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RESUMO

Preocupações em relação às mudanças climáticas têm motivado diversos estudos a fim de bus-

car novas alternativas para um desenvolvimento sustentável. Com o aumento da demanda por

energia, a fonte nuclear se tornou uma alternativa promissora devido a sua baixa pegada de

carbono e capacidade fornecimento contínuo. Por outro lado, apesar de ser uma das fontes

mais seguras de geração de eletricidade, as usinas nucleares exigem um alto investimento de-

vido aos elevados requisitos de segurança. Logo, uma das formas de aumentar a confiabilidade

dos sistemas e equipamentos nucleares é utilizar a fluidodinâmica computacional para predizer

os fenômenos físicos que ocorrem e, dessa forma, torná-los mais seguros, eficientes e baratos.

Assim, o presente trabalho tem por objetivo apresentar uma formulação estabilizada de elemen-

tos finitos baseada no uso de passos de tempo locais para resolver problemas de mecânica de

fluidos e transferência de calor em escoamentos incompressíveis em geometrias cartesianas e

axissimétricas. Nessa formulação, as equações de atualização do campo de pressão são obtidas

pela aplicação do método de Taylor-Galerkin enquanto que as equações de atualização da velo-

cidade e temperatura são obtidas a partir da minimização dos resíduos quadráticos das equações

de quantidade de movimento e energia, respectivamente. Além disso, é derivado um esquema

de upwind que combina os efeitos da velocidade real e da velocidade de transporte produzindo

o efeito de captura de descontinuidade. Esse método foi implementado utilizando a linguagem

de programação FORTRAN90 e empregando a ferramenta de paralelização OpenMP. As solu-

ções numéricas apresentadas para os exemplos envolvendo transferência de calor em convecção

livre, mista e forçada demonstram que o método apresentado possui ótima concordância com

os resultados presentes na literatura.

Palavras-chave: Formulação estabilizada; Convecção natural e mista; Escoamento incompres-

sível e transiente; Passo de tempo local.



ABSTRACT

Concerns about climate change have motivated numerous studies aimed at finding new alter-

natives for sustainable development. With the growing demand for energy, nuclear power has

become a promising option due to its low carbon footprint and ability to provide continuous

supply. On the other hand, despite being one of the safest sources of electricity generation,

nuclear power plants require high investment due to stringent safety requirements. Therefore,

one way to increase the reliability of nuclear systems and equipment is by using computational

fluid dynamics to predict the physical phenomena that occur, thereby making them safer, more

efficient, and more cost-effective. Thus, this work aims to present a stabilized finite element

formulation based on the use of local time steps to solve fluid mechanics and heat transfer pro-

blems in incompressible flows with cartesian and axisymmetric geometries. In this formulation,

the pressure field update equations are derived using the Taylor-Galerkin method, while the ve-

locity and temperature update equations are obtained by minimizing the squared residuals of

the momentum and energy equations, respectively. Additionally, an upwind scheme is derived,

combining the effects of the real and transport velocities to produce a discontinuity-capturing

effect. This method was implemented using the FORTRAN90 programming language and the

OpenMP parallelization tool. The numerical solutions presented for examples involving heat

transfer in free, mixed, and forced convection demonstrate that the proposed method shows ex-

cellent agreement with results found in the literature.

Keywords: Stabilized formulations; Free and mixed convection; Transient incompressible vis-

cous flows; Local time-steps.
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1 Introdução

1.1 Crise Climática e Aumento da Demanda por Eletricidade

O aquecimento global, uma questão urgente do nosso tempo, tem sido impulsionado

principalmente pelo aumento das emissões de gases do efeito estufa (GEEs) na atmosfera da

Terra, em grande parte devido as atividades humanas. Esse fenômeno tem aumentado desde a

Revolução Industrial, quando a utilização de combustíveis fosseis como carvão, óleo e gás na-

tural começou a expandir. A partir dessa época, o nosso planeta tem experimentado as maiores

concentrações de dióxido de carbono, metano e NOx dos últimos 800 mil anos (NAP, 2020).

No final do século passado, diversas pesquisas científicas e organizações como o IPCC

(Intergovernmental Panel on Climate Change) das Nações Unidas confirmaram o impacto das

ações humanas no aumento da temperatura global. Desde sua fundação, o IPCC tem conduzido

reuniões internacionais para discutir as mudanças no clima destacando os problemas causados

por essa mudança e fixando compromissos para reduzir as emissões como o Protocolo de Kyoto

e o Acordo de Paris (IPCC, 2019).

Embora o compromisso firmado no Acordo de Paris tenha sido limitar o aumento da

temperatura global a 2°C em relação a níveis pré-industriais, as ações humanas já elevaram a

temperatura da Terra em 0,87°C entre 2006 e 2015, em relação à média registrada entre 1850 e

1900 (Figura 1). Ainda segundo o IPCC (2019), o aumento de 2°C até 2060 representaria con-

sequências devastadoras para nosso ecossistema. Estima-se que 6% dos insetos, 8% de plantas e

4% de vertebrados percam metade de sua amplitude geográfica por causa do aumento em 1,5°C

e para um aumento em 2°C essa estimativa passa para 18%, 16% e 8% respectivamente. Além

disso, no ambiente marinho, projeta-se uma diminuição entre 70-90% dos recifes de corais para

um aumento de 1,5°C e mais de 99% para um aumento de 2°C.
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Figura 1: Mudança observada na temperatura global e respostas modeladas para emissão de
CO2. Retirado de IPCC (2019).

Ainda que 2023 tenha sido o ano mais quente desde 1850 segundo o 2023 Global Cli-

mate Report (NOAA, 2024), as ações humanas que impactam negativamente o clima do planeta

continuam em níveis alarmantes. Um grande exemplo é o consumo de eletricidade, que é o

maior responsável pelo aquecimento global, principalmente devido a dependência de combus-

tíveis fósseis para geração elétrica. De acordo com a IEA (International Energy Agency), a

matriz elétrica mundial é responsável por mais de 40% das emissões de CO2, com a queima

de carvão mineral sendo a maior culpada (IEA, 2020). A utilização de carvão, óleo e gás na-

tural para a produção de eletricidade promove um aumento do efeito estufa e contribui para o

aumento da temperatura global.

Além disso, com o objetivo de reduzir as emissões de carbono, a transição para uma

frota automotiva eletrificada tem sido amplamente promovida como uma solução sustentável.

No entanto, essa mudança vem acompanhada de um aumento significativo no consumo de ener-

gia elétrica. Os veículos elétricos (VEs), embora mais eficientes que os movidos a combustão,

exigem uma infraestrutura robusta para recarga, além de fontes energéticas confiáveis para aten-

der à crescente demanda. Segundo a IEA (2022), desde 2015, tem sido observado um rápido

crescimento no número de veículos elétricos, que alcançou cerca de 16,5 milhões no final de

2021 e deve chegar a 145 milhões em 2030. À medida que a frota global de VEs cresce, a

necessidade de reforçar a geração de energia aumenta e coloca ainda mais pressão sobre o atual

sistema já sobrecarregado em diversas regiões.



3

Paralelamente, a expansão da inteligência artificial (IA) também contribui significati-

vamente para o aumento do consumo energético. O treinamento de modelos avançados de

IA exige supercomputadores e Data Centers que consomem grandes quantidades de energia.

Mesmo a etapa de utilização desses modelos – como a geração de respostas ou a análise de

dados – demanda um uso contínuo e intensivo de eletricidade. De acordo com a IEA (2023),

estima-se que os Data Centers espalhados pelo mundo consumiram entre 1 e 1,3% da energia

mundial em 2022, com projeção de que esse consumo dobre até 2026. Além disso, um estudo

realizado pelo Lawrence Berkeley National Laboratory em 2023 aponta que os Centros de Pro-

cessamento de Dados americanos consumiram cerca de 4,4% da energia produzida nos Estados

Unidos, com estimativa de que esse número possa triplicar até 2028 (Shehabi et al., 2024).

No Brasil, assim como em outras grandes economias, o consumo de eletricidade tem

aumentado ano após ano. Segundo a Empresa de Pesquisa Energética (EPE), os setores com

maior demanda por energia são o industrial e o de transportes, que inclui tanto as necessidades

da construção civil para infraestrutura quanto aquelas voltadas à ampliação da mobilidade da

população. Ainda de acordo com a EPE, a taxa de motorização da população brasileira - que era

de 5,3 habitantes por veículo em 2012 - poderá atingir 1,6 em 2050, resultando em uma frota

de veículos leves estimada em aproximadamente 129,5 milhões. Além disso, o crescimento

populacional também contribui para o aumento da demanda por energia elétrica. Conforme o

censo realizado em 2022 (IBGE, 2024), a população brasileira, atualmente com 212,6 milhões

de pessoas, poderá alcançar 220 milhões em 2041.

Diante desse cenário, atender a crescente demanda de energia se torna um desafio ainda

mais complexo quando a questão climática é levada em consideração. Dados da EPE (2016)

indicam que, no Brasil, cerca de 42,4% de toda a energia consumida em 2020 foi proveniente

de derivados de petróleo. Diante desse cenário, desde 1992, na Convenção Quadro das Nações

Unidas sobre Mudanças Climáticas (UNFCCC), 197 países concordaram que seria necessário

uma abordagem mais contundente para conter o aquecimento global.

1.2 O Papel da Energia Nuclear

Na década de 60 vários países promoveram o desenvolvimento e a aplicação da energia

nuclear para geração de eletricidade. O emprego da energia nuclear pelas marinhas ao redor do

mundo produziu uma base de conhecimento para o tipo de reator que utiliza água “leve” a altas

pressões como fluido refrigerante e moderador. Atualmente, os reatores de água pressurizada

são os tipos de projeto mais populares, e são responsáveis por dois terços de toda capacidade

nuclear instalada (Kok, 2017).
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Com a crescente demanda mundial por energia elétrica e a necessidade de reduzir as

emissões dos gases de efeito estufa, a matriz nuclear se tornou uma vantajosa solução para esses

desafios. Devido às suas vantagens estratégicas como a produção de eletricidade com baixo

impacto ambiental e a alta confiabilidade, a energia nuclear tornou-se uma alternativa valiosa

quando comparada com outras fontes de energia de base como usinas termelétricas movidas

a combustíveis fósseis, que emitem grandes quantidades de CO2 e poluentes atmosféricos ao

longo de sua operação.

A geração nuclear, ao longo de todo o seu ciclo de vida, apresenta emissões mínimas

desde a construção até o pleno funcionamento. Estudos indicam que a energia nuclear tem uma

pegada de carbono comparável à de fontes renováveis, como a eólica e a solar. Além disso, por

não depender da queima de combustíveis fósseis, a energia nuclear reduz a emissão de poluentes

atmosféricos como óxidos de enxofre e nitrogênio, contribuindo para a melhoria da qualidade

do ar e a saúde pública.

Outro fator determinante para a expansão desse tipo de produção de energia é sua grande

confiabilidade e capacidade de fornecimento contínuo de eletricidade. Diferentemente da fonte

solar, eólica e hidrelétrica, cuja produção depende de fatores climáticos e sazonais, a geração

nuclear opera de forma estável, garantindo eletricidade de base para os sistemas elétricos. Com

um fator de capacidade superior a 90%, as usinas nucleares podem operar ininterruptamente

por longos períodos entregando sua máxima potência, necessitando apenas de paradas para

manutenção e troca do combustível.

Nesse contexto, países que buscam segurança energética ao mesmo tempo em que vi-

sam reduzir sua pegada de carbono têm adotado a energia nuclear em suas matrizes elétricas.

Segundo a IAEA (2024), em 2023 havia 418 reatores nucleares operacionais, gerando um total

de 377,6 GW(e), e outros 59 reatores em construção em 17 países, totalizando uma capacidade

prevista de 61,1 GW(e). Durante esse ano, a construção de seis novos reatores foi iniciada,

sendo cinco deles na China e um no Egito. Dessa forma, fica evidente que essa fonte de energia

continua a se expandir globalmente.

