fronteiras ndo sobrepostas I', e I, tal que I',UI', =T e I', NI =0, de

acordo com:

v=1(x,t), xeT, (3.29)

Setx+ (—p+ S )ne =1r(x,1), xET, (3.30)

As condic¢des de contorno de temperatura e fluxo de calor s@o prescritas pelos valores
dados nas fronteiras ndo sobrepostas I'r e I'y, tal que I'r UI'y =1" e I'r NI’y = 0, de acordo

com:

T=T(xt), xely (3.31)

qxlx + gy = ﬁ(X,l), X€E Fq (3.32)

As condic¢des de contorno de pressdo e velocidade normal sdo prescritas pelos valores
dados nas fronteiras ndo sobrepostas I', e I'g, tal que I', UI'¢ =1"e I', NI'g = 0, de acordo

com:
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p=p(x,1), xeT, (3.33)
uny+vn, = G(x,t), x€T'g (3.34)
3.2.1 Equacoes Governantes na Forma Adimensional

Andlogo ao que foi feito para adimensionalizar as equacgdes de conservacdo em coorde-
nadas cartesianas, na forma adimensional das equacdes em coordenadas cilindricas as varidveis
primitivas velocidade, pressdo e temperatura podem ser escritas como: u* = u/u,, v = v/u,,
p* = p/pou’ e T* = (T —T,)/AT. As coordenadas espaciais sio adimensionalizadas com o
comprimento de referéncia D, i.e., x* = x/D e r* = r/D e o tempo e a acelera¢do da gravidade

adimensionalizados sdo expressos na forma: t* =1 u,/D e gt = g,/ ||g||, respectivamente.

Como na secdo anterior, as equagdes governantes na forma adimensional podem ser

escritas, a partir deste ponto, omitindo-se o simbolo **’ das varidveis adimensionais.

du 19(rv)

$+r or

=0 (3.35)

du Jdu Jdu dp ISy 19(rSy) o
E—Fua—{—\)E—Fa— % 7 or +Rig,T =0 (3.36)

v dv  dv dp ISy 19(rS,) Sge
e e e v e 0 G370

a1 T e 190,
ot ”ax v&r ox r Odr

=0 (3.38)

Com as equagdes constitutivas da tens@o cisalhante escritas na seguinte forma:

2 du 1 (814 8\)) 2 Jdv 2 v (3.39)

Spp = — 2= s.o—=— (42 s — =9 _ <V
" Re dx T Re 8r+8x " Reodr 90 =~ Rer

e do fluxo de calor como:
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1 dT 1 dT

-7 -9 3.40
RePr dx 4 RePr dr ( )

qx =
onde Re = p,u,D/t, Pr = c,p/k e Ri = BAT ||g|| D/u? sdo os nimeros de Reynold, Prandtl e

Richardson respectivamente.

No modelo axissimetrico, com comprimento caracteristico diferente do modelo car-
tesiano, a escala da velocidade de referéncia tomada indiretamente, é definida como u, =
\/W. Portanto, para convecgao livre, os nimeros de Richardson e Reynolds se tor-
nam Ri = 1 e Re = \/Ra/Pr, onde Ra = p?2c, ||g|| ATD?/ ik é o nimero de Rayleigh.
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4 Formulacao Estabilizada

Neste trabalho, a formulacdo estabilizada segue aquela derivada no trabalho de De Sam-
paio (2006). Como dito anteriormente na revisdo bibliogréfica, para os problemas de difusao, a
solucdo pelo método de Galerkin padrio € direta. No entanto, se uma aproximacgao desse tipo
fosse usada para resolver equagcdes de convecgdo com valores criticos de Peclet elementar, os
resultados apresentariam oscilagdes espurias. Por isso, com o objetivo de eliminar essas osci-
lagdes, diversos esquemas de upwinding como o SUPG foram desenvolvidos (Nithiarasu et al.,
2016).

A formulacado apresentada aqui pertence a classe das formulacdes de elementos finitos
inerentemente estiveis, i.e., ndo requerem a introdugao de termos escolhidos a priore para serem
estabilizadas. Os termos que garantem a estabilizacdo surgem de forma natural conduzindo a
uma aproximacao conveniente para solu¢do do problema de convec¢do dominante, produzindo
dessa forma o efeito SUPG. Além disso, os campos de velocidade e pressdo sdo projetados em
espacos de fungdes de mesma ordem, condi¢do que violaria a restricdo de Babuska-Brezzi se

nao fossem estabilizados.
4.1 Atualizacao dos Campos - Cartesiano

4.1.1 Atualizacio do Campo de Pressao

Para derivar a equacdo de atualizacdo dos valores de pressao, € realizada uma expansao
temporal das varidveis dependentes velocidade e temperatura. Com isso, a velocidade u pode

ser expressa utilizando uma série de Taylor de segunda ordem, da seguinte forma:

W=+ A

ou  At* 9 [(du\" 3
3 +TE (5) —|—0(Al‘ ) “4.1)

onde os sobrescritos n € n+ 1 indicam o nivel de tempo e Ar indica o passo de tempo entre dois

niveis de tempo consecutivos.

Note que € possivel escreve a equacdo acima como:
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du* At d [Jdu\"
n+l __n _ — _ - = 3
u u' = Au At[&t +28t(8t> }—i—O(At) 4.2)
n+1/2
Au= At (%) +O(Ar®) (4.3)

+1 n

onde a variacdo da velocidade durante o passo de tempo At € denotado por Au = u""" — u".

Nesse momento, definimos o que chamamos de velocidade real como o vetor velocidade

a, que serd usado nas equagdes de conserva¢ao, como:

Dessa forma, é possivel escrever:

du Jdu Jdv  dv oT  dT
a.Vu:ua—l—va—y a~Vv:u$+va—y a'VT:ug"i_va_y (4.5)

Assim, ao substituir a variagao da velocidade Au na equagao de conservagao da quanti-
dade de movimento na direcd@o x, e aplicando o mesmo procedimento aos termos Av e AT nas
equacdes de conservagdo da quantidade de movimento na dire¢do y e de energia, respectiva-

mente, obtém-se:

apn+1/2 aTn+1/2 P! n+1/2
Au=—Ar [a"t2 vy 12 4 - ’gx - 3y +Rig, "' 2| +O(A) (4.6)

+1/2 +1/2
8p”+1/2 _ aT)’Zy / . afyny / +ng Tn+1/2
dy dx dy Y

Av = —At [a"“/z VY2 4 +0(A) (4.7)

aqﬁ'ﬁ-l/z . aq;l+1/2
ox dy

AT = —At [a”+1/2 VT2 4 +0(A) (4.8)

Uma outra forma titil de representar as expressdes acima € tomar uma aproximacao de
menor ordem, na qual as varidveis sdo avaliadas no nivel de tempo n, com excecdo do gradiente

de pressdo, que é avaliado no nivel n+ 1/2:
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| apn+1/2 afgx aT;ly . n- 2
S ox oy TRi&T +0(A?) (4.9)

Au= —Ar |a" Vi +

op"tl2 dwy dty 2
5 ox 9y +Rigy,T" | + O(Ar”) (4.10)

Av=—Ar|a"- V' +

Iq; 4+ %% 8qy

AT = —Ar |a"-VT"
a + == o Jy

+0(A?) 4.11)

Com as expressoes para Au e Av ja determinadas, ao impor o balanco de massa no nivel

de tempo n + 1, obtemos:

+ =0 (4.12)

JAu JdAv Ju* N

ox dy o T dy =0 19

Aplicando o método dos residuos ponderados, onde ¢ € a funcdo peso, e integrando

sobre o dominio €2, obtemos:

JdAu JdAv ou" 8v
/Q(P{W—l-a—y}dg—l—/gq)[a ay]dsz 0 (4.14)

Ao integrar o residuo com a func¢do peso @, garantimos que sua média ponderada (inte-
gral) sobre o dominio seja igual a zero. Essa é a chamada formulagdo fraca, pois ela ndo exige

que a solucdo coincida a menos de um conjunto de medida nula.

Integrando por partes, essa equagdo assume a forma:

ou" Bv
dy

I
Q dx

79 Aude — / Ade+/(p Auny + Avn,) dF+/ { }dQ 0 (4.15)
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Substituindo Au e Av na equagdo acima, temos:

e
ULNEE

op"t1/2 (91’ oth
a'. v+ L Y 1 Rig,T"

ox 8x dy
¢
AT
+A;;%

dQ

gptti/2  att  9th
P xy Yty +ngyTn

dy  ox dy =

a"- V' 4

du"  dv
—/ch{gx &y}dﬂ /90 (Aun, + Avny)dT"+ O(A%)  (4.16)

Reescrevendo a equagdo acima e considerando que a pressao € prescrita na fronteira I,
o valor da fun¢do peso @, tal que ¢ =0 em I'), e que em I'g a variacdo do fluxo através da

fronteira € prescrita como AG = Aun, + Avny, obtemos:

du" MW"
dQ:_/Q(p{ax 8y]dg

arh  Jdt!
—/ PAGAT — /At— [a -Vu" ﬁ——”JrRing"} dQ
I'g ax ay

n+1/2 n+1/2
/ A |209PTT L 999D
dx  Ox dy dy

81;’y Ty,

/ At— a"-Vy'— +RzgyT” dQ (4.17)
dx 8y

Como o método de Elementos Finitos € baseado na formulacdo fraca do problema,

busca-se uma solucdo aproximada para as equagdes diferenciais em um espaco de dimensao

finita. Essa solucdo aproximada é uma projecao da solugdo exata em um subespago apropriado e

pode ser representada como uma combinagao linear de um nimero finito de fun¢des conhecidas,

que formam a base desse subespacgo. Isso implica que u pode ser escrito como 0 somatdrio:

uzNjuj

onde N; sdo as fung¢des forma e u; sdo os valores nodais.

Neste trabalho, a discretizacdo espacial € realizada utilizando elementos finitos com
funcdes forma Lagrangianas triangulares lineares em duas dimensdes. Assim, as varidveis de
velocidade, pressdo e temperatura sdo representadas como: # = Nju;, V= N;v;, p=N;p; e
T = N;T;.
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Aplicando o método de Galerkin, obtemos da Eq. 4.15 a seguinte expressao:

ON; apAn+1/2 ON; apAn+1/2
dx Ox * dy dy

_ / N:AGAL — / At
Ty Q

ON; 2Ty, It N
—/Ata—’ [ﬁ"-Vﬁ”——xy——yy+RigyT”] dQ (4.18)
o dy

[
Q

PR
dQ_—/QNi [tha—y}dﬂ

ox

dx dy

{ﬁ” Vi — +Ri ng"} dQ
ox dy

Dessa forma, a equagdo acima € usada para calcular o campo de pressao ﬁ"+1/ 2,

4.1.2 Atualizacao dos Campos de Velocidade e Temperatura

Uma vez que foi obtida uma expressao para o cédlculo do campo de pressdo, prosse-
guimos com a atualizacdo dos campos de velocidade e temperatura. Para isso, sdo utilizadas

as equagdes de conservacdo de quantidade de movimento e energia na forma discretizada no

tempo n+ 1:
1/2 n+1/2
Au n+1/2 1/2 apn+l/2 &T)’Z; a‘L-x . 1/2 o)
— a2yl - - Rig, T2 =0+0(A%) (4.19
At+ . + dx dx dy K8y +oar) @19
n +1/2 +1/2
&_i_anﬂ/z_vvnﬂ/z_i_ap +1/2_3T§y 9Ty

Rig, T"1/2 =04+ 0(A%) (420
At dy Ox dy +Rigy +0(Ar")  (4.20)

AT ntl/2 5 )2

)
Sant 2y qu + yay =0+0(A?) 4.21)

Note que € possivel representar as varidveis no nivel de tempo intermediario n + 1/2.