Apesar das vantagens que a energia nuclear oferece, sua adesão ainda enfrenta resis-

tência. Questões como o alto custo inicial, o gerenciamento de resíduos radioativos e, princi-

palmente, preocupações com a segurança continuam a gerar debates sobre seu papel na matriz

energética global. Acidentes como os de Chernobyl e Fukushima reforçaram o receio da po-

pulação com esse tipo de tecnologia. Nesse sentido, fabricantes e agências reguladoras foram

obrigados a aumentar ainda mais os requisitos de segurança das usinas. Tudo isso fez com que

pesquisas envolvendo sistemas e componentes nucleares se multiplicassem por todo o mundo

na intenção de predizer possíveis falhas e aumentar a eficiência e a confiabilidade das plantas.
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1.3 Fluidodinâmica Computacional na Energia Nuclear

Para projetar usinas nucleares eficientes e seguras, i.e., funcionando em condições oti-

mizadas durante a operação normal e garantindo que seja atingido um estado seguro durante um

transiente operacional ou acidente, necessariamente é preciso compreender as diversas formas

de escoamento de fluidos bem como entender o modo como ocorre a transferência de calor de

um meio para outro nos vários equipamentos e sistemas que compõem a planta. Nesse contexto,

a fluidodinâmica computacional ou CFD (Computational Fluid Dynamics) tem se mostrado uma

ferramenta essencial, permitindo a simulação numérica dos componentes nucleares.

Com o crescimento da capacidade de processamento nas últimas décadas, a fluidodinâ-

mica computacional, tem desempenhado um papel cada vez mais relevante na indústria nuclear,

especialmente no projeto e na análise de segurança de reatores. Esse avanço impulsionou o

desenvolvimento de códigos termohidráulicos altamente confiáveis, capazes de reproduzir o

comportamento do escoamento sob diversas condições de contorno, além de reduzir significa-

tivamente a dependência de experimentos no desenvolvimento de sistemas e equipamentos.

O uso de ferramentas CFD em projetos de reatores, como os resfriados a água pressuri-

zada, tem permitido otimizar diversos componentes, como o design das varetas de combustível

e o fluxo de refrigerante através do núcleo, entre outros, aumentando a eficiência e a segurança

da planta como um todo. Além disso, essa ferramenta possibilita uma análise detalhada dos

diferentes tipos de escoamentos que ocorrem durante o funcionamento dos reatores nucleares.

Esses escoamentos podem envolver o transporte de energia, incluir múltiplas fases e ocorrer

tanto em regime laminar quanto turbulento.

Ademais, a análise de segurança é outro aspecto em que a CFD se destaca. Ela é am-

plamente utilizada para prever o comportamento de transiente e acidentes em usinas nucleares,

como quebras de linhas de alta energia, mau funcionamento de equipamentos como válvulas

ou até mesmo falhas operacionais. Essas simulações auxiliam na avaliação da capacidade de

uma planta resistir às falhas e na definição de estratégias para mitigar os danos decorrentes

dessas falhas. Exemplos de códigos usados para modelar o comportamento térmico-hidráulico

durante transientes no circuito primário por empresas como a Westinghouse e instituições como

a Électricité de France incluem: RELAP-5, TRACE, CATHARE, GOTHIC e ATHLET (IAEA,

2022).

Por outro lado, a CFD também impulsiona a inovação no design de reatores. Proje-

tos como o ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration)

(Le Coz et al., 2011), um reator rápido resfriado a sódio de Geração IV desenvolvido pela
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Comissão de Energia Alternativa e Energia Atômica da França (CEA), foram utilizados inten-

sivamente para desenvolver e validar códigos usados para cálculos do comportamento termohi-

dráulico dos sistemas e das margens operacionais relacionadas à segurança do reator (Chenaud

et al., 2015).

Portanto, a fluidodinâmica computacional consolidou-se como uma ferramenta indis-

pensável no desenvolvimento da energia nuclear. Sua aplicação não só melhora a segurança,

mas também reduz custos e acelera a inovação em projetos de reatores. À medida que a in-

dústria nuclear continua a evoluir, espera-se que seu papel se expanda ainda mais, contribuindo

para a viabilidade dessa forma de geração de energia.

1.4 Objetivo e Contribuição

Como demonstrado nas seções anteriores, a simulação numérica de escoamentos com

transferência de calor tem se tornado uma ferramenta indispensável na indústria nuclear. A

termohidráulica, como é conhecida nessa área, desempenha um papel fundamental no projeto e

na análise de segurança de reatores nucleares, uma vez que envolve o estudo de problemas de

escoamento em equipamentos como o vaso do reator, trocadores de calor, bombas etc.

Portanto, o objetivo desta dissertação é desenvolver uma formulação estabilizada do

método de elementos finitos, com captura de descontinuidade, para aplicação em problemas

de escoamento incompressível governados por convecção-difusão, considerando transferência

de calor e forças de empuxo decorrentes de gradientes térmicos, modelados pela hipótese de

Boussinesq visto que tais problemas ocorrem rotineiramente, tanto no desenvolvimento de no-

vos reatores quanto na análise de desempenho e segurança de plantas em operação.

Essa formulação é aplicável tanto a geometrias cartesianas quanto axissimétricas, abran-

gendo uma ampla gama de problemas bidimensionais. Além disso, inclui termos de estabili-

zação que emergem naturalmente da discretização temporal das equações governantes. Esses

termos permitem a estabilização do campo de pressão e outros gradientes intensos, o que reduz

oscilações indesejadas nas soluções numéricas.

1.5 Organização da Dissertação

Este trabalho está organizado em sete capítulos estruturados de forma a apresentar o

desenvolvimento e os resultados obtidos.
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No Capítulo 1, é apresentada a introdução, abordando o contexto geral dessa disserta-

ção, a motivação para o desenvolvimento da formulação proposta e os objetivos específicos da

pesquisa.

O Capítulo 2 apresenta a revisão bibliográfica abordando o emprego da formulação

estabilizada com operador de captura de descontinuidade.

O Capítulo 3 trata da formulação matemática das equações governantes na forma di-

mensional e adimensional, abrangendo tanto geometrias cartesianas quanto axissimétricas. São

descritas as leis de conservação e a hipótese de Boussinesq, que considera as forças de empuxo

geradas por gradientes térmicos.

No Capítulo 4, é apresentada a formulação estabilizada do método de elementos finitos

definido as equações de atualização da pressão, velocidade e temperatura. São discutidos o

modelo submalha, os campos de velocidade, o uso de passos de tempo locais e a sincronização.

O Capítulo 5 aborda a implementação computacional da metodologia proposta, in-

cluindo aspectos da malha adaptativa empregada, paralelismo computacional e etapas de pré

e pós-processamento utilizados nas simulações.

No Capítulo 6, são apresentados os resultados obtidos para a verificação do modelo,

os exemplos numéricos escolhidos incluem casos clássicos de convecção natural e mista, bem

como escoamento em dutos e o escoamento em uma região do vaso de um reator nuclear.

Por fim, o Capítulo 7 reúne as conclusões do trabalho, destacando resultados mais rele-

vantes, e sugestões para trabalhos futuros.



8

2 Revisão Bibliográfica

2.1 Formulação Estabilizada do Método de Elementos Finitos

O método de elementos finitos pode ser definido, de forma geral, como a aplicação

dos princípios variacionais ou do método de resíduos ponderados a um conjunto de equações

diferenciais. Inicialmente, foi empregado para resolver problemas em mecânica dos sólidos

dada sua vantagem em lidar com geometrias complexas e a capacidade de impor condições de

contorno de maneira direta (Clough, 1960). Quando aplicado a uma equação diferencial, esse

método produz uma solução aproximada com formato de combinação linear de funções forma,

onde para encontrar a solução é preciso determinar os coeficientes dessa combinação linear

(Strang e Fix, 1973).

O método de Galerkin, por sua vez, é uma formulação de resíduos ponderados onde as

funções peso são as mesmas funções usadas para interpolar a solução aproximada. Para um

problema elíptico auto-adjunto, o método de Galerkin leva à melhor solução aproximada (a

chamada propriedade de melhor aproximação). No entanto, quando aplicado em problemas de

escoamento incompressível que envolvem convecção-difusão essa formulação falha, uma vez

que os operadores diferenciais nesse caso não são auto-adjuntos e o método de Galerkin perde

a sua propriedade de melhor aproximação (Johnson, 1987).

Logo, formulações estabilizadas em elementos finitos surgiram para superar as limi-

tações da formulação Galerkin padrão na solução de problemas de Mecânica dos Fluidos en-

volvendo escoamentos incompressíveis dominados por convecção. Na abordagem clássica de

Galerkin, é necessário que os espaços de interpolação para velocidade e pressão satisfaçam a

condição de Babuška-Brezzi (Brezzi e Fortin, 1991). No entanto, essa condição impõe restri-

ções, já que o campo de pressão não está diretamente ligado à conservação de massa, dificul-

tando a aplicação desse método (Zienkiewicz e Nakazawa, 1986).

O uso de espaços de interpolação iguais para velocidade e pressão na solução desse tipo

de escoamento pode resultar em uma matriz global singular. Esse problema ocorre porque a

equação da continuidade, que impõe a incompressibilidade do fluido, age como uma restrição

sobre o campo de velocidade. Assim, se os espaços de interpolação não forem compatíveis,

garantindo um número adequado de graus de liberdade para a velocidade em relação à pres-

são, valores nulos podem ser introduzidos na diagonal principal da matriz global, tornando-a

mal condicionada e dificultando sua inversão (De Sampaio, 1991b). Dessa forma, para utilizar
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espaços de interpolação de mesma ordem para todas as variáveis, o que é atrativo computa-

cionalmente, é preciso utilizar de uma formulação estabilizada. Essas formulações como a

de Petrov-Galerkin adicionam termos de estabilização que modificam os resíduos ponderados,

introduzindo valores não nulos na diagonal principal da matriz global sem comprometer a con-

sistência da solução, evitando, assim, a formação de uma matriz singular.

Neste trabalho, é empregada uma formulação do tipo Petrov-Galerkin para as equações

de Navier-Stokes incompressíveis em variáveis primitivas. O método é derivado do conceito

de mínimos quadrados e permite o uso de interpolações de mesma ordem para velocidade e

pressão (De Sampaio, 1991a). De fato, pode ser considerado uma generalização da formulação

apresentada por Hughes et al. (1986b), que contorna a condição de Babuška-Brezzi no contexto

do escoamento de Stokes.

Nessa formulação, os termos de estabilização emergem naturalmente a partir da aplica-

ção da minimização da integral do quadrado dos resíduos do balanço de quantidade de movi-

mento, que combina uma discretização temporal baseada em diferenças finitas e espacial usando

elementos finitos, onde as funções de ponderação resultantes apresentam uma estrutura análoga

à função SUPG proposta por Brooks e Hughes (1982). Esses termos estabilizadores foram

adicionados à equação de conservação de massa, permitindo uma estabilização do campo de

pressão (De Sampaio, 2005).

Geralmente, os termos de estabilização aparecem multiplicados por parâmetros (ou es-

calas de tempo intrínsecas) que definem a quantidade de estabilização necessária, dependendo

do tamanho local da malha, da velocidade e das propriedades físicas. No trabalho de Brooks e

Hughes (1982), esses autores determinaram o chamado parâmetro de upwinding ótimo, usado

para controlar oscilações na solução numérica de problemas de convecção-difusão unidimen-

sionais e em estado estacionário. No entanto, em problemas de convecção-difusão transitórios

e multidimensionais a estrutura dos termos de estabilização e os parâmetros correspondentes

geralmente são propostos a priori e justificados a posteriori por meio de análises numéricas e

experimentos computacionais (De Sampaio, 1991b).

Outra importante característica do método proposto é que o passo de tempo utilizado

na discretização temporal da equação de conservação de quantidade de movimento e energia

é empregado como parâmetro de estabilização. Isso implica que há um parâmetro a menos

para definir em aplicações transitórias. Mais importante ainda, isso oferece uma indicação de

como escolher o passo de tempo/parâmetro de estabilização. Na prática, o passo de tempo é

definido com base na estimativa das escalas de tempo dos processos de convecção-difusão de

momentum, que podem ser resolvidos pela malha local (De Sampaio, 1991a).
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Para introduzir a quantidade correta de estabilização em todo o domínio de análise, o

passo de tempo deve ser definido localmente, resultando em uma distribuição espacialmente

variável de passos de tempo. No trabalho de De Sampaio (2005), algoritmos especiais foram

empregados para acomodar essa distribuição e sincronizar os cálculos em problemas transientes.

Neste trabalho, é proposta uma abordagem similar mas com o uso de matrizes de escala de

tempo, para o cálculo dos passos de tempo locais, e um esquema de sincronização necessário

que são incorporados ao método para introduzir a quantidade correta de estabilização em todo

o domínio.

Como resultado, desenvolveu-se um método que se assemelha a formulações estabi-

lizadas bem conhecidas, empregando um único passo de tempo para todo o domínio e uma

definição local de parâmetros de estabilização. No entanto, suas origens estão baseadas no uso

de passos de tempo locais combinados com um esquema de sincronização.

2.2 Operador Captura de Descontinuidade

Como discutido anteriormente, o método de Galerkin é inadequado para a análise de

problemas dominados por convecção. A chamada propriedade de melhor aproximação (John-

son, 1987), que a formulação de Galerkin exibe para operadores auto-adjuntos, é perdida sempre

que termos de convecção estão presentes. Na prática, a aplicação da formulação de Galerkin a

problemas convectivos resulta em oscilações espaciais que podem poluir a solução em todo o

domínio de análise.

Com o desenvolvimento do método SUPG, que introduz uma difusão anisotrópica de

balanceamento (Kelly et al., 1980), um avanço significativo foi obtido no sentido de reduzir

essas oscilações. Nesse método, o upwinding é introduzido aproveitando a ideia do método de

diferenciação a montante inclinada de Raithby (1976). O método gera uma contribuição difu-

siva que atua apenas na direção das linhas de corrente. Comparado com métodos de diferenças

finitas, o SUPG pode ser classificado como um esquema de upwind de segunda ordem. De

fato, a parte de Galerkin do método corresponde à diferenciação central, enquanto a dissipação

necessária para estabilizar a formulação vem da parte de perturbação do resíduo ponderado.

Apesar de o método SUPG apresentar boa estabilidade se a solução exata for regular,

para soluções não regulares, i.e., que possuem descontinuidades ou gradientes muito inten-

sos, podem aparecer oscilações localizadas em regiões contendo camadas agudas, como por

exemplo, camadas limites e interfaces finas. Hughes et al. (1986a) abordaram esse problema

adicionando uma perturbação extra à função peso do SUPG. O efeito dessa perturbação extra
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é introduzir difusão ao longo da direção do gradiente da grandeza transportada, funcionando

como um operador de captura de descontinuidade que auxilia o método SUPG no controle de

oscilações em regiões com camadas abruptas.

No trabalho de Galeão e Dutra do Carmo (1988), foi desenvolvido um esquema de

upwind tomando a ideia de que na solução exata, as linhas de corrente, em um problema pura-

mente convectivo, são a direção física das grandezas transportadas, porém, no caso da solução

numérica, a direção é aproximada. Nessa abordagem, os autores derivaram o upwind a partir da

definição de um campo de velocidade que satisfaz a equação de transporte em cada elemento

finito e minimiza a diferença entre a velocidade real e a velocidade de transporte modificada

gerando um termo de estabilização Petrov-Galerkin, que incorpora a direção a montante corri-

gida. Dessa forma, à medida que a solução numérica se aproxima da solução exata, a direção a

montante tende à direção das linhas de corrente produzindo o efeito de captura de descontinui-

dade.

Além disso, no trabalho de De Sampaio e Coutinho (2001), a velocidade efetiva, similar

a empregada no trabalho de Galeão e Dutra do Carmo (1988) foi aplicada para ajustar a velo-

cidade real na direção do fluxo difusivo. Logo, o problema de convecção-difusão aproximado

gerou a mesma estrutura de função de peso do método de Hughes et al. (1986a), porém, nesse

caso, o operador de captura de descontinuidade resultante não cria o indesejável efeito de du-

plicação da formulação original SUPG somado a captura de descontinuidade.
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3 Formulação Matemática

O objetivo deste capítulo é apresentar a formulação matemática para escoamentos in-

compressíveis com transferência de calor em problemas bidimensionais, considerando tanto

geometrias cartesianas quanto axissimétricas. A adoção de um modelo bidimensional se jus-

tifica principalmente pelo fato de que muitos escoamentos, tanto na área nuclear quanto em

outras áreas da engenharia, apresentam simetrias ou geometrias que permitem a simplificação

de um modelo tridimensional para uma representação bidimensional. Essa simplificação reduz

significativamente o custo computacional, viabilizando simulações com maior resolução espa-

cial e temporal.

Primeiramente, será desenvolvida a formulação para coordenadas cartesianas, seguida

pela extensão para coordenadas cilíndricas. Em ambos os casos, o problema é definido em um

domínio Ω com fronteira Γ, contidos em um espaço Euclidiano bidimensional. A formulação é

estruturada de forma a incorporar as características específicas de cada sistema de coordenadas,

garantindo uma representação adequada dos fenômenos físicos. Para os dois modelos conside-

rados, foi adotada a aproximação de Boussinesq, na qual as pequenas variações de densidade

devido ao gradiente de temperatura, são incorporadas nos termos de força de empuxo das equa-

ções de momentum.

3.1 Modelo Cartesiano

As leis de conservação são os princípios físicos que regem o comportamento dos fluidos

e a transferência de calor em um determinado sistema. Essas leis são conhecidas como conser-

vação de massa, quantidade de movimento e de energia.

Escrevendo a equação da Continuidade, de Navier-Stokes e de Energia em coordenadas

cartesianas temos:

∂u
∂x

+
∂v
∂y

= 0 (3.1)

ρo

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
− ∂τxx

∂x
−

∂τxy

∂y
+

∂ p
∂x

+ρoβgx(T −To) = 0 (3.2)
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ρo

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

)
−

∂τxy

∂x
−

∂τyy

∂y
+

∂ p
∂y

+ρoβgy(T −To) = 0 (3.3)

ρocp

(
∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

)
+

∂qx

∂x
+

∂qy

∂y
= 0 (3.4)

onde as variáveis dependentes são: u e v as componentes da velocidade, p a pressão e T a

temperatura. A massa específica a temperatura de referência To e dada por ρo, o coeficiente de

expansão volumétrica é dado por β =−ρ−1∂ρ/∂T e g é a aceleração da gravidade.

O tensor das tensões viscosas pode ser escrito como:

τxx = 2µ
∂u
∂x

τxy = µ

(
∂u
∂x

+
∂v
∂y

)
τyy = 2µ

∂v
∂y

(3.5)

e o fluxo de calor como:

qx =−k
∂T
∂x

qy =−k
∂T
∂y

(3.6)

onde µ é a viscosidade, k é a condutividade térmica do fluido.

O modelo fica completo com a introdução das condições iniciais e de contorno dos

campos de velocidade e temperatura nas fronteiras. As condições de contorno de velocidade e

tração na direção x são prescritas pelos valores dados nas fronteiras não sobrepostas Γu e Γtx,

tal que Γu ∪Γtx = Γ e Γu ∩Γtx = 0, de acordo com:

u = u(x, t), x ∈ Γu (3.7)

(−p+ τxx)nx + τxyny = tx(x, t), x ∈ Γtx (3.8)

onde nx e ny são as componentes na direção x e y, respectivamente, do vetor normal à fronteira.

As condições de contorno de velocidade e tração na direção y são prescritas pelos valo-

res dados nas fronteiras não sobrepostas Γv e Γty, tal que Γv ∪Γty = Γ e Γv ∩Γty = 0, de acordo

com:
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v = v(x, t), x ∈ Γv (3.9)

τxynx +(−p+ τyy)ny = ty(x, t), x ∈ Γty (3.10)

As condições de contorno de temperatura e fluxo de calor são prescritas pelos valores

dados nas fronteiras não sobrepostas ΓT e Γq, tal que ΓT ∪Γq = Γ e ΓT ∩Γq = 0, de acordo

com:

T = T (x, t), x ∈ ΓT (3.11)

qxnx +qyny = q(x, t), x ∈ Γq (3.12)

As condições de contorno de pressão e velocidade normal são prescritas pelos valores

dados nas fronteiras não sobrepostas Γp e ΓG, tal que Γp ∪ΓG = Γ e Γp ∩ΓG = 0, de acordo

com

p = p(x, t), x ∈ Γp (3.13)

unx + vny = G(x, t), x ∈ ΓG (3.14)

Note que as Equações de conservação contêm o gradiente de pressão e não a pressão

propriamente dita. Ou seja, pelo menos um valor de referência de pressão deve ser prescrito a

fim definir um campo de pressão único.

3.1.1 Equações Governantes na Forma Adimensional

De forma a adimensionalizar as equações de conservação governantes, o que permite

identificar os números adimensionais relevantes que caracterizam o tipo de regime de esco-

amento, é preciso escrever as variáveis de forma conveniente em relação as escalas de re-

ferência do problema. Sendo assim, as componentes da velocidade, pressão e temperatura

na forma adimensional são: u∗ = u/uo, v∗ = v/uo, p∗ = p/ρou2
o e T ∗ = (T − To)/∆T com
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∆T = (Tmax−Tmin). Além disso, uo é a velocidade de referência, Tmax e Tmin são as temperaturas

máxima e mínima do problema, respectivamente. As coordenadas espaciais são adimensiona-

lizadas com o comprimento característico L, i.e., x∗ = x/L e y∗ = y/L. Ademais, o tempo e a

aceleração da gravidade adimensionalizados são expressos na forma: t∗ = t uo/L e g∗ = g/∥g∥,

respectivamente.

Deste modo, as equações governantes na forma adimensional podem ser escritas, a partir

deste ponto, omitindo-se o símbolo ’∗’ das variáveis adimensionais. Essa convenção é adotada

por simplicidade de notação, mantendo-se o entendimento de que todas as variáveis envolvidas

nas equações subsequentes estão expressas em sua forma adimensional.

∂u
∂x

+
∂v
∂y

= 0 (3.15)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

− ∂τxx

∂x
−

∂τxy

∂y
+

∂ p
∂x

+RigxT = 0 (3.16)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

−
∂τxy

∂x
−

∂τyy

∂y
+

∂ p
∂y

+RigyT = 0 (3.17)

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

+
∂qx

∂x
+

∂qy

∂y
= 0 (3.18)

Com as equações constitutivas da tensão cisalhante escritas na seguinte forma:

τxx =
2

Re
∂u
∂x

τxy =
1

Re

(
∂u
∂x

+
∂v
∂y

)
τyy =

2
Re

∂v
∂y

(3.19)

e do fluxo de calor como:

qx =− 1
RePr

∂T
∂x

qy =− 1
RePr

∂T
∂y

(3.20)

onde Re = ρo ∥u∥L/µ é o número de Reynolds, Ri = β∆T ∥g∥L/u2
o é o numero de Richardson

e Pr = cpµ/k é o número de Prandtl.

É importante destacar que para problemas que envolvem convecção mista e forçada, em

que a velocidade de referência utilizada depende das características do caso estudado, o em-
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prego das equações na forma adimensional é bastante conveniente. No entanto, para problemas

que envolvem apenas convecção natural, é necessário obter a escala de tempo da velocidade de

forma indireta, i.e., uo =
√

β∆T ∥g∥L. Ou seja, para o caso de convecção natural, os núme-

ros de Richardson e Reynolds, que aparecem nas equações adimensionais, se tornam Ri = 1 e

Re =
√

Ra/Pr, respectivamente, onde Ra = ρocp ∥g∥β∆T L3/µk é o número de Rayleigh.

3.2 Modelo Axissimétrico

Para o modelo axissimétrico, as equações de continuidade, Navier-Stokes e energia para

um fluido incompressível podem ser escritas em coordenadas cilíndricas como:

∂u
∂x

+
1
r

∂ (rv)
∂ r

= 0 (3.21)

ρo

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂ r

)
+

∂ p
∂x

− ∂Sxx

∂x
− 1

r
∂ (rSxr)

∂ r
+ρoβgx(T −To) = 0 (3.22)

ρo

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂ r

)
+

∂ p
∂ r

− ∂Sxr

∂x
− 1

r
∂ (rSrr)

∂ r
+

Sθθ

r
= 0 (3.23)

ρocp

(
∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂ r

)
+

∂qx

∂x
+

1
r

∂ (rqr)

∂ r
= 0 (3.24)

onde u é a componente da velocidade na direção axial, v é a componente da velocidade na

direção radial, p a pressão, e T a temperatura.