Sendo assim, utilizando as expansdes de Taylor, obtemos:

n+1 n
e W

A
SO =i+ 7” +0(A?) (4.22)

n+1 n
vn+1/2 _ v +v

A
S O(AR) =+ T+ 0(Ar?) 4.23)
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T AT
T2 = + +O(AP) =T"+ -+ O(Ar?) (4.24)

Assim, considerando que os célculos iterativos das varidveis: Auk, AvK e AT* s3o valores
estimados para a variacdo de u, v e T durante o passo de tempo Az, onde k € um indice provisorio
usado durante as iteracdes até se atingir a segunda ordem no tempo. Entdo, u¥, v€ e T sdo
as estimativas correspondentes dessas varidveis no tempo Y2 — g A /2. Dessa forma,

tomamos as seguintes aproximagdes das varidveis no nivel de tempo #"1/2:

A k A k+1
W =" 4 T” W = 4 ”2 (4.25)
A k A k+1
K= g TV Pl — g V2 (4.26)
ATk ATk+1
Tk =T" + -~ TR — 17 4 5 4.27)

Considerando a equacdo de momentum. Das equacdes 4.19 e 4.20, temos:

Auktl apn+1/2 aT)]c(x o1k

1
+ —ak V(A 1ok v+ 2 L Rig,TF =0 (4.28)

At 2 ox ox  dy
Avk+l 1 . apn+l/2 817" 81"
—ak. VAV L ak vy Y LR TF=0 4.29
At +2a (Av)™" +a%- Vv dy dx dy K8y (4.29)

Para a equacgdo de energia 4.21, temos o seguinte resultado andlago a da equacdo ante-

rior:

ATk+1 1
o+ Eak V(AT pak . v 4

dqk  dqy
5 gy =0 (4.30)

Para produzir os residuos das componentes do campo de velocidade e da temperatura,
novamente, as varidveis sao discretizadas espacialmente usando elementos finitos assumindo as
seguintes formas: X = Nju’]‘., Pk = va’]‘., Tk = NjT][‘, Ak = NjAu’j‘., A = NjAv’]‘. e ATF= NjATjk.
Essa discretizacao € utilizada para aproximar os respectivos campos nas equagdes 4.28, 4.29 e

4.30:



1 At ] Ipm1? otk 9%
R — A/\k+1 "k V A k+1 ak .V’\n XX R Tk
" At{u +a (A#) _+a @+ = x 9y > +Rig,
1 At ] aprti2 9tk ok A
R. — AAk-i-] Ak_v AD k+1 Ak_VAn _ Xy yy Ri Tk
Y At[ +2 (a%) _-l—a v dy ox 8y+ *8y
RE:L ATk—i—l_{_gﬁk_V(AT)k—H +ﬁk‘vfwn+aqx+%
At 2 dx dy
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(4.31)

(4.32)

(4.33)

Usando o residuo da discretizagido da equagcdo de momentum, podemos escrever o resi-

duo quadrado como:

§= / A(R.Ry + RyR,)dQ
Q

onde A é um pardmetro de escala.

Minimizando S com relagdo as varidveis livres AukJrl Avf“, temos:

oS

58
AS = —— SAUFT + SAVTL =0
SAulHT S !

k+1
Av;

onde,

W :/ 2AmedQ =0 A A livre

k+1 1;
k+1 —/u kyHR dQ=0 ¥ AFH livre

(4.34)

(4.35)

(4.36)

(4.37)

O parametro A, que nesse trabalho é A = A¢, foi escolhido de forma a obter o residuo

ponderado do tipo Petrov-Galerkin como se segue:

At
/ {Ni + ?ﬁk . VN,-} R.dAQ =0 W Auf“ livre
Q

(4.38)
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At
/ |:Nl._|_ Eﬁk.VNi:| R, dQ =0 v AV livre (4.39)
Q

Note que a primeira parte da fungdo peso corresponde a funcdo peso do método de

Galerkin. Entdo, da Eq. 4.38, temos:

At 1 k41 AtAk k+1
N; + —a"-VN;| — |AG*T V(AD T dQ =
/Q[Jrza ,]At[u + Sl v(aa)

At
—/ {Ni+—ﬁk'VNi]
Q 2

dp An+1/2 a%k otk A
ak v+ w_ — Y | Rig T*

dox ox dy =0

V AUl livre  (4.40)

Seja o seguinte termo da Eq. 4.40:

dQ (4.41)

a An+1/2 a%k 0tk
_/M XX Xy
Q dx ox dy

Usando a identidade de Green, a expressao acima pode ser reescrita como:

opml2 otk 9 INi [ 12 sk
_/QNl[ dx  Jdx  dy dQ_/QW[p _Txx}dg

IN; i sk An+1/2 ak
—/Q 5 & dQ+/N —p T2+ e+ 0y | AT (4.42)

Considerando que a fronteira I' constitui-se de duas partes ndo sobrepostas, I', e I';,

como dito anteriormente. A componente da velocidade & é prescrita em 1, e portanto Al

~k+1

também € prescrito em I',. Dessa forma, N; = 0 em I', onde Ad;™" € prescrito. Por outro

lado, 7* = (—p"t1/2 4 2% Yp, + T)’fyny é prescrito em I';,. Entdo, usando a Eq. 4.40, temos:
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At 1 k1 AtAk k+1
N;+—a% - VN;| — |AQ*T VAW dQ =
/Q{ S ,}N{u +Zla v(an)

N, AN,
/ﬂ[ﬁ"“/z #aa- [ TUtkao- / at. Vi + Rig ) do

Q Jdx Qdy ¥
At 9pttl/2  gzk o0tk
— 2A’< VN; |ak - va + ”a — axx— axy—l—Rzngk dQ+/ Nif*dr
X X y

Y Akt livee  (4.43)

De forma similar para o residuo da velocidade na direcdo y, pela Eq. 4.39, temos:

At 1 At
/ Ni4+ =a* . VN;| — |AFT 4 —ak . v(Ap)H T dQ =
Q 2 At 2

aN“deJr/ (52— 2k )dQ - / & Vi + Rig,T*) dQ

ox Ly
At . opntl/2 9@’5 o, . —k
_ [ Bak v, ok v y O L pie k| 0 /Nt dr
02 f V' Iy I Iy +Ri gy + r, ity

V AT livie  (4.44)

onde a fronteira I" constitui-se de duas partes ndo sobrepostas, I', e I';,, como dito anteriormente.
A componente da velocidade ¥ € prescrita em I',, e portanto AV também é prescrito em I',,. Dessa
¢ 1 ¢ prescrito. Por outro lado, t = nx + (—prH2 %;‘y)ny é

prescrito em Iy .

Dado o residuo da discretizagido da equagao da energia (4.33), podemos escrever o resi-

duo quadrado como:

S— / ARpRpdQ (4.45)
Q

Tk+1

Minimizando S com relagdo as varidveis livres AT, " e escolhendo A = At, temos:

At
/ |:]Vi + ?ﬁk i VNi] RpdQ =0 i AT/‘Jrl livre (4.46)
Q
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Portanto, substituindo Rr na equacio acima, temos:

At gk dgk
— / N;+—a*. VN, | |a* iy 2 T4y ATF livre  (4.47)
Q 2 dx  dy

Seja o seguinte termo da Eq. 4.47:

oy
Q

Usando a identidade de Green, a expressdo acima pode ser reescrita como:

~ sk
99y 9

o dQ (4.48)

9% | 94y
dx  dy

yy
Q

Considerando que a fronteira I' constitui-se de duas partes nio sobrepostas, I'7 e I'y,

IN; IN; n .
0= /Q qudg+ /Q dy qydQ — /FNi(qxnx +gyny)dl’  (4.49)

como dito anteriormente. As componente da Temperatura 7' sdo prescritas em I'y e portanto
AT também é prescrito em I'7. Dessa forma, N; = 0 em I'7 onde Af’l.k“ € prescrito. Por outro

lado, Z]k = q)’;nx + qu‘ny € prescrito em I'y. Entdo, usando a Eq. 4.49 na Eq. 4.47, temos:
/ [Ni + —ak. VN,-] — [AT"“ + ?ﬁk : V(AT)"“} dQ = / ——gkdQ
Q

2 At Q ox
o 06k 9G)F
+/ ak.vin 4 2 | 7D
Q

dx dy de

' gkaq / Nk vindQ — / A5k VN,
dy Q Q 2

— / Nig'dU ¥ AT livre (4.50)
F‘I
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4.2 Atualizacao dos Campos - Axissimétrico

4.2.1 Atualizacao do Campo de Pressao

Para obter a equagdo de atualizacido dos valores de pressdo no modelo Axissimétrico,
seguindo o mesmo procedimento do modelo anterior, € feita uma discretizacao no tempo das
varidveis de velocidade e temperatura. Além disso, o vetor velocidade real a, escrito em coor-

denadas cilindricas, que serd usado nas equacdes de conservacao, é definido como:

a—=ue,+ve, 4.51)

Dessa forma, é possivel escrever:

du Jdu dv  dv dT  dT
a- Vu—ua%—vz a- VV_ME—H}E a- VT—ug—f—va— (4.52)

Assim, utilizando a expansao em série de Taylor das varidveis, como em 4.3, e substi-
tuindo nas equagdes de quantidade de movimento nas direcdes axial e radial e na equagdo de

energia, temos:

n+1/2 n+1/2
Au=—At [a"+1/2-vu"+1/2+ apax - as,gx - ;a% (rs”“/z) +Rig, "2 | +0(A)
(4.53)
o pt1/2 aSn+l/2 19 Sn+l/2
_ n+1/2 7, n+1/2 P _ Ooxr 1o n+1/2 06 3
Av=—Ar [a vt S e <rS,, ) + 90— | 1 o(ar’)
(4.54)

n+1/2
AT = —At [a”“/Z-VT”“/Z 94x " +1i(q”“/2) +O0(Ar®) (4.55)

Cox | ro

Tomando uma aproximag¢dao de menor ordem das equagdes acimas com as varidveis
avaliadas no nivel de tempo n, com excecdo do gradiente de pressdo, que € avaliado no nivel
n+1/2, temos:
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apn—i—l/z oS" 19 .
Au= —Ar |a" - Vu" + T a;x — 3, (rS") 4 Ri g.T" | + O(Ar?) (4.56)
opttlZz  gst 19 Y
Av=—Ar |a" - V" — o (pSh )4 288 Af? 4.57
Y S ar dx r8r(r5")+ r +o(ar) (4.57)

AT = —At {a” -VT" + 94 + 19 (rq’;)] +0(A?) (4.58)

dx  radr

Impondo o balango de massa no nivel de tempo n+ 1, obtemos:

0 n+1 10 n+1
=0

dAu  19d(rAv) Ju" 1d(r")
ox s or +8x+; or =0 (4.60)

Aplicando o método dos residuos ponderados, onde @ € a funcdo peso, e integrando

sobre o dominio Q, obtemos:

dAu 19(rAv) du"  19(n") B
/Qq){ax = ]rdQ—k/Q(p{ax oS5 Q=0 (4.61)