No modelo axissimétrico, a equação de quantidade de movimento na direção angular

não é resolvida devido a consideração de simetria em relação ao eixo. Além disso, as equações

constitutivas incorporadas nas equações de conservação acima são escritas para a tensão cisa-

lhante como:

Sxx = 2µ
∂u
∂x

Sxr = µ

(
∂u
∂ r

+
∂v
∂x

)
Srr = 2µ

∂v
∂ r

Sθθ = 2µ
v
r

(3.25)

e para o fluxo de calor como:
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qx =−k
∂T
∂x

qr =−k
∂T
∂ r

(3.26)

Novamente, o modelo fica completo com a introdução das condições iniciais e de con-

torno dos campos de velocidade e temperatura nas fronteiras. As condições de contorno de

velocidade e tração na direção axial são prescritas pelos valores dados nas fronteiras não sobre-

postas Γu e Γtx , tal que Γu ∪Γtx = Γ e Γu ∩Γtx = 0, de acordo com:

u = u(x, t), x ∈ Γu (3.27)

(−p+Sxx)nx +Sxrnr = tx(x, t), x ∈ Γtx (3.28)

onde nx e nr são as componente axial e radial, respectivamente, do vetor normal à fronteira.

As condições de contorno de velocidade e tração na direção radial são prescritas pelos

valores dados nas fronteiras não sobrepostas Γv e Γtr , tal que Γv ∪Γtr = Γ e Γv ∩Γtr = 0, de

acordo com:

v = v(x, t), x ∈ Γv (3.29)

Sxrnx +(−p+Srr)nr = tr(x, t), x ∈ Γtr (3.30)

As condições de contorno de temperatura e fluxo de calor são prescritas pelos valores

dados nas fronteiras não sobrepostas ΓT e Γq, tal que ΓT ∪Γq = Γ e ΓT ∩Γq = 0, de acordo

com:

T = T (x, t), x ∈ ΓT (3.31)

qxnx +qrnr = q(x, t), x ∈ Γq (3.32)

As condições de contorno de pressão e velocidade normal são prescritas pelos valores

dados nas fronteiras não sobrepostas Γp e ΓG, tal que Γp ∪ΓG = Γ e Γp ∩ΓG = 0, de acordo

com:
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p = p(x, t), x ∈ Γp (3.33)

unx + vnr = G(x, t), x ∈ ΓG (3.34)

3.2.1 Equações Governantes na Forma Adimensional

Análogo ao que foi feito para adimensionalizar as equações de conservação em coorde-

nadas cartesianas, na forma adimensional das equações em coordenadas cilíndricas as variáveis

primitivas velocidade, pressão e temperatura podem ser escritas como: u∗ = u/uo, v∗ = v/uo,

p∗ = p/ρou2
o e T ∗ = (T − To)/∆T . As coordenadas espaciais são adimensionalizadas com o

comprimento de referência D, i.e., x∗ = x/D e r∗ = r/D e o tempo e a aceleração da gravidade

adimensionalizados são expressos na forma: t∗ = t uo/D e g∗x = gx/∥g∥, respectivamente.

Como na seção anterior, as equações governantes na forma adimensional podem ser

escritas, a partir deste ponto, omitindo-se o símbolo ’∗’ das variáveis adimensionais.

∂u
∂x

+
1
r

∂ (rv)
∂ r

= 0 (3.35)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂ r

+
∂ p
∂x

− ∂Sxx

∂x
− 1

r
∂ (rSxr)

∂ r
+RigxT = 0 (3.36)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂ r

+
∂ p
∂ r

− ∂Sxr

∂x
− 1

r
∂ (rSrr)

∂ r
+

Sθθ

r
= 0 (3.37)

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂ r

+
∂qx

∂x
+

1
r

∂ (rqr)

∂ r
= 0 (3.38)

Com as equações constitutivas da tensão cisalhante escritas na seguinte forma:

Sxx =
2

Re
∂u
∂x

Sxr =
1

Re

(
∂u
∂ r

+
∂v
∂x

)
Srr =

2
Re

∂v
∂ r

Sθθ =
2

Re
v
r

(3.39)

e do fluxo de calor como:
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qx =− 1
RePr

∂T
∂x

qr =− 1
RePr

∂T
∂ r

(3.40)

onde Re = ρouoD/µ , Pr = cpµ/k e Ri = β∆T ∥g∥D/u2
o são os números de Reynold, Prandtl e

Richardson respectivamente.

No modelo axissimetrico, com comprimento característico diferente do modelo car-

tesiano, a escala da velocidade de referência tomada indiretamente, é definida como uo =√
β∆T ∥g∥D. Portanto, para convecção livre, os números de Richardson e Reynolds se tor-

nam Ri = 1 e Re =
√

Ra/Pr, onde Ra = ρ2
o cp ∥g∥∆T D3/µk é o número de Rayleigh.
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4 Formulação Estabilizada

Neste trabalho, a formulação estabilizada segue aquela derivada no trabalho de De Sam-

paio (2006). Como dito anteriormente na revisão bibliográfica, para os problemas de difusão, a

solução pelo método de Galerkin padrão é direta. No entanto, se uma aproximação desse tipo

fosse usada para resolver equações de convecção com valores críticos de Peclet elementar, os

resultados apresentariam oscilações espúrias. Por isso, com o objetivo de eliminar essas osci-

lações, diversos esquemas de upwinding como o SUPG foram desenvolvidos (Nithiarasu et al.,

2016).

A formulação apresentada aqui pertence a classe das formulações de elementos finitos

inerentemente estáveis, i.e., não requerem a introdução de termos escolhidos a priore para serem

estabilizadas. Os termos que garantem a estabilização surgem de forma natural conduzindo a

uma aproximação conveniente para solução do problema de convecção dominante, produzindo

dessa forma o efeito SUPG. Além disso, os campos de velocidade e pressão são projetados em

espaços de funções de mesma ordem, condição que violaria a restrição de Babuška-Brezzi se

não fossem estabilizados.

4.1 Atualização dos Campos - Cartesiano

4.1.1 Atualização do Campo de Pressão

Para derivar a equação de atualização dos valores de pressão, é realizada uma expansão

temporal das variáveis dependentes velocidade e temperatura. Com isso, a velocidade u pode

ser expressa utilizando uma série de Taylor de segunda ordem, da seguinte forma:

un+1 = un +∆t
∂un

∂ t
+

∆t2

2
∂

∂ t

(
∂u
∂ t

)n

+O(∆t3) (4.1)

onde os sobrescritos n e n+1 indicam o nível de tempo e ∆t indica o passo de tempo entre dois

níveis de tempo consecutivos.

Note que é possível escreve a equação acima como:
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un+1 −un = ∆u = ∆t
[

∂un

∂ t
+

∆t
2

∂

∂ t

(
∂u
∂ t

)n]
+O(∆t3) (4.2)

∆u = ∆t
(

∂u
∂ t

)n+1/2

+O(∆t3) (4.3)

onde a variação da velocidade durante o passo de tempo ∆t é denotado por ∆u = un+1 −un.

Nesse momento, definimos o que chamamos de velocidade real como o vetor velocidade

a, que será usado nas equações de conservação, como:

a = uêx + vêy (4.4)

Dessa forma, é possível escrever:

a ·∇u = u
∂u
∂x

+ v
∂u
∂y

a ·∇v = u
∂v
∂x

+ v
∂v
∂y

a ·∇T = u
∂T
∂x

+ v
∂T
∂y

(4.5)

Assim, ao substituir a variação da velocidade ∆u na equação de conservação da quanti-

dade de movimento na direção x, e aplicando o mesmo procedimento aos termos ∆v e ∆T nas

equações de conservação da quantidade de movimento na direção y e de energia, respectiva-

mente, obtém-se:

∆u =−∆t

[
an+1/2 ·∇un+1/2 +

∂ pn+1/2

∂x
− ∂τ

n+1/2
xx

∂x
−

∂τ
n+1/2
xy

∂y
+RigxT n+1/2

]
+O(∆t3) (4.6)

∆v =−∆t

[
an+1/2 ·∇vn+1/2 +

∂ pn+1/2

∂y
−

∂τ
n+1/2
xy

∂x
−

∂τ
n+1/2
yy

∂y
+RigyT n+1/2

]
+O(∆t3) (4.7)

∆T =−∆t

[
an+1/2 ·∇T n+1/2 +

∂qn+1/2
x

∂x
+

∂qn+1/2
y

∂y

]
+O(∆t3) (4.8)

Uma outra forma útil de representar as expressões acima é tomar uma aproximação de

menor ordem, na qual as variáveis são avaliadas no nível de tempo n, com exceção do gradiente

de pressão, que é avaliado no nível n+1/2:
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∆u =−∆t

[
an ·∇un +

∂ pn+1/2

∂x
− ∂τn

xx
∂x

−
∂τn

xy

∂y
+RigxT n

]
+O(∆t2) (4.9)

∆v =−∆t

[
an ·∇vn +

∂ pn+1/2

∂y
−

∂τn
xy

∂x
−

∂τn
yy

∂y
+RigyT n

]
+O(∆t2) (4.10)

∆T =−∆t
[

an ·∇T n +
∂qn

x
∂x

+
∂qn

y

∂y

]
+O(∆t2) (4.11)

Com as expressões para ∆u e ∆v já determinadas, ao impor o balanço de massa no nível

de tempo n+1, obtemos:

∂un+1

∂x
+

∂vn+1

∂y
= 0 (4.12)

∂∆u
∂x

+
∂∆v
∂y

+
∂un

∂x
+

∂vn

∂y
= 0 (4.13)

Aplicando o método dos resíduos ponderados, onde ϕ é a função peso, e integrando

sobre o domínio Ω, obtemos:

∫
Ω

ϕ

[
∂∆u
∂x

+
∂∆v
∂y

]
dΩ+

∫
Ω

ϕ

[
∂un

∂x
+

∂vn

∂y

]
dΩ = 0 (4.14)

Ao integrar o resíduo com a função peso ϕ , garantimos que sua média ponderada (inte-

gral) sobre o domínio seja igual a zero. Essa é a chamada formulação fraca, pois ela não exige

que a solução coincida a menos de um conjunto de medida nula.

Integrando por partes, essa equação assume a forma:

−
∫

Ω

∂ϕ

∂x
∆udΩ−

∫
Ω

∂ϕ

∂y
∆vdΩ+

∫
Γ

ϕ (∆unx +∆vny)dΓ+
∫

Ω

ϕ

[
∂un

∂x
+

∂vn

∂y

]
dΩ = 0 (4.15)
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Substituindo ∆u e ∆v na equação acima, temos:

∫
Ω

∆t
∂ϕ

∂x

[
an ·∇un +

∂ pn+1/2

∂x
− ∂τn

xx
∂x

−
∂τn

xy

∂y
+RigxT n

]
dΩ

+
∫

Ω

∆t
∂ϕ

∂y

[
an ·∇vn +

∂ pn+1/2

∂y
−

∂τn
xy

∂x
−

∂τn
yy

∂y
+RigyT n

]
dΩ =

−
∫

Ω

ϕ

[
∂un

∂x
+

∂vn

∂y

]
dΩ−

∫
Γ

ϕ (∆unx +∆vny)dΓ+O(∆t2) (4.16)

Reescrevendo a equação acima e considerando que a pressão é prescrita na fronteira Γp,

o valor da função peso ϕ , tal que ϕ = 0 em Γp, e que em ΓG a variação do fluxo através da

fronteira é prescrita como ∆G = ∆unx +∆vny, obtemos:

∫
Ω

∆t

[
∂ϕ

∂x
∂ pn+1/2

∂x
+

∂ϕ

∂y
∂ pn+1/2

∂y

]
dΩ =−

∫
Ω

ϕ

[
∂un

∂x
+

∂vn

∂y

]
dΩ

−
∫

ΓG

ϕ∆GdΓ−
∫

Ω

∆t
∂ϕ

∂x

[
an ·∇un − ∂τn

xx
∂x

−
∂τn

xy

∂y
+RigxT n

]
dΩ

−
∫

Ω

∆t
∂ϕ

∂y

[
an ·∇vn −

∂τn
xy

∂x
−

∂τn
yy

∂y
+RigyT n

]
dΩ (4.17)

Como o método de Elementos Finitos é baseado na formulação fraca do problema,

busca-se uma solução aproximada para as equações diferenciais em um espaço de dimensão

finita. Essa solução aproximada é uma projeção da solução exata em um subespaço apropriado e

pode ser representada como uma combinação linear de um número finito de funções conhecidas,

que formam a base desse subespaço. Isso implica que u pode ser escrito como o somatório:

û = N ju j

onde N j são as funções forma e u j são os valores nodais.

Neste trabalho, a discretização espacial é realizada utilizando elementos finitos com

funções forma Lagrangianas triangulares lineares em duas dimensões. Assim, as variáveis de

velocidade, pressão e temperatura são representadas como: û = N ju j, v̂ = N jv j, p̂ = N j p j e

T̂ = N jTj.
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Aplicando o método de Galerkin, obtemos da Eq. 4.15 a seguinte expressão:

∫
Ω

∆t

[
∂Ni

∂x
∂ p̂n+1/2

∂x
+

∂Ni

∂y
∂ p̂n+1/2

∂y

]
dΩ =−

∫
Ω

Ni

[
∂ ûn

∂x
+

∂ v̂n

∂y

]
dΩ

−
∫

ΓG

Ni∆GdΓ−
∫

Ω

∆t
∂Ni

∂x

[
ân ·∇ûn − ∂ τ̂n

xx
∂x

−
∂ τ̂n

xy

∂y
+RigxT̂ n

]
dΩ

−
∫

Ω

∆t
∂Ni

∂y

[
ân ·∇v̂n −

∂ τ̂n
xy

∂x
−

∂ τ̂n
yy

∂y
+RigyT̂ n

]
dΩ (4.18)

Dessa forma, a equação acima é usada para calcular o campo de pressão p̂n+1/2.

4.1.2 Atualização dos Campos de Velocidade e Temperatura

Uma vez que foi obtida uma expressão para o cálculo do campo de pressão, prosse-

guimos com a atualização dos campos de velocidade e temperatura. Para isso, são utilizadas

as equações de conservação de quantidade de movimento e energia na forma discretizada no

tempo n+1:

∆u
∆t

+an+1/2 ·∇un+1/2 +
∂ pn+1/2

∂x
− ∂τ

n+1/2
xx

∂x
−

∂τ
n+1/2
xy

∂y
+RigxT n+1/2 = 0+O(∆t2) (4.19)

∆v
∆t

+an+1/2 ·∇vn+1/2 +
∂ pn+1/2

∂y
−

∂τ
n+1/2
xy

∂x
−

∂τ
n+1/2
yy

∂y
+RigyT n+1/2 = 0+O(∆t2) (4.20)

∆T
∆t

+an+1/2 ·∇T n+1/2 +
∂qn+1/2

x

∂x
+

∂qn+1/2
y

∂y
= 0+O(∆t2) (4.21)

Note que é possível representar as variáveis no nível de tempo intermediário n+ 1/2.

Sendo assim, utilizando as expansões de Taylor, obtemos:

un+1/2 =
un+1 +un

2
+O(∆t2) = un +

∆u
2

+O(∆t2) (4.22)

vn+1/2 =
vn+1 + vn

2
+O(∆t2) = vn +

∆v
2

+O(∆t2) (4.23)
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T n+1/2 =
T n+1 +T n

2
+O(∆t2) = T n +

∆T
2

+O(∆t2) (4.24)

Assim, considerando que os cálculos iterativos das variáveis: ∆uk, ∆vk e ∆T k são valores

estimados para a variação de u, v e T durante o passo de tempo ∆t, onde k é um índice provisório

usado durante as iterações até se atingir a segunda ordem no tempo. Então, uk, vk e T k são

as estimativas correspondentes dessas variáveis no tempo tn+1/2 = tn +∆t/2. Dessa forma,

tomamos as seguintes aproximações das variáveis no nível de tempo tn+1/2:

uk = un +
∆uk

2
uk+1 = un +

∆uk+1

2
(4.25)

vk = vn +
∆vk

2
vk+1 = vn +

∆vk+1

2
(4.26)

T k = T n +
∆T k

2
T k+1 = T n +

∆T k+1

2
(4.27)

Considerando a equação de momentum. Das equações 4.19 e 4.20, temos:

∆uk+1

∆t
+

1
2

ak ·∇(∆u)k+1 +ak ·∇un +
∂ pn+1/2

∂x
− ∂τk

xx
∂x

−
∂τk

xy

∂y
+RigxT k = 0 (4.28)

∆vk+1

∆t
+

1
2

ak ·∇(∆v)k+1 +ak ·∇vn +
∂ pn+1/2

∂y
−

∂τk
xy

∂x
−

∂τk
yy

∂y
+RigyT k = 0 (4.29)

Para a equação de energia 4.21, temos o seguinte resultado análago à da equação ante-

rior:

∆T k+1

∆t
+

1
2

ak ·∇(∆T )k+1 +ak ·∇T n +
∂qk

x
∂x

+
∂qk

y

∂y
= 0 (4.30)

Para produzir os resíduos das componentes do campo de velocidade e da temperatura,

novamente, as variáveis são discretizadas espacialmente usando elementos finitos assumindo as

seguintes formas: ûk =N juk
j, v̂k =N jvk

j, T̂ k =N jT k
j , ∆ûk =N j∆uk

j, ∆v̂k =N j∆vk
j e ∆T̂ k =N j∆T k

j .

Essa discretização é utilizada para aproximar os respectivos campos nas equações 4.28, 4.29 e

4.30:
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Rx =
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]
+ âk ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y
+RigxT̂ k (4.31)

Ry =
1
∆t

[
∆v̂k+1 +

∆t
2

âk ·∇(∆v̂)k+1
]
+ âk ·∇v̂n +

∂ p̂n+1/2

∂y
−

∂ τ̂k
xy

∂x
−

∂ τ̂k
yy

∂y
+RigyT̂ k (4.32)

RE =
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T̂ )k+1
]
+ âk ·∇T̂ n +

∂qk
x

∂x
+

∂qk
y

∂y
(4.33)

Usando o resíduo da discretização da equação de momentum, podemos escrever o resí-

duo quadrado como:

S =
∫

Ω

λ (RxRx +RyRy)dΩ (4.34)

onde λ é um parâmetro de escala.

Minimizando S com relação as variáveis livres ∆uk+1
i e ∆vk+1

i , temos:

∆S =
δS

δ∆uk+1
i

δ∆uk+1
i +

δS
δ∆vk+1

i
δ∆vk+1

i = 0 (4.35)

onde,

δS
δ∆uk+1

i
=

∫
Ω

2λ
δRx

δ∆uk+1
i

RxdΩ = 0 ∀ ∆uk+1
i livre (4.36)

δS
δ∆vk+1

i
=

∫
Ω

2λ
δRy

δ∆vk+1
i

RydΩ = 0 ∀ ∆vk+1
i livre (4.37)

O parâmetro λ , que nesse trabalho é λ = ∆t, foi escolhido de forma a obter o resíduo

ponderado do tipo Petrov-Galerkin como se segue:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
RxdΩ = 0 ∀ ∆uk+1

i livre (4.38)
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∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
RydΩ = 0 ∀ ∆vk+1

i livre (4.39)

Note que a primeira parte da função peso corresponde a função peso do método de

Galerkin. Então, da Eq. 4.38, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]

dΩ =

−
∫

Ω

[
Ni +

∆t
2

âk ·∇Ni

][
âk ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y
+RigxT̂ k

]
dΩ = 0

∀ ∆uk+1
i livre (4.40)

Seja o seguinte termo da Eq. 4.40:

−
∫

Ω

Ni

[
∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y

]
dΩ (4.41)

Usando a identidade de Green, a expressão acima pode ser reescrita como:

−
∫

Ω

Ni

[
∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y

]
dΩ =

∫
Ω

∂Ni

∂x

[
p̂n+1/2 − τ̂

k
xx

]
dΩ

−
∫

Ω

∂Ni

∂y
τ̂

k
xydΩ+

∫
Γ

Ni

[
(−p̂n+1/2 + τ̂

k
xx)nx + τ̂

k
xyny

]
dΓ (4.42)

Considerando que a fronteira Γ constitui-se de duas partes não sobrepostas, Γu e Γtx ,

como dito anteriormente. A componente da velocidade û é prescrita em Γu e portanto ∆û

também é prescrito em Γu. Dessa forma, Ni = 0 em Γu onde ∆ûk+1
i é prescrito. Por outro

lado, tk
x = (−p̂n+1/2 + τ̂k

xx)nx + τ̂k
xyny é prescrito em Γtx . Então, usando a Eq. 4.40, temos:
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∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]

dΩ =

∫
Ω

∂Ni

∂x

[
p̂n+1/2 − τ̂

k
xx

]
dΩ−

∫
Ω

∂Ni

∂y
τ̂

k
xydΩ−

∫
Ω

Ni

(
âk ·∇ûn +RigxT̂ k

)
dΩ

−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y
+RigxT̂ k

]
dΩ+

∫
Γtx

Nit
k
xdΓ

∀ ∆uk+1
i livre (4.43)

De forma similar para o resíduo da velocidade na direção y, pela Eq. 4.39, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆v̂k+1 +

∆t
2

âk ·∇(∆v̂)k+1
]

dΩ =

−
∫

Ω

∂Ni

∂x
τ̂

k
xydΩ+

∫
Ω

∂Ni

∂y
(p̂n+1/2 − τ̂

k
yy)dΩ−

∫
Ω

Ni

(
âk ·∇v̂n +RigyT̂ k

)
dΩ

−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇v̂n +

∂ p̂n+1/2

∂y
−

∂ τ̂k
xy

∂x
−

∂ τ̂k
yy

∂y
+RigyT̂ k

]
dΩ+

∫
Γty

Nit
k
ydΓ

∀ ∆vk+1
i livre (4.44)

onde a fronteira Γ constitui-se de duas partes não sobrepostas, Γv e Γty , como dito anteriormente.

A componente da velocidade v̂ é prescrita em Γv e portanto ∆v̂ também é prescrito em Γv. Dessa

forma, Ni = 0 em Γv onde ∆v̂k+1
i é prescrito. Por outro lado, tk

y = τ̂k
xynx +(−p̂n+1/2 + τ̂k

yy)ny é

prescrito em Γty .

Dado o resíduo da discretização da equação da energia (4.33), podemos escrever o resí-

duo quadrado como:

S =
∫

Ω

λREREdΩ (4.45)

Minimizando S com relação as variáveis livres ∆T k+1
i e escolhendo λ = ∆t, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
REdΩ = 0 ∀ ∆T k+1

i livre (4.46)
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Portanto, substituindo RE na equação acima, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T )k+1
]

dΩ =

−
∫

Ω

[
Ni +

∆t
2

âk ·∇Ni

][
âk ·∇T̂ n +

∂ q̂k
x

∂x
+

∂ q̂k
y

∂y

]
dΩ ∀ ∆T k+1

i livre (4.47)

Seja o seguinte termo da Eq. 4.47:

−
∫

Ω

Ni

[
∂ q̂k

x
∂x

+
∂ q̂k

y

∂y

]
dΩ (4.48)

Usando a identidade de Green, a expressão acima pode ser reescrita como:

−
∫

Ω

Ni

[
∂ q̂k

x
∂x

+
∂ q̂k

y

∂y

]
dΩ =

∫
Ω

∂Ni

∂x
q̂k

xdΩ+
∫

Ω

∂Ni

∂y
q̂k

ydΩ−
∫

Γ

Ni(q̂k
xnx + q̂k

yny)dΓ (4.49)

Considerando que a fronteira Γ constitui-se de duas partes não sobrepostas, ΓT e Γq,

como dito anteriormente. As componente da Temperatura T̂ são prescritas em ΓT e portanto

∆T̂ também é prescrito em ΓT . Dessa forma, Ni = 0 em ΓT onde ∆T̂ k+1
i é prescrito. Por outro

lado, qk = qk
xnx +qk

yny é prescrito em Γq. Então, usando a Eq. 4.49 na Eq. 4.47, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T̂ )k+1
]

dΩ =
∫

Ω

∂Ni

∂x
q̂k

xdΩ

+
∫

Ω

∂Ni

∂y
q̂k

ydΩ−
∫

Ω

Niâk ·∇T̂ ndΩ−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇T̂ n +

∂ q̂x
k

∂x
+

∂ q̂y
k

∂y

]
dΩ

−
∫

Γq

NiqkdΓ ∀ ∆T k+1
i livre (4.50)
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4.2 Atualização dos Campos - Axissimétrico