Integrando por partes, essa equagdo assume a forma:

—/ a—(pAurdQ—/ a—(pAvrdQ—l—/(p(Aunx—{—Avnr)rdl“
Q ax Q 8}" I

_|_/(p o LI a—0 462
Q | dx r dr
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Substituindo Au e Av na equagdo acima, temos:

e
/Q p?

op"t1/2  gen 19(rs"
p Sxx (err> +Rl ngn

ox  ox r Or rdQ

a’-vu'+

e
+/QAIE

_ / o2 LI i / @ (Aun, + Avn,)rdT + O(A2)  (4.63)
Q ox r Oor r

apn+l/2 aSzr 1 a(rS’r?r) + SZG

dr  dx r or r rde =

a4+

Reescrevendo a equagdo acima e considerando que a pressao € prescrita I',, o valor da

fungéo peso @, tal que ¢ =0emI',, e em I'; a variag¢do do fluxo através da fronteira € prescrita

a(p ap"+1/2 8(/) apn-l—l/z
dx  Ox ar or

como, AG = Aun, + Avn,, obtemos:
u* 1d(n" —
/At rdQ:—/q) W LI o [ oAG rar
o | dx r Odr o

00 0 o, IS ISl 00 [0 o S, 0SL
_AAIE |:a -Vu —W— or +ngx }rdQ—/QAtE |:a Vv —W—W}ng

-I—/At— dQ-l—/At (S}, — Spo)dQ (4.64)

A discretizagdo espacial da equac@o acima € realizada de forma andloga a Eq. 4.17,

utilizando o método de Galerkin. Esse procedimento resulta na seguinte expressao:

. ypnt+1/2 . ypnt+l1/2
/At[aN,ap L ON:idp

AN N
rdQ = — /N {a” i ]rdg /Nﬁ”dQ

Jdx OJx Jdr  or ox or
a]vl an AN aSA)rclx aSﬁr n
- e [a Vi — x  9r +ngxT} rd€Q)
IN; ARV aSA,rvlr 8SA’: on
3, [a -V o ar} dQ+/At— dQ—I—/At— (S, ee)dQ

(4.65)

A equagdo acima € usada para calcular o campo de pressao p"“/ 2
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4.2.2 Atualizacio dos Campos de Velocidade e Temperatura

Analogamente ao modelo Cartesiano, apés o célculo do campo de pressao, prossegui-
mos com a atualizacdo dos campos de velocidade e temperatura. Para isso, sdo utilizadas as
equagdes de conservagdo de quantidade de movimento e energia na forma discretizada no tempo

n+1:

A_?Jranﬂ/z,vunﬂ/zJr Pax B ng -- (r 5: >+Ringn+l/2 :0+0(At2)
(4.66)

A 9pt1/2 aSn—H/Z 19 n+1/2 Sn+1/2
A_‘l‘}_’_an+l/2.vvn+l/2+ par B ng _; (I" ar; ) Oi :O+0(At2) (4.67)

AT n1/2 ;z+1/2
AL a2 yprt/2 4 d4qx Lo d(rq ) _ 0+ O(AF?) (4.68)
At dx r ar

Utilizando as expressdes 4.22 - 4.27 para o calculo iterativo das varidveis a fim de se
alcangar uma precisio de segunda ordem no tempo, i.e., no nivel de tempo n+ 1/2, as Eqs. 4.66

- 4.68 resultam em:

IpIash 10(sh)
ox dx r dr

A k+1 1
L Ak V(Au)RT kv

s TRigTF=0  (4.69)

AL, ap"t1/2  9sk 19(rsk) Sk
- V(A k+1 k_V n . xr - rr 06 =0 4.70
At —|—2a (Av)" +at- W4 or Jox r OJr + r ( )
AT 1, ¢k 19(rg¥)
—ak. V(AT +ak. v g DA 4.71
At + Za (AT)™ +a + dx + r or 0 ( )

Os residuos das componentes do campo de velocidade e da temperatura sdo escritos
usando a mesma discretizacdo espacial em elementos finitos que no modelo Cartesiano. Essa

discretizacao € utilizada para aproximar os respectivos campos nas equagdes 4.69, 4.70 e 4.71:

1 At
R, = — |Ad"T + —ak. v(Ap)<T | 4-ak v

Lo 98k 1068%)
At 2

Rig. T (4.72
ox dx r dr HRig ™ ( )
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1 At apmti2 98k 10(rSk) Sk
Rr - AAk-i-l _Ak V AA k+1 Ak' VAn . xr rr 00 473
At{v T (49) AV dx r dr T *73)
N . o, 904y | 10(rg))
Rp = — | AT 4 =% . v(AT)<! k.vir x4 2 Ar 4.74
E= [ + 54 (AT) +a + 3. + R 4.74)

Usando o residuo da discretiza¢ido da equacdo de momentum, podemos escrever o resi-

duo quadrado como:

S = / A(R:Ry + R.R,) rdQ 4.75)
Q

onde, assim como no modelo anterior, A é um pardmetro de escala.

Minimizando S com relacio as varidveis livres AufJrl e Avﬁ‘“, temos:
oS k1, OS k1
Entao,
oS / OR,
— = [ 2A—""RrdQ=0 YV A livre 477
5Auf+1 Q 5Auf+1 ! ! ( )
m = /QZAWRVVC{Q =0 v Avi livre (478)
Escolhendo A = At, temos:
A1 k1 1
/ N,~+?a “VN;| RyrdQ2 =0 vV Au; livre 4.79)
Q
At k+1 1
/ Nit Sk VN Rerd@ =0 ¥ AV livre (4.80)
Q

Note que novamente a primeira parte da fun¢do peso corresponde a funcdo peso do
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método de Galerkin. Entdo, da Eq. 4.79, temos:

At | At
/Q [Ni—k?ak-VN,} < [Auk+1+ 54 ak.v(an) | rdQ =
At ap pnt1/2 8§" 19(r8* N
_/ N;+—ak.VN;| |aF v+ w10 "’)+Ring" rdQ
Q 2 ox Jox r OJr

v Akt livee  (4.81)

Seja o seguinte termo da Eq.4.81

[
Q

Usando a identidade de Green, a expressdo acima pode ser reescrita como:

oI9Sk 1905,
ox ox r Jr

rd€) (4.82)

apmt12 a8k 19(r8k) INi w12
_/QM[ dx  dx r or rdQ = Qx(p ™ P a2

Mg . )
_ /Q I8k a0 + /r Ni[(= V2 4+ 8 e+ 8ty rar (4.83)

Considerando que a fronteira I" constitui-se de duas partes ndo sobrepostas, I', e I,
como dito anteriormente. A componente da velocidade & é prescrita em I, e portanto Al
também ¢é prescrito em I',. Dessa forma, N; = 0 em I', onde Auk+l

lado, 7* = (—p prl/2 4 S’;x)nx + 8K n, é I';.. Entdo, usando a Eq. acima na Eq. 4.81, temos:

€ prescrito. Por outro

At 1 . At .
/Q [Ni-l-?ak-VNi] o {Au"“ -I-Eak-V(Au)k“] rdQ =

JN; ok
(An+1/2 ) rdQ — / 5 L rd€Q) — /N ak. v +ngka)rd'Q

o Ox
At oprtl/z g8k 98k Sk
— QEﬁk-VN,- ak. v+ — a;’“— a;”— = 4 Rig T*| rdQ

4 / Nl Y A livie (4.84)
[ix
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De forma similar para o residuo da velocidade na direcdo radial, pela Eq. 4.80, temos:

At Ll Ar A IN; &
/Q |:Nl+?akvzvl:| E {Avkﬂ—f—?ak-V(Av)kH} rdQ = — Qa—xls)lirrdg

ON; . Sk
+/ —(ﬁ"+1/2—5’;,)rd9+/N,~ﬁ”+1/2d9—/Ni(ﬁk-wuﬁ)rdg
Q dr Q Q r

[ Mgy ﬁk.vﬁn+aﬁn+l/2_aﬁl;’_aﬁlir_%_;_sliﬂ) O
Q2 ! or ox or r r

+ / Ni*rdU ¥ AT livie (4.85)
l—‘lr

onde a fronteira I" constitui-se de duas partes ndo sobrepostas, I', e [, , como dito anterior-
mente. A componente da velocidade ¥ € prescrita em I',, e portanto AV também € prescrito em
I',. Dessa forma, N; =0 em I, onde Avf-‘Jrl € prescrito. Por outro lado, t_f = S”;,nx +(— ﬁk“/ 24

Sk Yn, é prescrito em I, .

Dado o residuo da discretizacdo da equagao da energia (4.74), podemos escrever o resi-

duo quadrado como:

S:/ ARERE rdQ (4.86)
Q

Minimizando S com relagdo as varidveis livres ATik+1 e escolhendo A = At, temos:

At
Q

Portanto, substituindo Rr na equagdo acima, temos:

At 1 A At X
/ Ni+ -8 VN, | — [ATF 4 Zak V(AT | rdQ =
Q 2 At 2

At o 048 19(rgk
_/ N;+—a*.VN;| |k v + 9x + - (r4,) rd ) YV ATF! livre (4.88)
2 2 dx r dr '

Seja o seguinte termo da Eq. acima:

~k ~k
_ / N; 94  190q)] 1o (4.89)
Q ox r Jr
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Usando a identidade de Green, a expressdo acima pode ser reescrita como:
[0 1o,
Q dx r Odr

Considerando que a fronteira I' constitui-se de duas partes ndo sobrepostas, I'7 e I'y,

8N 8N

krdQ — /N (G*ne+ @~ n,) rdl
(4.90)

como dito anteriormente. As componente da Temperatura 7' sdo prescritas em I'z e portanto
AT também é prescrito em I'7. Dessa forma, N; = 0 em I'7 onde ATl.kJrl € prescrito. Por outro

lado, c‘]k = c})lﬁnx + c}lr‘n, € prescrito em I'y. Entdo, usando a Eq. 4.90 na Eq. 4.88, temos:

A L1 okt o Ak kt1 aN gk
N; + —a"-VN;| — |AT*" V(AT rdQ
/{ T } At[ o avarn)
. . aAk aAk ~k
lé’r‘rdQ—/Niﬁk-VT”rdQ—/ A3k VN, { iy 99y 99 | 0
Q Q2 dx dr r

— / NigerdU ¥ ATF livie (4.91)
r‘[

4.3 Modelo Submalha Implicito

Uma caracteristica importante das formulacdes estabilizadas de elementos finitos € a
introducao de forma inerente de um modelo submalha para as escalas ndo resolviveis do escoa-
mento. Em um importante trabalho, Hughes (1995) prop6s o Método Multiescala Variacional,
explicando a relac@o entre modelos submalha e formulagdes estabilizadas de elementos fini-
tos. Além disso, no trabalho de De sampaio et al. (2008), ficou demonstrado que a formulagao
estabilizada proposta, similar a apresentada neste trabalho, € equivalente ao uso de uma dis-
cretizagdo do tipo Galerkin das equacOes espacialmente filtradas, onde um modelo submalha

particular, proporcional ao residuo de discretizagdo, € aplicado.

Na Simulacdo de Grandes Escalas (LES), onde as grandes escalas de turbuléncia sao
resolvidas pela discretizacd@o e as pequenas escalas sdo levadas em consideragcao usando os cha-
mados modelos submalha (Garnier, 2009), as equacOes governantes sdo obtidas aplicando uma
funcao filtro no espaco no sistema de equacdes de Navier-Stokes. A aplicacdo dessa funcdo
gera um problema de fechamento, uma vez que o termo ndo linear da equacdo de quantidade de
movimento resulta na introdugdo de tensdes adicionais que precisam ser modeladas. Essa abor-
dagem € andloga a utilizada para obter o modelo RANS (Reynolds Averaged Navier-Stokes)
(Wilcox, 1993), mas com uma filtragem no espaco ao invés de uma filtragem no tempo. Para

resolver esse problema de fechamento, diversos modelos de submalha foram propostos, como
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o modelo Smagorinsky, que expressa essas tensdes em termos das varidveis do fluxo filtrado.

Dessa forma, a formulacdo estabilizada derivada neste trabalho pode ser interpretada
como uma discretizac@o do tipo Galerkin aplicada as equacoes de Navier-Stokes filtradas espa-
cialmente, onde o modelo submalha surge de forma implicita. Ao comparar a equacao estabili-
zada resultante com a obtida pelo método de Galerkin aplicado as equacdes filtradas, observa-se
que ambas sdo equivalentes se a tensdo de submalha for modelada como uma fun¢do do residuo
de discretizagdo. Logo, esse resultado indica que o modelo submalha surge naturalmente na
formulacao estabilizada, sem a necessidade de introduzir explicitamente um modelo adicional.
Outra caracteristica é que, diferentemente do modelo de Smagorinsky, que adiciona dissipagao
independentemente da resolucao do escoamento, o modelo implicito da formulacao estabilizada
age de forma que seu efeito € significativo apenas nas regides onde as escalas nao resolvidas

sdo intensas, reduzindo o impacto em areas onde o escoamento estd bem resolvido.

4.4 Campos de Velocidade

Neste trabalho, para a derivagdo do operador de captura de descontinuidade, sdo intro-
duzidos os conceitos de velocidade efetiva e velocidade hibrida. A velocidade efetiva, assim
como aquela utilizada no trabalho de Galeao e Dutra do Carmo (1988), ajusta a velocidade real
na direcao do fluxo difusivo. J4 a velocidade hibrida é uma combinagdo da velocidade real
com a velocidade efetiva, equilibrando os efeitos de transporte e dissipacdo. Além disso, a ve-
locidade efetiva € usada para modificar a representacdo convencional do termo de convecgao
no nivel continuo, antes de escolher qualquer tipo de discretizagdo (De Sampaio e Coutinho,
2001).

Logo, os campos de velocidade efetiva sdo utilizados para alcangar resultados mais
precisos uma vez que reduz os efeitos adversos da difusdo negativa (caracteristica do método
SUPG) gerada nas equagdes governantes na forma discretizada. Dessa forma, a velocidade
efetiva representa uma projecao da velocidade real na direcao do gradiente das varidveis trans-

portadas, como as componentes da velocidade e a temperatura.

Assim, os campos de velocidade efetiva by, ¢, e dr podem ser escritos como:

a-Vu a-Vv a-VT
2 vV = 2
Vv IvT||

(4.92)

u = u Cy =

- 2
[Vul]

Além disso, € possivel notar que tanto no nivel continuo quanto no discretizado, as
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equagdes de conservacdo podem ser escritas com a velocidade real, com as velocidades efeti-
vas escritas acima (aquelas que efetivamente transportam) ou com uma combinacdo das duas,
conduzindo a definicdo de velocidade hibrida. Na forma discretizada, as equacdes empregam a
combinagio da velocidade real 4* e as velocidades efetivas bk é e dk escritas como uma in-
terpolagdo entre elas: b* = (1 —y)ak + bk, & = (1 —p)a* +yéfed = (1-y)a +YdT , onde
o parametro Y varia entre 0 e 1. Esse pardmetro controla a influéncia relativa entre a velocidade

real e a velocidade efetiva, permitindo um ajuste conforme a necessidade da simulacao.

Portanto, as equacdes de atualizacdo da pressdo, velocidade e temperatura em coorde-

nadas cartesianas podem ser escritas como:

dx Ox dy dy

A aNa An+1/2 aNa An+1/2
/ ! * dx  dy

dQ:—/Ni[a Lo 1dQ
Q

_ ON; otr  J1} .
— / N;,AGdI — / A ZE gy - Pl T pig | 40y
s Q Ox dx  dy

2%y, Jt .
T T Rig#11dQ Y AP Tivie (4.93)
ox dy '

oN [ﬁ" VP —
y

/{N+§bk VN} Alt [Aﬁk“JrAtf) V(A )k“} o —
Q

aNi an+1/2 Ak aNzAk ik ATl k
/Q()—x[p ]dQ 5, tha- / b Vi —I—Rzng>dQ

9p An+1/2 af.k 0tk A
XX _ Xy +ngka

bk VAn
TTox T ox oy

/Atbk VN,
Q 2

dQ + / Nif*dr
I,

A Aué‘Jrl livre (4.94)

At i At
/ N+ 2k v | = [ Av + 2k vap) | do =
0|V A? 2

aN“de—i-/ (p" /2 — 2 )de - / & VI 4 Rig, T*) a0

ox Ly
Al o 9prtl/z otk 9tk . o
— ¢k VN [k v Y W Rio TR dQ /Nt dr
2 v+ Iy I Jy +Rigy + r, ity

V AV live  (4.95)
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At . 1 . At . . dN;
/ [N,-Jr—dk.vzv,-] _ [AT"“+ =y V(AT)"“} 0 — / )
Q

2 At 2 Q dx
+/ (9q aQy

R dQ

dc.vim

*de / N:dk - vIrdQ — / il (/N

_ / NgdD Y ATF! livie (4.96)
Fq

e em coordenadas cilindricas como:

[
Q

ON; aﬁn+1/2 N ON; aﬁn+1/2

Jdx dx Jdr  oJr

rdQ:—/Ni o, I o /No"dg
Q dx ar

JN; st Is”
: [ﬁ” Vit - % - 2 —{—Rzng”} rdQ
To X dx  or
dN; st s
; {ﬁ".w”—a—;’—%l dQ+/At LS — §10)dQ

v AprT livie (4.97)

i At
/ N+—bk VN, — |Ad 4 2B v(aa)t | g =
Q At 2

ON; o
ox O 12 Gk Y gy — / ,rdQ— / Ni(b* - Va" + Rig T*) rdQ
Q dx
_/ gl/\)k.V]Vi a ”+1/2 aSA)lgx aSAI;F Sk
Q2

— — X4 Ri T Q
ox ox ar T8 rd

b*. v +

4 / NA DV At livie (4.98)
Ty

At 1 At JdN;
N _Ak VN:| — AAk-i-] V A k+1 Q= — &k Q
/Q[ +2c ’}AI[V +2 (AD) rd Qan

ON; 5 Sk
+/ —’(ﬁ”“/z—S’r‘r)rdQJr/N,-ﬁ”“/de—/N,- VI +28) 140
Q dr Q Q

/ AL sk Y,

a An+1/2 aAk 9.5k Sk Sk
VAn er_ Srr_&_}_ﬁ

or ox or r r rd<

)

+ / Nif*rdU ¥V AV divre (4.99)
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At [, 4 At 4 8N
/ N;+—d" - VN;| — |AT*1 + —d" v(aT)! 'k rd0
Q 2 At 2
8N aAk af\k ~k
‘G rdQ— / Nd* - VT rdQ — / =1y VN; {d" i aqx aq’+@ rdQ
X r r

- / NigxrdU ¥ AT livre (4.100)
r(]

Cabe ressaltar que a escolha entre a velocidade real, a velocidade efetiva ou a velocidade
hibrida impacta diretamente no peso da formulagdo utilizada. Quando se usa a velocidade real,
o método SUPG ¢ aplicado. Se a velocidade efetiva € utilizada, ocorre a captura de desconti-
nuidade, essencial para problemas com fortes gradientes. Ja a velocidade hibrida representa um

compromisso entre essas abordagens.

4.5 Passos de Tempo Locais e Sincronizaciao

Neste trabalho, os passos de tempo foram escolhidos a partir das estimativas das escalas
de tempo dos fendmenos mais rdpidos que podem ser resolvidos pela discretizagdo espacial
disponivel. Como a resolu¢do da malha pode variar espacialmente, 0 mesmo pode ocorrer com

a resolugdo temporal representada pelo passo de tempo At.

Para exemplificar esse processo, considere a convecgdo e a difusdo de momentum em
um determinado elemento finito. Se ¢cj; € a escala de tempo local (do elemento) para a convec-
cdo de momentum e tdy; € a escala de tempo local (do elemento) para a difusdo de momentum,
devemos selecionar o passo de tempo local (do elemento) como Aty = min(tcyy,tdyy) para ser

capaz de acompanhar o processo fisico mais rdpido naquele elemento.

E conveniente expressar a razio entre as escalas de tempo locais de difusdo e convecgdo
como fB = tdy/tcy. Note que quando a convecgdo é mais forte do que a difusdo, o processo
convectivo é mais rdpido e temos tcy < tdy. Assim, quando a convec¢do € dominante, temos
B > 1 e escolhemos o passo de tempo como Afy = tcp. Por outro lado, quando a difusdo é

dominante, temos B < 1 e Aty; = tdy.

E interessante observar que selecionar Aty = min(tcp,tdy) € equivalente a definir

Aty = Q tcy (4.101)

onde
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1
a:{ poparaf < (4.102)

1 paraf >1

Em seguida, é necessdrio definir as estimativas para as escalas de tempo locais tcys e
tdy. Tezduyar e Osawa (2000) empregaram matrizes de elementos finitos para calcular os para-
metros de estabilizacdo usados em sua formulacdo. Neste trabalho, essa ideia foi adaptada para
estimar as escalas de tempo tcys e tdy usando as matrizes de elementos finitos que representam
as contribui¢des transitdrias, convectiva e difusiva para o problema discretizado. Estas sdo, res-

pectivamente:

M;);;i = N;N; dQ 4.103
( L)l] [/Qe i4vj :|lumped ( )
(C)ij:/g N,-a-VN]-dQ (4104)
1
(D)l-j:AR—eVM-VNj dQ (4.105)

Usando as matrizes de elementos acima, tcyy € tdys sdo escolhidos como

||V ||

tey = cp kN (4.106)
IC|
||V ||

tdy = c2 (4.107)
/D]

As constantes ¢ € ¢ Sdo V2e?2 /3, respectivamente. Esses valores foram escolhidos
para reproduzir a aproximagao assintética, proposta em Brooks e Hughes (1982), do parametro
upwind 6timo para o problema unidimensional de convec¢do-difusdo discretizado com elemen-
tos finitos lineares. De fato, para o problema unidimensional de convec¢do-difusdo, com um

elemento finito linear de tamanho (comprimento) 4, as equacdes 4.101 e 4.102 resultam em:

(4.108)
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para Re||al|h < 6
o= 6 (4.109)

1 para Re||a||h > 6

o que é precisamente a aproximacgao assintética para o parametro de upwind 6timo apresentado
em Brooks e Hughes (1982). Note que, nesse caso, a funcdo de ponderacao baseada em Aty

torna-se exatamente a funcao de ponderacao SUPG:

At oh
M A VN, =N+

Wi = N; :
=T 2fal]

VN; (4.110)

As equagdes 4.108 e 4.110 ilustram a conexdo entre a selecdo do passo de tempo de
acordo com a menor escala de tempo e a introducao da quantidade apropriada de upwind. No
entanto, nos cdlculos realizados, sempre foi selecionado o passo de tempo simplesmente usando
a expressdo Aty = min(tcy,tdy), com as escalas de tempo determinadas de acordo com as

equacoes 4.106 e 4.107, em vez de usar o parametro de upwind .