4.2.1 Atualização do Campo de Pressão

Para obter a equação de atualização dos valores de pressão no modelo Axissimétrico,

seguindo o mesmo procedimento do modelo anterior, é feita uma discretização no tempo das

variáveis de velocidade e temperatura. Além disso, o vetor velocidade real a, escrito em coor-

denadas cilíndricas, que será usado nas equações de conservação, é definido como:

a = uex + ver (4.51)

Dessa forma, é possível escrever:

a ·∇u = u
∂u
∂x

+ v
∂u
∂ r

a ·∇v = u
∂v
∂x

+ v
∂v
∂ r

a ·∇T = u
∂T
∂x

+ v
∂T
∂ r

(4.52)

Assim, utilizando a expansão em série de Taylor das variáveis, como em 4.3, e substi-

tuindo nas equações de quantidade de movimento nas direções axial e radial e na equação de

energia, temos:

∆u =−∆t

[
an+1/2 ·∇un+1/2 +

∂ pn+1/2

∂x
− ∂Sn+1/2

xx

∂x
− 1

r
∂

∂ r

(
rSn+1/2

xr

)
+RigxT n+1/2

]
+O(∆t3)

(4.53)

∆v =−∆t

[
an+1/2 ·∇vn+1/2 +

∂ pn+1/2

∂ r
− ∂Sn+1/2

xr

∂x
− 1

r
∂

∂ r

(
rSn+1/2

rr

)
+

Sn+1/2
θθ

r

]
+O(∆t3)

(4.54)

∆T =−∆t

[
an+1/2 ·∇T n+1/2 +

∂qn+1/2
x

∂x
+

1
r

∂

∂ r

(
rqn+1/2

r

)]
+O(∆t3) (4.55)

Tomando uma aproximação de menor ordem das equações acimas com as variáveis

avaliadas no nível de tempo n, com exceção do gradiente de pressão, que é avaliado no nível

n+1/2, temos:
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∆u =−∆t

[
an ·∇un +

∂ pn+1/2

∂x
− ∂Sn

xx
∂x

− 1
r

∂

∂ r
(rSn

xr)+Ri gxT n

]
+O(∆t2) (4.56)

∆v =−∆t

[
an ·∇vn +

∂ pn+1/2

∂ r
− ∂Sn

xr
∂x

− 1
r

∂

∂ r
(rSn

rr)+
Sn

θθ

r

]
+O(∆t2) (4.57)

∆T =−∆t
[

an ·∇T n +
∂qn

x
∂x

+
1
r

∂

∂ r
(rqn

r )

]
+O(∆t2) (4.58)

Impondo o balanço de massa no nível de tempo n+1, obtemos:

∂un+1

∂x
+

1
r

∂ (rvn+1)

∂ r
= 0 (4.59)

∂∆u
∂x

+
1
r

∂ (r∆v)
∂ r

+
∂un

∂x
+

1
r

∂ (rvn)

∂ r
= 0 (4.60)

Aplicando o método dos resíduos ponderados, onde ϕ é a função peso, e integrando

sobre o domínio Ω, obtemos:

∫
Ω

ϕ

[
∂∆u
∂x

+
1
r

∂ (r∆v)
∂ r

]
rdΩ+

∫
Ω

ϕ

[
∂un

∂x
+

1
r

∂ (rvn)

∂ r

]
rdΩ = 0 (4.61)

Integrando por partes, essa equação assume a forma:

−
∫

Ω

∂ϕ

∂x
∆urdΩ−

∫
Ω

∂ϕ

∂ r
∆vrdΩ+

∫
Γ

ϕ(∆unx +∆vnr)rdΓ

+
∫

Ω

ϕ

[
∂un

∂x
+

1
r

∂ (rvn)

∂ r

]
rdΩ = 0 (4.62)
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Substituindo ∆u e ∆v na equação acima, temos:

∫
Ω

∆t
∂ϕ

∂x

[
an ·∇un +

∂ pn+1/2

∂x
− ∂Sn

xx
∂x

− 1
r

∂ (rSn
xr)

∂ r
+Ri gxT n

]
rdΩ

+
∫

Ω

∆t
∂ϕ

∂ r

[
an ·∇vn +

∂ pn+1/2

∂ r
− ∂Sn

xr
∂x

− 1
r

∂ (rSn
rr)

∂ r
+

Sn
θθ

r

]
rdΩ =

−
∫

Ω

ϕ

[
∂un

∂x
+

1
r

∂ (rvn)

∂ r

]
rdΩ−

∫
Γ

ϕ(∆unx +∆vnr)rdΓ+O(∆t2) (4.63)

Reescrevendo a equação acima e considerando que a pressão é prescrita Γp, o valor da

função peso ϕ , tal que ϕ = 0 em Γp, e em ΓG a variação do fluxo através da fronteira é prescrita

como, ∆G = ∆unx +∆vnr, obtemos:

∫
Ω

∆t

[
∂ϕ

∂x
∂ pn+1/2

∂x
+

∂ϕ

∂ r
∂ pn+1/2

∂ r

]
rdΩ =−

∫
Ω

ϕ

[
∂un

∂x
+

1
r

∂ (rvn)

∂ r

]
rdΩ−

∫
ΓG

ϕ∆G rdΓ

−
∫

Ω

∆t
∂ϕ

∂x

[
an ·∇un − ∂Sn

xx
∂x

− ∂Sn
xr

∂ r
+Ri gxT n

]
rdΩ−

∫
Ω

∆t
∂ϕ

∂ r

[
an ·∇vn − ∂Sn

xr
∂x

− ∂Sn
rr

∂ r

]
rdΩ

+
∫

Ω

∆t
∂ϕ

∂x
Sn

xrdΩ+
∫

Ω

∆t
∂ϕ

∂ r
(Sn

rr −Sn
θθ )dΩ (4.64)

A discretização espacial da equação acima é realizada de forma análoga à Eq. 4.17,

utilizando o método de Galerkin. Esse procedimento resulta na seguinte expressão:

∫
Ω

∆t

[
∂Ni

∂x
∂ p̂n+1/2

∂x
+

∂Ni

∂ r
∂ p̂n+1/2

∂ r

]
rdΩ =−

∫
Ω

Ni

[
∂ ûn

∂x
+

∂ v̂n

∂ r

]
rdΩ−

∫
Ω

Niv̂ndΩ

−
∫

ΓG

Ni∆G rdΓ−
∫

Ω

∆t
∂Ni

∂x

[
ân ·∇ûn − ∂ Ŝn

xx
∂x

− ∂ Ŝn
xr

∂ r
+RigxT̂ n

]
rdΩ

−
∫

Ω

∆t
∂Ni

∂ r

[
ân ·∇v̂n − ∂ Ŝn

xr
∂x

− ∂ Ŝn
rr

∂ r

]
rdΩ+

∫
Ω

∆t
∂Ni

∂x
Ŝn

xrdΩ+
∫

Ω

∆t
∂Ni

∂ r
(Ŝn

rr − Ŝn
θθ )dΩ

(4.65)

A equação acima é usada para calcular o campo de pressão p̂n+1/2.
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4.2.2 Atualização dos Campos de Velocidade e Temperatura

Analogamente ao modelo Cartesiano, após o cálculo do campo de pressão, prossegui-

mos com a atualização dos campos de velocidade e temperatura. Para isso, são utilizadas as

equações de conservação de quantidade de movimento e energia na forma discretizada no tempo

n+1:

∆u
∆t

+an+1/2 ·∇un+1/2 +
∂ pn+1/2

∂x
− ∂Sn+1/2

xx

∂x
− 1

r
∂ (rSn+1/2

xr )

∂ r
+RigxT n+1/2 = 0+O(∆t2)

(4.66)

∆v
∆t

+an+1/2 ·∇vn+1/2 +
∂ pn+1/2

∂ r
− ∂Sn+1/2

xr

∂x
− 1

r
∂ (rSn+1/2

rr )

∂ r
+

Sn+1/2
θθ

r
= 0+O(∆t2) (4.67)

∆T
∆t

+an+1/2 ·∇T n+1/2 +
∂qn+1/2

x

∂x
+

1
r

∂ (rqn+1/2
r )

∂ r
= 0+O(∆t2) (4.68)

Utilizando as expressões 4.22 - 4.27 para o cálculo iterativo das variáveis a fim de se

alcançar uma precisão de segunda ordem no tempo, i.e., no nível de tempo n+1/2, as Eqs. 4.66

- 4.68 resultam em:

∆uk+1

∆t
+

1
2

ak ·∇(∆u)k+1 +ak ·∇un +
∂ pn+1/2

∂x
− ∂Sk

xx
∂x

− 1
r

∂ (rSk
xr)

∂ r
+RigxT k = 0 (4.69)

∆vk+1

∆t
+

1
2

ak ·∇(∆v)k+1 +ak ·∇vn +
∂ pn+1/2

∂ r
− ∂Sk

xr
∂x

− 1
r

∂ (rSk
rr)

∂ r
+

Sk
θθ

r
= 0 (4.70)

∆T k+1

∆t
+

1
2

ak ·∇(∆T )k+1 +ak ·∇T n +
∂qk

x
∂x

+
1
r

∂ (rqk
r)

∂ r
= 0 (4.71)

Os resíduos das componentes do campo de velocidade e da temperatura são escritos

usando a mesma discretização espacial em elementos finitos que no modelo Cartesiano. Essa

discretização é utilizada para aproximar os respectivos campos nas equações 4.69, 4.70 e 4.71:

Rx =
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]
+ âk ·∇ûn+

∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− 1
r

∂ (rŜk
xr)

∂ r
+RigxT̂ k (4.72)
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Rr =
1
∆t

[
∆v̂k+1 +

∆t
2

âk ·∇(∆v̂)k+1
]
+ âk ·∇v̂n +

∂ p̂n+1/2

∂ r
− ∂ Ŝk

xr
∂x

− 1
r

∂ (rŜk
rr)

∂ r
+

Ŝk
θθ

r
(4.73)

RE =
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T̂ )k+1
]
+ak ·∇T̂ n +

∂ q̂k
x

∂x
+

1
r

∂ (rq̂k
r)

∂ r
(4.74)

Usando o resíduo da discretização da equação de momentum, podemos escrever o resí-

duo quadrado como:

S =
∫

Ω

λ (RxRx +RrRr)rdΩ (4.75)

onde, assim como no modelo anterior, λ é um parâmetro de escala.