Neste trabalho, o passo de tempo Aty = min(tcyy,tdyy) € utilizado na equagéo de atua-
lizagdo da pressdo. Por outro lado, observe que, no caso mais geral, as equacdes de momentum
para os componentes x € y ou r empregam as velocidades hibridas b e ¢, respectivamente, em
vez da velocidade real a. Aqui as expressdes apresentadas para a dire¢do y equivalem aquelas

para a direcao r. Logo, o passo de tempo para os componentes x € y ou r € computado como:

Atygy :min(thx,th) 4.111)
Atygy = min(tcary, tdy) (4.112)
onde

||M||
ey = C1 4.113)

' jie

M

tepy = C1 [IML (4.114)
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(C)ij = / N;b-VN; dQ (4.115)
o

(Cy)ij :/ N; ¢-VN; dQ (4.116)
Q,

Finalmente, deve-se calcular o passo de tempo para a equagdo de energia. Note que
a conveccdo de energia € calculada usando a velocidade hibrida d e que a difusdo de energia

depende de RePr em vez de apenas Re. Portanto, o passo de tempo para a energia € determinado

conforme:
Atg = min(tcg, tdg) “4.117)
onde
|[M||
ICE = Cq 4.118)
||CE||
M|
tdg = ¢ 4.119)
|[DE||
(CE),-,:/ N;d-VN; dQ (4.120)
Q.
(D )—/ ! VN; - VN; dQ 4.121)
E)ij = Q, RePr ! J '

Os passos de tempo acima sdo determinados para cada elemento finito, dai o nome pas-
sos de tempo locais. Eles formam distribui¢des de passo de tempo constantes por partes no
dominio de andlise. Como os passos de tempo variam com a posi¢ao e de acordo com a quan-
tidade transportada, precisamos recorrer a um esquema especial para sincronizar a evolugdo

temporal do célculo.

Neste trabalho, adotamos o procedimento introduzido por De Sampaio (2005). Ele se
baseia na selecido de um passo de tempo de interpolacdo Ar*, que serd o mesmo para todas as
varidveis e ndo variard no espaco (ou seja, o conceito usual de um passo de tempo). O passo

de tempo de sincronizagdo é escolhido para ser bem préximo ao menor passo de tempo do
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problema e ¢ calculado como: Ar* = 0.999 min(Ats, Atasy, Atpry, AtE).

Seja A1, APFFL e ATKH! as variagdes das varidveis obtidas ao utilizar os passos de
tempo locais apropriados para resolver as equagdes discretizadas. E possivel denotar as varia-
¢oes das varidveis do tempo " para " + At* (tempo de sincronizagio) como AG**1 Aph+l e

AT**+1. Assim, mantendo a mesma taxa de variagdo, temos as seguintes relacdes:

Al ~xk—+1 A ~k+1

= (4.122)
At Afpyry
AV ~skk+1 A ~k+1
4.123
Ar* AlMy ( )
Afw*k—i-l ATk—H
= 4.124)

At* Atg

Na pritica, o cdlculo baseado em passos de tempo locais e a fase de sincronizag@o nao
precisam ser realizados separadamente. De fato, a fase de sincronizagado, representada pelas
equacOes 4.122 - 4.124, pode ser incorporada as equacdes 4.93 - 4.100 apresentadas na se¢ao
4.4. Assim, a solugdo sincronizada no instante t" + At* pode ser obtida diretamente resolvendo

as seguintes equagdes para o caso cartesiano:

ON; 9pt1/2 aNiaAnH/z
/AM[ P + P
ox dy dy

g o
dQ——/QNi L}—x+a—y}dg

G IN; ot Jn
- / N;AGAID — / AIM—I |:ﬁ" Vi — Tyx . Xy
l—‘G Q ax ax ay

o 8%;; a1y, " n+1/2 o
AtM VP e 8y —I—RzgyT dQ vV Ap, livre (4.125)

T"} dQ
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Al‘Mx

Aty ~
Leven
Q

A/\*k+l
2 At { T

ON; ON; .
(3 [ - ttJea- [ Sleban— [n (39 s Rig ) a0
Atysx . aprtiz gk 9Tk
—/Q%bk-VNi be.vir 4+ 2P I (;x R 2 4 Rig,T* dQ+/ Nif*dl

v Auft! livee (4.126)

Aty 1 At
/ Ni 4+ -2 Ak VN AA*k+1 + My ék . V(A‘/})*k-l-l dO =
Q 2 Ar* 2

aN i gk dQ+/ (prH1/2— y)dQ—/M<é’<-W"+RigyT’<) o
Q

At a An+1/2 afk 81”‘
— | Tk v, kv Iy RigyTF|dQ+ | NikdD
o 2 dy - ox dy Ty

v AV divre  (4.127)

AIE A 1 w1 AIE A &kt 1 IN; gk
N+ 2E gk .y, AT AE Gk v (AT 40— k40
/Q{ i 2 }At [ * 2 (AT) Q ox !
4.5  9qg
n / Tgkaa - / Nk virdQ — / SEGk N, |d@k . vin 4 5]’“ +—aqy a0
y

— / NigtdU vV ATF'! livre (4.128)
Fq

€ para o caso axissimétrico:

ox Jdr  OJr

Q

oSt 98" ON; A
/AtM {An Vit J__"] m’Q+/At 81 "
Q

ON; 9pt1/2 aNiaAn+1/2
/AM P + P
dx  dr

rdQ:—/N{au Lo ]rdgz

IN; oSt as"
d [ﬁ".VA” — a—;x - axr +ngxT"} rdQ

dQ

ox or

aN A A —
+ / Ay = (Sn —$n ) dQ— | NAGrdT ¥ pr divie (4.129)
o = Or g
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Aty 1 At A
/ -VN; At 4 22 B v (AR) | rdQ =
Q 2 Ar 2
IN;
Q dr

op!? 98 95, S’]E’ +Rig,T*
ox dx ar

o,
Q dx

Atyrye ~
o 2

pAn+1/2 . SAI;x) rdQ — Sk rdQ — / Ni(f)k . Vﬁ" _|_ngka) rdQ
Q

b~ v +

rdg+/ N7 rdT

V At livie  (4.130)

/ N+ M gk yp, AP S (A9 rdQ =
Q 2 Art 2

ON; IN; 3 oo
o 95 dQ+/3_(15”+1/2—S];r)rd9+/Niﬁn+1/2dg_/M A
Q dr Q @
Aty L 9P 12 g8k a8k Sk S
_/ U Ak VN, V er_ Srr_&_F 66 rdQ—|—/ Nt rdl’
o 2 dar ox dr 1 "
v At divie  (4.131)
At 1 P At f
/ Ni+ =L @5 VN | — (AT 1 28 ghv(AT) ™| o =
o D) At* 2
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Q dx
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V AT Tivre (4.132)
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5 Cédigo Computacional

5.1 Malha Adaptativa

Nas simula¢des numéricas, o custo computacional estd diretamente relacionado ao nu-
mero de elementos em que o dominio € subdividido. Nesse contexto, o uso de uma malha
adaptativa possibilita um refinamento localizado nas regides que demandam maior nivel de dis-
cretizacdo, utilizando elementos menores, a0 mesmo tempo em que economiza recursos com-

putacionais em dreas menos criticas.

O refinamento localizado € importante em regides com variagdes significativas das va-
riaveis de interesse, como camadas limites, descontinuidades ou zonas com altas curvaturas,
onde ocorrem grandes gradientes. Além disso, em problemas transientes, nos quais os detalhes
do escoamento podem evoluir consideravelmente ao longo do tempo, a capacidade de adaptar a
malha conforme a simulacio avanca garante que o esforco computacional seja direcionado para

as areas mais relevantes.

Neste trabalho, o refinamento da malha € realizado utilizando o estimador de erro apre-
sentado em Zienkiewicz e Zhu (1987). Esse estimador, baseado na distribui¢do uniforme do
erro entre os elementos, calcula o erro associado ao gradiente de velocidade e sugere uma nova
configuracdo de malha. Essa estratégia requer a especificacdo prévia do nimero méaximo de ele-
mentos desejado e do tamanho minimo permitido para qualquer regidao do dominio, conforme
descrito em De Sampaio e Coutinho (1999). Além disso, a conexdao dos novos nés a malha

existente € realizada por meio do algoritmo de Bowyer (1981).

A quantidade de passos de tempo necessdria para o primeiro refinamento da malha é
determinada com base na estimativa da escala temporal adequada para acompanhar a evolu-
cdo dos maiores vortices do escoamento. Assim, o nimero de passos de tempo é calculado
como nsteps = tyq./2At* , sendo o valor arredondado para o inteiro mais proximo. Aqui,
tseale = L/u, representa o tempo caracteristico para seguir o maior vértice, onde L é a dimensdo
caracteristica do problema e u, € a velocidade de referéncia, enquanto Ar* € o passo de tempo

de sincronizacao utilizado para avangar a solu¢ao numérica.
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5.2 Computacao Paralela

Com problemas cada vez maiores e mais complexos os quais exigem um maior nimero
de elementos e malhas progressivamente mais refinadas, a demanda por maior poder computa-
cional cresce exponencialmente. Nesse contexto, a ferramenta de paralelizacio OpenMP (Open
Multi-Processing), projetada para sistemas de memoria compartilhada e compativel com lingua-
gens como Fortran, C e C++, permite redugdes significativas no tempo de execugdo de codigos
(Dagum e Menon, 1998).

Em cddigos baseados em elementos finitos, como o empregado neste trabalho, etapas
como a montagem de matrizes globais e a solucdo de sistemas de equacdes algébricas deman-
dam um alto esfor¢co computacional. O OpenMP possibilita que as itera¢des usados pelas rotinas
responsaveis por esses cdlculos sejam distribuidas entre os niicleos de processamento disponi-

veis, acelerando significativamente essas tarefas e otimizando o desempenho geral do programa.

5.3 Pré e Pos Processamento

Neste trabalho, o pré e o pds-processamento foram realizados utilizando o software co-
mercial GiD — The Personal Pre and Post Processor, amplamente empregado em simulacdes de
dindmica de fluidos computacional. Durante o pré-processamento, ele foi utilizado para a cria-
cdo dos modelos geométricos, geragdo das malhas e defini¢do das condi¢des de contorno e dos
nimeros adimensionais. No pds-processamento, foi utilizado para a visualizagdo dos campos
velocidade, pressdo e temperatura em vérios instantes de tempo, permitindo uma visualizacdo

dindmica dos resultados.

Além disso, aqui o GiD foi personalizado para gerar automaticamente os arquivos de
entrada necessarios para o cédigo utilizado na simulacio, além de processar os arquivos de
saida do mesmo, otimizando o fluxo entre as etapas de pré e pds-processamento. Essa inte-
gracdo garantiu maior eficiéncia na execugdo e andalise dos resultados, adaptando o software as

necessidades especificas de cada problema estudado.
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6 Resultados e Discussoes

Este capitulo apresenta os exemplos numéricos desenvolvidos neste trabalho, detalhando
suas configuragdes e resultados com o objetivo de verificar e validar o c6digo computacional
utilizado para resolver as equagdes governantes em coordenadas cartesianas e cilindricas. O
codigo foi implementado em Fortran 90, uma versao da linguagem Fortran amplamente em-
pregada na computacdo numérica, e foi executado no Laboratério de Computagdo Paralela do

Instituto de Engenharia Nuclear, utilizando recursos otimizados para alto desempenho.