Minimizando S com relação as variáveis livres ∆uk+1
i e ∆vk+1

i , temos:

∆S =
δS

δ∆uk+1
i

δ∆uk+1
i +

δS
δ∆vk+1

i
δ∆vk+1

i = 0 (4.76)

Então,

δS
δ∆uk+1

i
=

∫
Ω

2λ
δRx

δ∆uk+1
i

Rx rdΩ = 0 ∀ ∆uk+1
i livre (4.77)

δS
δ∆vk+1

i
=

∫
Ω

2λ
δRr

δ∆vk+1
i

Rr rdΩ = 0 ∀ ∆vk+1
i livre (4.78)

Escolhendo λ = ∆t, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
Rx rdΩ = 0 ∀ ∆uk+1

i livre (4.79)

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
Rr rdΩ = 0 ∀ ∆vk+1

i livre (4.80)

Note que novamente a primeira parte da função peso corresponde a função peso do
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método de Galerkin. Então, da Eq. 4.79, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]

rdΩ =

−
∫

Ω

[
Ni +

∆t
2

âk ·∇Ni

] [
âk ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− 1
r

∂ (rŜk
xr)

∂ r
+RigxT̂ k

]
rdΩ

∀ ∆uk+1
i livre (4.81)

Seja o seguinte termo da Eq.4.81

−
∫

Ω

Ni

[
∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− 1
r

∂ (rŜk
xr)

∂ r

]
rdΩ (4.82)

Usando a identidade de Green, a expressão acima pode ser reescrita como:

−
∫

Ω

Ni

[
∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− 1
r

∂ (rŜk
xr)

∂ r

]
rdΩ =

∫
Ω

∂Ni

∂x
(p̂n+1/2 − Ŝk

xx)rdΩ

−
∫

Ω

∂Ni

∂ r
Ŝk

xr rdΩ+
∫

Γ

Ni

[
(−p̂n+1/2 + Ŝk

xx)nx + Ŝk
xrnr

]
rdΓ (4.83)

Considerando que a fronteira Γ constitui-se de duas partes não sobrepostas, Γu e Γtx,

como dito anteriormente. A componente da velocidade û é prescrita em Γu e portanto ∆û

também é prescrito em Γu. Dessa forma, Ni = 0 em Γu onde ∆uk+1
i é prescrito. Por outro

lado, t̄k
x = (−p̂n+1/2 + Ŝk

xx)nx + Ŝk
xrnr é Γtx . Então, usando a Eq. acima na Eq. 4.81, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

âk ·∇(∆û)k+1
]

rdΩ =

∫
Ω

∂Ni

∂x
(p̂n+1/2 − Ŝk

xx)rdΩ−
∫

Ω

∂Ni

∂ r
Ŝk

xr rdΩ−
∫

Ω

Ni(âk ·∇ûn +RigxT̂ k)rdΩ

−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− ∂ Ŝk
xr

∂ r
− Ŝk

xr
r

+RigxT̂ k

]
rdΩ

+
∫

Γtx

Nit̄k
x rdΓ ∀ ∆uk+1

i livre (4.84)
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De forma similar para o resíduo da velocidade na direção radial, pela Eq. 4.80, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆v̂k+1 +

∆t
2

âk ·∇(∆v̂)k+1
]

rdΩ =−
∫

Ω

∂Ni

∂x
Ŝk

xr rdΩ

+
∫

Ω

∂Ni

∂ r
(p̂n+1/2 − Ŝk

rr)rdΩ+
∫

Ω

Ni p̂n+1/2 dΩ−
∫

Ω

Ni(âk ·∇v̂n +
Ŝk

θθ

r
)rdΩ

−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇v̂n +

∂ p̂n+1/2

∂ r
− ∂ Ŝk

xr
∂x

− ∂ Ŝk
rr

∂ r
− Ŝk

rr
r

+
Ŝk

θθ

r
)

]
rdΩ

+
∫

Γtr

Nit̄k
r rdΓ ∀ ∆vk+1

i livre (4.85)

onde a fronteira Γ constitui-se de duas partes não sobrepostas, Γv e Γtr , como dito anterior-

mente. A componente da velocidade v̂ é prescrita em Γv e portanto ∆v̂ também é prescrito em

Γv. Dessa forma, Ni = 0 em Γv onde ∆vk+1
i é prescrito. Por outro lado, t̄k

r = Ŝk
xrnx+(−p̂k+1/2+

Ŝk
rr)nr é prescrito em Γtr .

Dado o resíduo da discretização da equação da energia (4.74), podemos escrever o resí-

duo quadrado como:

S =
∫

Ω

λRERE rdΩ (4.86)

Minimizando S com relação as variáveis livres ∆T k+1
i e escolhendo λ = ∆t, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
RE rdΩ = 0 ∀ ∆T k+1

i livre (4.87)

Portanto, substituindo RE na equação acima, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T̂ )k+1
]

rdΩ =

−
∫

Ω

[
Ni +

∆t
2

âk ·∇Ni

][
âk ·∇T̂ n +

∂ q̂k
x

∂x
+

1
r

∂ (rq̂k
r)

∂ r

]
rdΩ ∀ ∆T k+1

i livre (4.88)

Seja o seguinte termo da Eq. acima:

−
∫

Ω

Ni

[
∂ q̂k

x
∂x

+
1
r

∂ (rq̂k
r)

∂ r

]
rdΩ (4.89)
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Usando a identidade de Green, a expressão acima pode ser reescrita como:

−
∫

Ω

Ni

[
∂ q̂k

x
∂x

+
1
r

∂ (rq̂k
r)

∂ r

]
rdΩ =

∫
Ω

∂Ni

∂x
q̂k

x rdΩ+
∫

Ω

∂Ni

∂ r
q̂k

r rdΩ−
∫

Γ

Ni(q̂k
xnx + q̂k

rrnr)rdΓ

(4.90)

Considerando que a fronteira Γ constitui-se de duas partes não sobrepostas, ΓT e Γq,

como dito anteriormente. As componente da Temperatura T̂ são prescritas em ΓT e portanto

∆T̂ também é prescrito em ΓT . Dessa forma, Ni = 0 em ΓT onde ∆T k+1
i é prescrito. Por outro

lado, q̄k = q̂k
xnx + q̂k

rnr é prescrito em Γq. Então, usando a Eq. 4.90 na Eq. 4.88, temos:

∫
Ω

[
Ni +

∆t
2

âk ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

âk ·∇(∆T̂ )k+1
]

rdΩ =
∫

Ω

∂Ni

∂x
q̂k

x rdΩ

+
∫

Ω

∂Ni

∂ r
q̂k

r rdΩ−
∫

Ω

Niâk ·∇T̂ n rdΩ−
∫

Ω

∆t
2

âk ·∇Ni

[
âk ·∇T̂ n +

∂ q̂k
x

∂x
+

∂ q̂k
r

∂ r
+

q̂k
r

r

]
rdΩ

−
∫

Γq

Niq̄k rdΓ ∀ ∆T k+1
i livre (4.91)

4.3 Modelo Submalha Implícito

Uma característica importante das formulações estabilizadas de elementos finitos é a

introdução de forma inerente de um modelo submalha para as escalas não resolvíveis do escoa-

mento. Em um importante trabalho, Hughes (1995) propôs o Método Multiescala Variacional,

explicando a relação entre modelos submalha e formulações estabilizadas de elementos fini-

tos. Além disso, no trabalho de De sampaio et al. (2008), ficou demonstrado que a formulação

estabilizada proposta, similar a apresentada neste trabalho, é equivalente ao uso de uma dis-

cretização do tipo Galerkin das equações espacialmente filtradas, onde um modelo submalha

particular, proporcional ao resíduo de discretização, é aplicado.

Na Simulação de Grandes Escalas (LES), onde as grandes escalas de turbulência são

resolvidas pela discretização e as pequenas escalas são levadas em consideração usando os cha-

mados modelos submalha (Garnier, 2009), as equações governantes são obtidas aplicando uma

função filtro no espaço no sistema de equações de Navier-Stokes. A aplicação dessa função

gera um problema de fechamento, uma vez que o termo não linear da equação de quantidade de

movimento resulta na introdução de tensões adicionais que precisam ser modeladas. Essa abor-

dagem é análoga à utilizada para obter o modelo RANS (Reynolds Averaged Navier-Stokes)

(Wilcox, 1993), mas com uma filtragem no espaço ao invés de uma filtragem no tempo. Para

resolver esse problema de fechamento, diversos modelos de submalha foram propostos, como
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o modelo Smagorinsky, que expressa essas tensões em termos das variáveis do fluxo filtrado.

Dessa forma, a formulação estabilizada derivada neste trabalho pode ser interpretada

como uma discretização do tipo Galerkin aplicada às equações de Navier-Stokes filtradas espa-

cialmente, onde o modelo submalha surge de forma implícita. Ao comparar a equação estabili-

zada resultante com a obtida pelo método de Galerkin aplicado às equações filtradas, observa-se

que ambas são equivalentes se a tensão de submalha for modelada como uma função do resíduo

de discretização. Logo, esse resultado indica que o modelo submalha surge naturalmente na

formulação estabilizada, sem a necessidade de introduzir explicitamente um modelo adicional.

Outra característica é que, diferentemente do modelo de Smagorinsky, que adiciona dissipação

independentemente da resolução do escoamento, o modelo implícito da formulação estabilizada

age de forma que seu efeito é significativo apenas nas regiões onde as escalas não resolvidas

são intensas, reduzindo o impacto em áreas onde o escoamento está bem resolvido.

4.4 Campos de Velocidade

Neste trabalho, para a derivação do operador de captura de descontinuidade, são intro-

duzidos os conceitos de velocidade efetiva e velocidade híbrida. A velocidade efetiva, assim

como aquela utilizada no trabalho de Galeão e Dutra do Carmo (1988), ajusta a velocidade real

na direção do fluxo difusivo. Já a velocidade híbrida é uma combinação da velocidade real

com a velocidade efetiva, equilibrando os efeitos de transporte e dissipação. Além disso, a ve-

locidade efetiva é usada para modificar a representação convencional do termo de convecção

no nível contínuo, antes de escolher qualquer tipo de discretização (De Sampaio e Coutinho,

2001).

Logo, os campos de velocidade efetiva são utilizados para alcançar resultados mais

precisos uma vez que reduz os efeitos adversos da difusão negativa (característica do método

SUPG) gerada nas equações governantes na forma discretizada. Dessa forma, a velocidade

efetiva representa uma projeção da velocidade real na direção do gradiente das variáveis trans-

portadas, como as componentes da velocidade e a temperatura.

Assim, os campos de velocidade efetiva bu, cv e dT podem ser escritos como:

bu =
a ·∇u

∥∇u∥2 ∇u cv =
a ·∇v

∥∇v∥2 ∇v dT =
a ·∇T

∥∇T∥2 ∇T (4.92)

Além disso, é possível notar que tanto no nível continuo quanto no discretizado, as
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equações de conservação podem ser escritas com a velocidade real, com as velocidades efeti-

vas escritas acima (aquelas que efetivamente transportam) ou com uma combinação das duas,

conduzindo à definição de velocidade híbrida. Na forma discretizada, as equações empregam a

combinação da velocidade real âk e as velocidades efetivas b̂k
u, ĉk

v e d̂k
T , escritas como uma in-

terpolação entre elas: b̂k = (1−γ)âk+γb̂k
u, ĉk = (1−γ)âk+γ ĉv

k e d̂k = (1−γ)âk+γd̂T
k, onde

o parâmetro γ varia entre 0 e 1. Esse parâmetro controla a influência relativa entre a velocidade

real e a velocidade efetiva, permitindo um ajuste conforme a necessidade da simulação.

Portanto, as equações de atualização da pressão, velocidade e temperatura em coorde-

nadas cartesianas podem ser escritas como:

∫
Ω

∆t

[
∂Ni

∂x
∂ p̂n+1/2

∂x
+

∂Ni

∂y
∂ p̂n+1/2

∂y

]
dΩ =−

∫
Ω

Ni

[
∂ ûn

∂x
+

∂ v̂n

∂y

]
dΩ

−
∫

ΓG

Ni∆GdΓ−
∫

Ω

∆t
∂Ni

∂x

[
ân ·∇ûn − ∂ τ̂n

xx
∂x

−
∂ τ̂n

xy

∂y
+RigxT̂ n

]
dΩ

−
∫

Ω

∆t
∂Ni

∂y

[
ân ·∇v̂n −

∂ τ̂n
xy

∂x
−

∂ τ̂n
yy

∂y
+RigyT̂ n

]
dΩ ∀ ∆pn+1/2

i livre (4.93)

∫
Ω

[
Ni +

∆t
2

b̂k ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

b̂k ·∇(∆û)k+1
]

dΩ =

∫
Ω

∂Ni

∂x

[
p̂n+1/2 − τ̂

k
xx

]
dΩ−

∫
Ω

∂Ni

∂y
τ̂

k
xydΩ−

∫
Ω

Ni

(
b̂k ·∇ûn +RigxT̂ k

)
dΩ

−
∫

Ω

∆t
2

b̂k ·∇Ni

[
b̂k ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ τ̂k

xx
∂x

−
∂ τ̂k

xy

∂y
+RigxT̂ k

]
dΩ+

∫
Γtx

Nit
k
xdΓ

∀ ∆uk+1
i livre (4.94)