As simulacdes foram realizadas em malhas triangulares 2D com interpolagdo linear,
contemplando casos de geometrias planas e axissimétricas. Para geometrias planas, os estudos
envolveram a estratificacdo térmica em uma cavidade quadrada, convecg¢ao natural ao redor
de um cilindro aquecido e convec¢do mista ao redor de um cilindro aquecido sob forcas de
empuxo. Para geometrias axissimétricas, os casos analisados incluem o escoamento em um
duto horizontal de secdo circular, considerando duas condi¢des térmicas distintas: temperatura

constante e fluxo de calor constante na parede ao longo do eixo.

Em todas as simulagdes foi empregado o valor de ¥y = 1, ou seja, utilizando-se somente
o operador de captura de descontinuidade. Ao final do exemplo de convecc¢ao mista ao redor
de um cilindro aquecido, € feita uma comparacdo do emprego de ¥ = 0, em que apenas o
peso SUPG ¢é considerado, permitindo avaliar o impacto da captura de descontinuidade sobre a

solucdo numérica.

Por ultimo foi feita a simulacdo de um caso pratico da industria nuclear envolvendo a
geometria axissimétrica de uma regido do vaso de pressdo de um reator tipo PWR (Pressurized
Water Reactor). Esse estudo qualitativo considera as caracteristicas geométricas bem como o

ndmero de Reynolds aplicado no caso real.

6.1 Verificacao do Modelo

6.1.1 Estratificacdo Térmica em uma Cavidade Quadrada

Neste exemplo, considera-se uma cavidade quadrada de lado L (Figura 2) com as se-
guintes condi¢des de contorno: as fronteiras superior e inferior sdo termicamente isoladas; a

pressao de referéncia p = 0 € aplicada no centro da cavidade; uma condicdo de ndo desliza-
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mento é imposta em todas as paredes; a temperatura na parede esquerda é Trax = T, + AT /2; e
a temperatura na parede direita é Ty, = T, — AT /2. Como condig¢do inicial, assume-se que o

fluido na cavidade estd em repouso a temperatura uniforme 7;,.

A simulacdo transiente tem inicio em ¢ = 0, momento em que as condi¢des de contorno
impostas nas paredes paralelas opostas induzem um fluxo de convecgao natural dentro da ca-
vidade. Para ndmeros de Rayleigh suficientemente altos, esse fluxo resulta em estratificacdo

térmica no dominio.

(-L/2,L12) (-L/2,L12)

"

(-L/2,L12) (-L2,L72)

Figura 2: Dominio de andlise para o problema de conveccao livre em uma cavidade quadrada.

Os resultados numéricos foram parametrizados em fun¢do dos nimeros de Prandtl e
Rayleigh. As simulacdes foram realizadas para Ra = 10%, Ra = 10° e Ra = 10°, enquanto o

nimero de Prandtl foi mantido constante em Pr = 0,71 para todos os casos.

Os transientes foram analisados no intervalo de tempo de t = 0 até t+ = 30L/u,, onde

uo = /B (Tmax — Tmin)||g||L representa a velocidade de referéncia. Em todas as simulagdes,

esse periodo de tempo foi suficiente para garantir a convergéncia ao regime estaciondrio.

Observa-se que, a medida que o nimero de Rayleigh aumenta, o refinamento da malha é
mais intenso nas regides onde os gradientes de temperatura e velocidade sdo mais significativos,
como proximo as paredes da cavidade. Além disso, € possivel notar os detalhes das estruturas

induzidas pela convecc¢ao natural e as zonas de estratificacio térmica.
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A Figura 3 apresenta a malha adaptativa final, bem como as linhas isotérmicas, isobdri-
cas e o campo de velocidade para Ra = 10* ¢ Pr =0,71. A malha inicial foi de 1440 elementos
enquanto que a malha adaptativa final contém 2766 elementos, com o maior elemento apresen-

tando tamanho 0,05L e o menor apresentando tamanho de 0,02L.

Vs

T LT T T
AT}
o
FAVATAVAYA

AT
A A

Pl T P T

Figura 3: Malha adaptativa, isolinhas de temperatura, isolinhas de pressdo e campo de veloci-
dade para Ra = 10*, Pr=0.71.

Para Ra = 10° ¢ Pr = 0,71, os resultados estdo ilustrados na Figura 4. Nesse caso, a
malha inicial foi de 3824 elementos enquanto que a malha adaptativa final contém 6354 ele-
mentos, com o0 maior elemento apresentando tamanho 0,03L e o menor apresentando tamanho
de 0,01L.
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Figura 4: Malha adaptativa, isolinhas de temperatura, isolinhas de pressdo e campo de veloci-
dade para Ra = 10°, Pr=10.71.

J4 para Ra = 10° e Pr = 0,71, os resultados sdo mostrados na Figura 5. A malha inicial

foi de 8756 elementos enquanto que a malha adaptativa final contém 11170 elementos, com o

maior elemento apresentando tamanho 0,02L e o menor apresentando tamanho de 0,005L.
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Figura 5: Malha adaptativa, isolinhas de temperatura, isolinhas de pressdo e campo de veloci-
dade para Ra = 10%, Pr=10.71.

Esses resultados demonstram que, conforme o nimero de Rayleigh aumenta, ocorre
um refinamento progressivo da malha, refletindo a maior complexidade do escoamento e a

necessidade de capturar os detalhes das regides de gradientes mais intensos.

A Tabela 1 compara os valores obtidos para os nimeros de Nusselt médio e mdximo com
os dados de referéncia fornecidos por Hortmann et al. (1990) e os resultados de (De Sampaio,

2006). O nimero de Nusselt é calculado como Nu = ¢,,L/k(Tax — Tin ), onde g,, representa o

fluxo de calor local integrado ao longo da parede.
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Tabela 1: Nimero de Nusselt médio e mdximo: comparacao entre o presente resultado com os
de De Sampaio (2006) e Hortmann et al. (1990).

Fonte Ra = 10* Ra =107 Ra = 10°

Numax. Numéd. Numiax. Numéd. Numax. Numéd.

Presente 3.5421  2.2404  7.7272 45149 17.7331  8.8286
De Sampaio (2006) 3.5254  2.2398  7.7033  4.5123 17.4577 8.8076
Hortmann et al. (1990)  3.5309  2.2448  7.7201  4.5216 17.5360  8.8251

Observa-se que a precisdo da formulagdo estabilizada e o uso de malhas adaptativas nos
calculos adotados neste trabalho permitem alcancgar resultados com uma concordancia muito
boa em relacdo ao benchmark de Hortmann et al. (1990), mesmo utilizando um ndmero sig-
nificativamente menor de pontos nodais. Esse desempenho reforca a eficicia da abordagem
empregada, evidenciando que a qualidade da solucdo obtida ndo depende exclusivamente do
grau de refinamento, mas sim da capacidade de concentrar elementos nas regides com maiores

gradientes.

6.1.2 Conveccao Natural ao Redor de um Cilindro Aquecido

Neste segundo exemplo, analisamos o escoamento ao redor de um cilindro aquecido
de didmetro d, inicialmente em contato com o fluido em repouso. As condi¢des de contorno
consideradas sdo: temperatura Try,x = T, + AT e condicao de ndo deslizamento na superficie do
cilindro. Como condi¢ao inicial, assume-se que o fluido ao redor do cilindro estd em repouso
e com temperatura uniforme 7, = 7;,. O didmetro d do cilindro foi escolhido como escala de

referéncia para o comprimento.

As simulacdes foram realizadas para Pr = 0,71 e os seguintes valores de Ra: 10%,
5% 10% 10°, 1,5 x 10°, 2 x 10°, 5 x 10° e 10°. As malhas iniciais utilizadas nos casos com
o tamanho minimo dos elementos definido como A,;, = 0,02d continham 17405 elementos
enquanto que as malhas adaptativas finais, refinadas ao longo das simulagdes, variaram entre
40 000 e 60 000 elementos. Para verificar a influéncia do refinamento, os exemplo com Ra =
5% 10° e Ra = 10° também foram calculados com Ay, = 0,01d e 0,005d. As simulacoes

realizadas com malhas mais refinadas resultaram em configuracdes com até xx elementos.

A Figura 6 apresenta as linhas isotérmicas com as respectivas plumas desenvolvidas

para os casos 5 X 104,10°,1.5%x 10%,2x 10%, 6 x 103 e 10°. Jd a Figura 7 mostra a evolugdo
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da pluma térmica, capturada pela malha adaptativas em r = 14, 54 ¢ 112 d /u,, para o caso com

Ra =2 x10°, onde u, = \/B(Tmax — Tmin)||g||d representa a velocidade de referéncia. Esses
resultados ilustram o comportamento térmico e dindmico do fluido em diferentes condi¢des de

fluxo e niveis de refinamento.

Figura 6: Isolinhas de temperatura para Pr = 0.71 e, da esquerda para a direita, Ra = 5 x 10%,
10°, 1.5 % 10°,2x 10°, 5 x 10° e 10°.
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De acordo com Churchill e Chu (1975), os dados experimentais para a faixa de escoa-

mento laminar (Ra < 10%) podem ser bem descritos pela seguinte expressao:

0,518Ra'/*
Nu) = 0,36+ - 6.1
(u) 1+ (0,559/Pr)9/16]4/° D
Uma correlagdo alternativa na faixa laminar é fornecida por Hyman et al. (1953):
1/4
Pr
Nu)=0,53 || —————= | R 6.2
(W) =0, [(Pr+o,952) “} ©2)

A Figura 8 apresenta a comparacdo entre os valores de Nusselt médio obtidos aqui
com os das expressdes fornecidas pelas Egs. 6.1 e 6.2. Observa-se uma concordancia bastante

satisfatdria entre os resultados numéricos e as correlacdes experimentais.

Nusselt Médio

16
14 -
12 A1
10 A
S J
> 8
67 ——- Churchill & Chu
4- —— Hyman et al.
VY  Presente (hmin =0.02d)
> O Presente (hmin =0.01d)
QO Presente (hmin = 0.005d)
0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Ra le6

Figura 8: Comparacao dos resultados do nimero de Nusselt médio com resultados das corre-
lagdes experimentais de Churchill e Chu (1975) e Hyman et al. (1953).

Em principio, com os modelos 2D que utilizamos aqui, poderiamos calcular solugdes
de convecgio livre fisicamente significativas até Ra = 10°, embora as custas de discretizagdes
muito finas tanto no espaco quanto no tempo. A transi¢do para a turbuléncia comeca para
nimeros de Rayleigh da ordem de 10°. Para tais nimeros de Rayleigh altos, o fluxo comega a

apresentar algumas caracteristicas importantes em 3D que os modelos 2D ndo podem capturar.
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No entanto, isso ndo ¢ uma limitacdo do método dos elementos finitos estabilizados
proposto aqui, que também pode ser empregado em calculos 3D. Porém, a tarefa de calcular
fluxos de conveccao livre turbulenta em 3D para nimeros de Rayleigh muito altos, enquanto se
usa discretizagdes muito finas no espago e no tempo, pode se tornar extremamente cara. Nesse

caso, recorrer a modelos RANS ou LES seria uma escolha mais viavel.

6.1.3 Conveccao Mista ao Redor de um Cilindro Aquecido sob Forcas de

Empuxo

Neste terceiro exemplo, analisamos o efeito das forcas de flutuabilidade no escoamento
transversal ao redor de um cilindro aquecido. As condi¢des de contorno consideradas sdo as
seguintes: o fluxo incidente, que se aproxima com velocidade u,, estd a temperatura Tpnip = 7p;
a superficie do cilindro mantém-se a temperatura Tpax = T, + AT'; € uma condi¢do de ndo desli-
zamento € aplicada na superficie do cilindro. Inicialmente, a temperatura do fluido € assumida

como uniforme e igual a 7.

O dominio de anélise, representado esquematicamente na Figura 9, ilustra como as for-
cas de empuxo podem atuar dependendo da orientacdo do vetor gravidade g. Essas forgas
podem tanto auxiliar quanto se opor ao fluxo convectivo, alterando significativamente o com-

portamento do escoamento ao redor do cilindro.

CONVeccao

—
g Empuxo favoravel
— -~
a conveccio
O
Cilindro aquecido g Empuxo oposto a
—_ q —_ puxo op
—

Figura 9: Escoamento cruzado ao redor de um cilindro aquecido, ilustrando esquematicamente
os casos de conveccao auxiliada pela flutuabilidade e conveccao oposta a flutuabilidade.

Foram realizadas trés simula¢des. Em todos os casos, foram considerados Re = 100

e Pr = 1. Na primeira anélise, a for¢a de empuxo ndo foi considerada, representando um pro-
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blema de escoamento por convecgao forcada pura (Ri = 0). As outras duas andlises representam
condicdes de escoamento por convecgao mista, com Ri = 0,25. Uma apresenta a flutuabilidade

auxiliando o escoamento, enquanto a outra considera a flutuabilidade se opondo a convecgao.

Em todos os casos, a malha inicial era composta por 2151 elementos. Para o caso de
conveccao for¢ada pura (Ri = 0), a malha adaptativa final continha 9958 elementos. Ja nos pro-
blemas de conveccdo mista (Re = 100, Pr = 1, Ri = 0,25), as malhas adaptativas apresentaram
12440 elementos para o caso em que a flutuabilidade se opde a conveccdo e 7555 elementos
para o caso em que a flutuabilidade auxilia a convec¢@o. Em todas as anélises, o tamanho mi-

nimo dos elementos foi fixado em 0,02d.

A Figura 10 apresenta as malhas adaptativas e as linhas isobdricas para o primeiro caso
(Re =100, Pr =1, Ri = 0) em diversos tempos. Nessa figura é possivel observar a adaptacao
da malha seguindo os vértices gerados ao longo da evolug¢do da simulacdo. Essa adaptacdo é

guiada pela estimativa de erro no gradiente de velocidade.

A Figura 11 apresenta as malhas adaptativas e as linhas isobdricas em t = 99d /ug. Ela
também revela que, no caso em que a flutuabilidade auxilia a convecc¢do, o comportamento de
desprendimento de vortices foi suprimido. Este resultado estd em concordancia com os obtidos
por Patnaik et al. (1999), confirmando a influ€ncia estabilizadora das forcas de flutuabilidade

no escoamento ao redor do cilindro.

As forgas de arrasto (Fp) e transversais (£7) por unidade de comprimento atuando no
cilindro quente foram determinadas a partir do campo de escoamento utilizando as seguintes

expressoes:

[ du v du
p= /Fc _(ua—y—kua) ny—|—2,u$nx—pnx] dar (6.3)

[/ du av dv
= /Fc _(u8_y+u$) nx+2,ua—yny—pny} dr (6.4)

Nas Egs. 6.3 e 6.4, foram utilizadas as notagdes x; = x, xp =y, U] = u € up = v para
representar as coordenadas espaciais e as componentes das velocidades, respectivamente. Essas
expressoOes levam em conta as forcas viscosas e de pressao, demonstrando as interacdes entre o

escoamento e a superficie do cilindro.



61

\_ . . o
S S S .
5 s s >
N a K] S
& I 4 ) I % nwh I I
- B .

L

A&&

RN

Y"Y’A‘.‘.“ mr‘“v‘v

va‘

AVAVAVAVAVAV VAV,
AVAVAVAVANY

VAVAYEN N

FAVAN

<A ) . A

ar il i e P

N A DK AYATS AVAT S

FSS AR LA AT SRS RN TS RAVAIAE V)
AV AV B Vi, VA VA, VA YAy, R VALY

Nﬂ#ﬂﬂdﬂ«yﬁhﬁﬂ Mﬂ#ﬂ#ﬂ»ﬂﬁh«ﬂ Hﬂbmwvﬁvﬂﬁw uﬂ#ﬂﬂ»ﬂﬂ»ﬁ Hﬂ#ﬁﬂdﬂﬂﬂ»ﬂ

100: algumas malhas adaptativas e os

t = 188d/u,
Cilindro em escoamento cruzado com Re,

correspondentes campos de pressao.

Figura 10



62

5

oo

[
AVAYAS
]
SEAS

7
&

T
il

L VI v v AV A\'.S%
S VAVAVAVAAVAVTAVAVAY, 24
VAV VAV VIVAN L5
VIS (NN ViV,

AV ATAVAT S oA

B A AR TR A
AVANRY

i)

v

4l
N

!
7

Ay
et

v
S
&

LV
év

iy

[

X
&

AH

v
S
R

I

i
77

VLAY

M9,
&
@

AN

e

¥

X5
S
i

<

I~
</
;?N
&

i
£
<

é
o

<

Vi)
i
¥

AN
iy

Ay
LVav;

<
AVGV

[
ok

St
1o

Figura 11: Escoamento cruzado ao redor de um cilindro aquecido com Re = 100 e Pr = 1:
malhas adaptativas e isolinhas de pressdo em ¢ = 99d/ug: (a) convecgdo forcada (Ri = 0);
(b) Ri = 0.25 com flutuabilidade opondo-se a convec¢do; (c) Ri = 0.25 com flutuabilidade
auxiliando a convecgao.

A frequéncia de desprendimento de vortices (f) foi determinada por meio da andlise
do histdrico da forga transversal e expressa de forma adimensional pelo nimero de Strouhal,
definido como St = fd/uy. Os coeficientes de forca de arrasto e transversal sao calculados
como Cp =2Fp/p u%d eCL=2F/p u%d , respectivamente. Além disso, o fluxo de calor médio

do cilindro (g,,) foi expresso em termos adimensionais pelo nimero de Nusselt médio, dado
por <Nu> = <C[w>d/k(Tmax - Tmin)-

A Figura 12 mostra a evolucao dos coeficientes de arrasto e de sustentacao no cilindro
para os trés casos simulados e a Tabela 2 apresenta os valores médios do coeficiente de arrasto
Cp (médio), o coeficiente de forga transversal Cy, (rms), o nimero de Nusselt médio (Nu) e o

ndmero de Strouhal (S7) também para os trés casos simulados.
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Figura 12: Evolucdo temporal dos coeficientes de forca para o problema de um cilindro circular
em escoamento cruzado: (a) convecgdo for¢ada (Ri = 0); (b) Ri = 0.25 com flutuabilidade
opondo-se a conveccao; (¢) Ri = 0.25 com flutuabilidade auxiliando a conveccao.
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No caso de conveccdo auxiliada pela flutuabilidade, o padrio de desprendimento de
vortices foi eliminado, como discutido anteriormente. No entanto, os valores de Cp (médio) e
(Nu) mostraram pouca varia¢do entre os trés casos analisados. Por outro lado, a forca trans-
versal Cp (rms), associada ao processo de desprendimento de vortices, foi consideravelmente
maior no caso de convec¢do opondo-se a flutuabilidade. Esse comportamento, juntamente com
a reducdo do ndmero de Strouhal para essa condi¢ao, estd em conformidade com os resultados
obtidos por Patnaik et al. (1999), destacando os efeitos das for¢as de flutuabilidade na dinamica

do escoamento.

Tabela 2: Convec¢do mista ao redor de um cilindro aquecido: dados estatisticos.

CD (médio) CL (rms) Nu (médio) Strouhal

Ri=0 1.4000 0.2748 5.8823 0.1677
Ri = 0.25, Empuxo oposto a convec¢ao 1.3801 0.4494 5.7812 0.1462
Ri = 0.25, Empuxo favordvel a conveccao 1.5005 0.0022 5.9402 ——

Tomando este caso como exemplo, € possivel verificar os efeitos da captura de descon-
tinuidade na redugdo dos valores de temperatura negativos quando comparados a formulagao
SUPG (y = 0). Esses valores negativos sao devidos a difusdo introduzida pela presenca dos pe-
sos na formulacdo estabilizada. Ao introduzir o peso considerando a velocidade de transporte
apenas (Y = 1), a quantidade de difus@o adicionada nas regides de maiores gradientes € reduzida

evitando a geracdo de valores de temperaturas negativas (ndo fisicas) na solugao.

A Figura 13 mostra as regides do dominio que possuem valores negativos de tempera-
tura (regido em branco ao redor do cilindro) no caso do escoamento cruzado ao redor de um
cilindro aquecido com Re = 100, Pr =1 e Ri = 0.25 com flutuabilidade opondo-se a convec¢ao.
Na Figura 13 (a), € possivel observar uma grande regido de valores negativos de temperatura
que ocorrem ao longo do dominio para o caso com Y = 0, com valores de T,,;, = —0.01106.
Na Figura 13 (b), é possivel observar o efeito produzido pelo uso de ¥y = 1. Aqui, apenas
dois pequenos pontos proximos ao cilindro ficaram com temperaturas negativas com valores de
Tnin = —0.00022. Isso demonstra a capacidade dessa formulacdo em reduzir a difusdo exces-

siva produzida quando a velocidade efetiva ndo é considerada.
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()

Figura 13: Escoamento cruzado ao redor de um cilindro aquecido com Re = 100, Pr=1¢e
Ri = 0.25 com flutuabilidade opondo-se a convecgdo: regido com temperaturas negativas para
Y=0(a)eparay=1(b).

6.1.4 Escoamento em Duto Horizontal de Se¢ao Circular com Tempera-

tura e Fluxo de Calor Prescritos na Parede

Neste quarto exemplo, analisamos os efeitos de duas condi¢des de contorno distintas
aplicadas na parede de um duto horizontal de secao circular, com didmetro d e comprimento L.
Na primeira anélise, considera-se uma temperatura constante axialmente igual a Ti,x, condi¢do
de ndo deslizamento na parede e pressdao de referéncia p = 0 aplicada na saida do duto. Na
segunda, aplica-se um fluxo de calor constante axialmente igual a ¢,, = L—It(d /L), também com

condicdo de ndo deslizamento na parede e pressao de referéncia p = 0 na saida.

Como condigdo inicial para as duas analises, assume-se que o fluido na entrada do duto
possui velocidade constante u, e temperatura Ty, = 7,. O dominio de andlise é representado
esquematicamente na Figura 14. As simulacdes foram realizadas para Pr = 1 e considerando
diferentes comprimentos e valores de Reynolds. Para todos os casos foi utilizada uma malha

estruturada composta por elementos triangulares e sem o emprego de adaptacdo de malha.
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Regido modelada

X Eixo de simetria

Figura 14: Dominio de andlise para o problema de escoamento em duto horizontal com tem-
peratura e fluxo de calor prescritos na parede.

As simulagdes foram realizadas para os seguintes valores de Reynolds e comprimentos
de duto: Re =100, L = 10; Re = 200, L = 20; Re = 500, L = 50; e Re = 1000, L = 100. A
malha utilizada no caso 1 possui 2 500 elementos, no caso 2 possui 5 000 elementos e no caso
3 possui 20 000 elementos. No caso 4 foi feito um estudo de convergéncia de malha onde a
primeira malha continha 25 000 elementos, a segunda 40 000 elementos e a terceira 60 000
elementos. Além disso, a Figura 15 apresenta o refinamento caracteristico da malha préximo a

parede do duto que foi utilizado em todos os casos.

Figura 15: Refinamento da malha préximo a parede do duto .

De modo geral, no estudo de escoamentos internos com parede aquecida, os parametros
mais relevantes a serem determinados sdo a forca de atrito (ou queda de pressao) e o fluxo de
calor na parede. Para regimes de escoamento laminar, os valores do fator de atrito e do nimero
de Nusselt em dutos de se¢do circular com temperatura ou fluxo de calor prescritos na parede

sdo bem conhecidos na literatura. Neste trabalho, esses valores foram calculados na regido do
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duto onde os perfis de velocidade e temperatura estavam completamente desenvolvidos.

Na Figura 16 € apresentada a comparacdo entre os valores do fator de atrito f obtidos
neste trabalho com os valores calculados de forma analitica a partir da solu¢ao do problema de
Hagen-Poiseuille. E possivel observar a boa concordincia dos resultados para os escoamentos
laminares analisados. Além disso, para o caso em que Re = 1000, € possivel notar a boa con-

cordancia de resultados mesmo com uma menor discretizagao.

Fator de atrito

1.0
—— 64/Re
V Temperatura Constante
0.8 1 O Fluxo de Calor Constante
0.6 A
[T
0.4 A
0.2 A
0.0 T T T T T
0 200 400 600 800 1000

Re

Figura 16: Comparacio entre o fator de atrito em fun¢do do nimero de Reynolds para Re =
100, 200, 500 e 1000.

A Tabela 3 apresenta os resultados dos valores de Nusselt obtidos para todos os casos
considerando duas condi¢des de contorno: temperatura e fluxo de calor constante na parede ao
longo do duto. O valor de Nusselt considerado para a condi¢do de temperatura constante é de
3.66 e fluxo de calor constante é de 4.36. E possivel observar a boa concordéncia dos resultados

com os valores calculados a partir da solucao analitica do problema.

Tabela 3: Nimero de Nusselt para temperatura e fluxo de calor constantes na parede do duto.

Reynolds 100 200 500 1000
Elementos 2 500 5000 20 000 25 000 40 000 60 000
Nu (Tax) 3.6102 3.6167 3.6192 5.0617 3.7289 3.6263

Nu (gy) 4.3677 4.3843 4.3868 5.6253 4.4501 4.3910
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6.2 Exemplo da Aplicacdo: Estudo de um Downcomer de um PWR

Neste quinto e ultimo exemplo, é analisado o escoamento em uma regidao do vaso de
pressdo de um reator nuclear conhecida como downcomer. Nesse estudo serd empregada a
formulacdo para geometrias axissimétricas devida a simetria axial dessa regido. Na Figura 17
esta destacada a regido do vaso que serd modelada. Os dados utilizados foram obtidos do ex-
perimento ROCOM, (Ressendorf Coolant Mixing Model), que € uma instalacdo experimental
localizada na Alemanha e foi projetado para estudar a mistura de refrigerante em reatores nu-
cleares PWR, especialmente em situacdes de transientes térmicos e acidentes de injecdo de

seguranca (Kliem et al., 2008).

Tambor
perfurado

Figura 17: Regido do vaso do reator modelada. Adaptado de Prasser et al. (2003)

Tendo em vista que a regido de entrada do downcomer tem o formato de um anulus e a
de saida € uma placa com vérios furos em formato de anel (Figura 18), o anulus de entrada e os
furos do placa de saida foram aproximados de tal forma que pudesse ser aplicado a condicado de
escoamento 2D axissimétrico. Ademais, para essa simulago foi considerado Re = 4.154 x 10°,

o mesmo utilizado no experimento ROCOM e condicao de ndo deslizamento nas paredes.
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Figura 18: Tambor perfurado. Adaptado de (Hohne et al., 2006).

A Figura 19 mostra a geometria ja com a malha inicial relativa a regido indicada na Fi-
gura 17. A malha ndo estruturada empregada inicialmente possui 22206 elementos com tama-

nho minimo dos elementos definido como A, = 0,004d e op¢ao de malha adaptativa ativada.
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Figura 19: Downcomer com malha ndo estruturada.

A Figura 20 apresenta os detalhes dos campos de velocidade e pressdo na regidao do
downcomer, permitindo uma anélise qualitativa do escoamento. Na Figura 20 (a), observa-se o
campo de velocidade, onde o fluido acelera logo apds a entrada e sofre descolamento na regido
do primeiro degrau. Nota-se ainda a formacdo de uma zona de recirculacdo nesse degrau, além

de uma regido de baixa velocidade que se estende até a saida, apds o segundo degrau. Ja a
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Figura 20 (b) exibe o campo de pressao, destacando uma regido de baixa pressdo associada a
recirculacdo no primeiro degrau. Também se observa um aumento de pressao na parte inferior
do downcomer, consequéncia da mudanca de dire¢do do escoamento, que entra verticalmente e

sai horizontalmente.

~ A

e

(a) (b)

Figura 20: Campo de velocidade (a) e pressao (b) no downcomer.

Este exemplo demonstra que a formulagdo estabilizada empregada neste trabalho € ca-
paz de prever o escoamento em condi¢des reais. Destacando que, para uma anélise mais deta-
lhada, os campo de velocidade, pressdo e temperatura na regiao do downcomer sdo influencia-
dos pela interagdo entre o fluxo que entra pelos bocais de entrada e os efeitos da geometria do
vaso de pressdo do reator. Além disso, a partir dos resultados obtidos neste trabalho, é possivel
otimizar a geometria dessa regido a fim de reduzir as perdas de carga bem como reduzir ou eli-
minar as vibracdes que surgem em determinadas faixa de Reynolds devido ao desprendimento

de vortices causados pelo descolamento do fluido na regido dos degraus.
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7 Conclusao

O principal objetivo deste trabalho foi verificar e validar a formulagdo estabilizada de
elementos finitos proposta, resolvendo diversos exemplos classicos de mecanica dos fluidos e
transferéncia de calor bem conhecidos na literatura. Esses exemplos foram escolhidos de forma
a demostrar a capacidade desta formulacao em capturar os fenomenos fisicos envolvidos em
diferentes geometrias. O modelo bidimensional € apresentado tanto para coordenadas cartesi-
anas quanto para coordenadas cilindricas, nas quais o dominio é simétrico em relagdo ao eixo
x. Quando a opcdo axissimétrica é ativada, as equagdes governantes escritas para x € r sao
resolvida em vez da forma cartesiana, x e y. Assim, no caso axissimétrico, a dire¢ao axial cor-

responde ao eixo x, enquanto a direcio radial é representada pelo eixo y positivo.

Neste trabalho, foi proposta uma formulacdo estabilizada de segunda ordem no tempo
para a simulacdo de escoamentos incompressiveis com convec¢do dominante utilizando espa-
cos de interpolacdo de mesma ordem para a velocidade e pressdao. Os balangos de massa e
quantidade de movimento foram combinados a partir da série de Taylor de segunda ordem das
componentes de velocidade e temperatura, de forma a obter uma equagdo de atualizacdo do
campo de pressdo. Para o célculo dos campos de velocidade e temperatura, minimizou-se a in-
tegral do quadrado dos residuos dos balancos de quantidade de movimento e energia em relagao

as variaveis livres de velocidade e temperatura.

Adicionalmente, utilizou-se o conceito de velocidade hibrida, que combina a velocidade
real e a velocidade efetiva, produzindo o efeito de captura de descontinuidade. Como resultado,
obteve-se uma formulacdo estabilizada que incorpora, de forma intrinseca, os pesos respon-
sdveis por controlar oscilacdes espaciais em escoamentos dominados por convec¢do, além de
contornar as restricdes impostas pela escolha de espacos de interpolacdo iguais para a veloci-

dade e pressao.

No primeiro exemplo, foi analisada a estratificagdo térmica em uma cavidade quadrada
para diferentes nimeros de Rayleigh. Observou-se o comportamento caracteristico dos campos
de pressdo, velocidade e temperatura, além do refinamento adaptativo da malha em regides
com maiores gradientes. Comparando-se os valores obtidos para o nimero de Nusselt com os

disponiveis na literatura, verificou-se uma excelente concordancia.

No segundo exemplo, referente a convec¢do natural em torno de um cilindro aquecido
para diversos nimeros de Rayleigh, os resultados novamente demonstraram boa precisao na

estimativa do nimero de Nusselt médio. Além disso, esse caso permitiu avaliar de forma mais
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clara o efeito do operador de captura de descontinuidade ao comparar a solu¢do obtida com e
sem o uso da velocidade efetiva. A andlise revelou que temperaturas negativas, resultado da
difusdo numérica que ndo representa a fisica do problema, foram atenuadas, reduzindo o erro

da solu¢@o para um mesmo nimero de elementos.

No terceiro exemplo, foram analisados os casos de conveccao forcada e mista em torno
de um cilindro aquecido, com e sem os efeitos da aceleracdo da gravidade. Observou-se a
mudanca no padrao de desprendimento de vdrtices no caso em que a flutuabilidade era oposta a
convecgdo, bem como sua supressao no caso de flutuabilidade era auxiliada pela convecgdo. Os

resultados apresentaram boa concordancia com dados experimentais disponiveis na literatura.

No quarto exemplo, foi analisado o escoamento em duto horizontal de secdo circular
para as condi¢des de temperatura e fluxo de calor prescritos na parede, considerando diferentes
nimeros de Reynolds e comprimentos. Os resultados demonstraram que tanto o fator de atrito
quanto o numero de Nusselt foram determinados com uma boa precisdo pela formulacdo escrita
para geometrias axissimétricas, reproduzindo adequadamente o comportamento caracteristicos

esperados para esses problemas sob as mesmas condicoes.

Por fim, foi realizada a simulacao do escoamento através do downcomer, uma regido cri-
tica do vaso de pressao de reatores nucleares. Aproveitando a simetria do problema em relacao
ao eixo, investigou-se o comportamento do escoamento nessa drea. Os resultados reforcaram
a aplicabilidade da formulacdo desenvolvida para tratar problemas reais, demonstrando seu po-

tencial na resolucdo de desafios que envolvem a dindmica dos fluidos computacional.

Assim, os resultados obtidos evidenciam a adequagdo da formulacdo proposta para tratar
problemas envolvendo convecc¢ao natural, mista e for¢ada, bem como transferéncia de calor,
quando presente tanto em geometrias cartesianas quanto em axissimétricas. A comparagao dos
resultados obtidos com dados experimentais da literatura confirma a consisténcia e a precisao
da formulacdo estabilizada apresentada. Além disso, pode-se destacar que esta pesquisa tem
potencial para gerar trabalhos subsequentes, como a identificacdo dos valores adequados de y

para determinados problemas dominados por convecg¢ao.
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