∫
Ω

[
Ni +

∆t
2

ĉk ·∇Ni

]
1
∆t

[
∆v̂k+1 +

∆t
2

ĉk ·∇(∆v̂)k+1
]

dΩ =

−
∫

Ω

∂Ni

∂x
τ̂

k
xydΩ+

∫
Ω

∂Ni

∂y
(p̂n+1/2 − τ̂

k
yy)dΩ−

∫
Ω

Ni

(
ĉk ·∇v̂n +RigyT̂ k

)
dΩ

−
∫

Ω

∆t
2

ĉk ·∇Ni

[
ĉk ·∇v̂n +

∂ p̂n+1/2

∂y
−

∂ τ̂k
xy

∂x
−

∂ τ̂k
yy

∂y
+RigyT̂ k

]
dΩ+

∫
Γty

Nit
k
ydΓ

∀ ∆vk+1
i livre (4.95)
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∫
Ω

[
Ni +

∆t
2

d̂k ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

d̂k ·∇(∆T̂ )k+1
]

dΩ =
∫

Ω

∂Ni

∂x
q̂k

xdΩ

+
∫

Ω

∂Ni

∂y
q̂k

ydΩ−
∫

Ω

Nid̂k ·∇T̂ ndΩ−
∫

Ω

∆t
2

d̂k ·∇Ni

[
d̂k ·∇T̂ n +

∂ q̂x
k

∂x
+

∂ q̂y
k

∂y

]
dΩ

−
∫

Γq

NiqkdΓ ∀ ∆T k+1
i livre (4.96)

e em coordenadas cilíndricas como:

∫
Ω

∆t

[
∂Ni

∂x
∂ p̂n+1/2

∂x
+

∂Ni

∂ r
∂ p̂n+1/2

∂ r

]
rdΩ =−

∫
Ω

Ni

[
∂ ûn

∂x
+

∂ v̂n

∂ r

]
rdΩ−

∫
Ω

Niv̂ndΩ

−
∫

ΓG

Ni∆G rdΓ−
∫

Ω

∆t
∂Ni

∂x

[
ân ·∇ûn − ∂ Ŝn

xx
∂x

− ∂ Ŝn
xr

∂ r
+RigxT̂ n

]
rdΩ

−
∫

Ω

∆t
∂Ni

∂ r

[
ân ·∇v̂n − ∂ Ŝn

xr
∂x

− ∂ Ŝn
rr

∂ r

]
rdΩ+

∫
Ω

∆t
∂Ni

∂x
Ŝn

xrdΩ+
∫

Ω

∆t
∂Ni

∂ r
(Ŝn

rr − Ŝn
θθ )dΩ

∀ ∆pn+1/2
i livre (4.97)

∫
Ω

[
Ni +

∆t
2

b̂k ·∇Ni

]
1
∆t

[
∆ûk+1 +

∆t
2

b̂k ·∇(∆û)k+1
]

rdΩ =

∫
Ω

∂Ni

∂x
(p̂n+1/2 − Ŝk

xx)rdΩ−
∫

Ω

∂Ni

∂ r
Ŝk

xr rdΩ−
∫

Ω

Ni(b̂k ·∇ûn +RigxT̂ k)rdΩ

−
∫

Ω

∆t
2

b̂k ·∇Ni

[
b̂k ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ Ŝk

xx
∂x

− ∂ Ŝk
xr

∂ r
− Ŝk

xr
r

+RigxT̂ k

]
rdΩ

+
∫

Γtx

Nit̄k
x rdΓ ∀ ∆uk+1

i livre (4.98)

∫
Ω

[
Ni +

∆t
2

ĉk ·∇Ni

]
1
∆t

[
∆v̂k+1 +

∆t
2

ĉk ·∇(∆v̂)k+1
]

rdΩ =−
∫

Ω

∂Ni

∂x
Ŝk

xr rdΩ

+
∫

Ω

∂Ni

∂ r
(p̂n+1/2 − Ŝk

rr)rdΩ+
∫

Ω

Ni p̂n+1/2 dΩ−
∫

Ω

Ni(ĉk ·∇v̂n +
Ŝk

θθ

r
)rdΩ

−
∫

Ω

∆t
2

ĉk ·∇Ni

[
ĉk ·∇v̂n +

∂ p̂n+1/2

∂ r
− ∂ Ŝk

xr
∂x

− ∂ Ŝk
rr

∂ r
− Ŝk

rr
r

+
Ŝk

θθ

r
)

]
rdΩ

+
∫

Γtr

Nit̄k
r rdΓ ∀ ∆vk+1

i livre (4.99)
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∫
Ω

[
Ni +

∆t
2

d̂k ·∇Ni

]
1
∆t

[
∆T̂ k+1 +

∆t
2

d̂k ·∇(∆T̂ )k+1
]

rdΩ =
∫

Ω

∂Ni

∂x
q̂k

x rdΩ

+
∫

Ω

∂Ni

∂ r
q̂k

r rdΩ−
∫

Ω

Nid̂k ·∇T̂ n rdΩ−
∫

Ω

∆t
2

d̂k ·∇Ni

[
d̂k ·∇T̂ n +

∂ q̂k
x

∂x
+

∂ q̂k
r

∂ r
+

q̂k
r

r

]
rdΩ

−
∫

Γq

Niq̄k rdΓ ∀ ∆T k+1
i livre (4.100)

Cabe ressaltar que a escolha entre a velocidade real, a velocidade efetiva ou a velocidade

híbrida impacta diretamente no peso da formulação utilizada. Quando se usa a velocidade real,

o método SUPG é aplicado. Se a velocidade efetiva é utilizada, ocorre a captura de desconti-

nuidade, essencial para problemas com fortes gradientes. Já a velocidade híbrida representa um

compromisso entre essas abordagens.

4.5 Passos de Tempo Locais e Sincronização

Neste trabalho, os passos de tempo foram escolhidos a partir das estimativas das escalas

de tempo dos fenômenos mais rápidos que podem ser resolvidos pela discretização espacial

disponível. Como a resolução da malha pode variar espacialmente, o mesmo pode ocorrer com

a resolução temporal representada pelo passo de tempo ∆t.

Para exemplificar esse processo, considere a convecção e a difusão de momentum em

um determinado elemento finito. Se tcM é a escala de tempo local (do elemento) para a convec-

ção de momentum e tdM é a escala de tempo local (do elemento) para a difusão de momentum,

devemos selecionar o passo de tempo local (do elemento) como ∆tM = min(tcM, tdM) para ser

capaz de acompanhar o processo físico mais rápido naquele elemento.

É conveniente expressar a razão entre as escalas de tempo locais de difusão e convecção

como β = tdM/tcM. Note que quando a convecção é mais forte do que a difusão, o processo

convectivo é mais rápido e temos tcM < tdM. Assim, quando a convecção é dominante, temos

β > 1 e escolhemos o passo de tempo como ∆tM = tcM. Por outro lado, quando a difusão é

dominante, temos β < 1 e ∆tM = tdM.

É interessante observar que selecionar ∆tM = min(tcM, tdM) é equivalente a definir

∆tM = α tcM (4.101)

onde
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α =

{
β para β ≤ 1

1 para β ≥ 1
(4.102)

Em seguida, é necessário definir as estimativas para as escalas de tempo locais tcM e

tdM. Tezduyar e Osawa (2000) empregaram matrizes de elementos finitos para calcular os parâ-

metros de estabilização usados em sua formulação. Neste trabalho, essa ideia foi adaptada para

estimar as escalas de tempo tcM e tdM usando as matrizes de elementos finitos que representam

as contribuições transitórias, convectiva e difusiva para o problema discretizado. Estas são, res-

pectivamente:

(ML)i j =
[∫

Ωe

Ni N j dΩ

]
lumped

(4.103)

(C)i j =
∫

Ωe

Ni a ·∇N j dΩ (4.104)

(D)i j =
∫

Ωe

1
Re

∇Ni ·∇N j dΩ (4.105)

Usando as matrizes de elementos acima, tcM e tdM são escolhidos como

tcM = c1
||ML||
||C||

(4.106)

tdM = c2
||ML||
||D||

(4.107)

As constantes c1 e c2 são
√

2 e
√

2/3, respectivamente. Esses valores foram escolhidos

para reproduzir a aproximação assintótica, proposta em Brooks e Hughes (1982), do parâmetro

upwind ótimo para o problema unidimensional de convecção-difusão discretizado com elemen-

tos finitos lineares. De fato, para o problema unidimensional de convecção-difusão, com um

elemento finito linear de tamanho (comprimento) h, as equações 4.101 e 4.102 resultam em:

∆tM = α
h

||a||
(4.108)

e
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α =


Re∥a∥h

6
para Re∥a∥h ≤ 6

1 para Re∥a∥h ≥ 6
(4.109)

o que é precisamente a aproximação assintótica para o parâmetro de upwind ótimo apresentado

em Brooks e Hughes (1982). Note que, nesse caso, a função de ponderação baseada em ∆tM
torna-se exatamente a função de ponderação SUPG:

Wi = Ni +
∆tM

2
a ·∇Ni = Ni +

αh
2||a||

a ·∇Ni (4.110)

As equações 4.108 e 4.110 ilustram a conexão entre a seleção do passo de tempo de

acordo com a menor escala de tempo e a introdução da quantidade apropriada de upwind. No

entanto, nos cálculos realizados, sempre foi selecionado o passo de tempo simplesmente usando

a expressão ∆tM = min(tcM, tdM), com as escalas de tempo determinadas de acordo com as

equações 4.106 e 4.107, em vez de usar o parâmetro de upwind α .

Neste trabalho, o passo de tempo ∆tM = min(tcM, tdM) é utilizado na equação de atua-

lização da pressão. Por outro lado, observe que, no caso mais geral, as equações de momentum

para os componentes x e y ou r empregam as velocidades híbridas b e c, respectivamente, em

vez da velocidade real a. Aqui as expressões apresentadas para a direção y equivalem àquelas

para a direção r. Logo, o passo de tempo para os componentes x e y ou r é computado como:

∆tMx = min(tcMx, tdM) (4.111)

∆tMy = min(tcMy, tdM) (4.112)

onde

tcMx = c1
||ML||
||Cx||

(4.113)

tcMy = c1
||ML||
||Cy||

(4.114)
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(Cx)i j =
∫

Ωe

Ni b ·∇N j dΩ (4.115)

(Cy)i j =
∫

Ωe

Ni c ·∇N j dΩ (4.116)

Finalmente, deve-se calcular o passo de tempo para a equação de energia. Note que

a convecção de energia é calculada usando a velocidade híbrida d e que a difusão de energia

depende de RePr em vez de apenas Re. Portanto, o passo de tempo para a energia é determinado

conforme:

∆tE = min(tcE , tdE) (4.117)

onde

tcE = c1
||ML||
||CE ||

(4.118)

tdE = c2
||ML||
||DE ||

(4.119)

(CE)i j =
∫

Ωe

Ni d ·∇N j dΩ (4.120)

(DE)i j =
∫

Ωe

1
RePr

∇Ni ·∇N j dΩ (4.121)

Os passos de tempo acima são determinados para cada elemento finito, daí o nome pas-

sos de tempo locais. Eles formam distribuições de passo de tempo constantes por partes no

domínio de análise. Como os passos de tempo variam com a posição e de acordo com a quan-

tidade transportada, precisamos recorrer a um esquema especial para sincronizar a evolução

temporal do cálculo.

Neste trabalho, adotamos o procedimento introduzido por De Sampaio (2005). Ele se

baseia na seleção de um passo de tempo de interpolação ∆t∗, que será o mesmo para todas as

variáveis e não variará no espaço (ou seja, o conceito usual de um passo de tempo). O passo

de tempo de sincronização é escolhido para ser bem próximo ao menor passo de tempo do
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problema e é calculado como: ∆t∗ = 0.999 min(∆tM,∆tMx,∆tMy,∆tE).

Seja ∆ûk+1, ∆v̂k+1 e ∆T̂ k+1 as variações das variáveis obtidas ao utilizar os passos de

tempo locais apropriados para resolver as equações discretizadas. É possível denotar as varia-

ções das variáveis do tempo tn para tn +∆t∗ (tempo de sincronização) como ∆û∗k+1, ∆v̂∗k+1 e

∆T̂ ∗k+1. Assim, mantendo a mesma taxa de variação, temos as seguintes relações:

∆û∗k+1

∆t∗
=

∆ûk+1

∆tMx
(4.122)

∆v̂∗k+1

∆t∗
=

∆v̂k+1

∆tMy
(4.123)

∆T̂ ∗k+1

∆t∗
=

∆T̂ k+1

∆tE
(4.124)

Na prática, o cálculo baseado em passos de tempo locais e a fase de sincronização não

precisam ser realizados separadamente. De fato, a fase de sincronização, representada pelas

equações 4.122 - 4.124, pode ser incorporada às equações 4.93 - 4.100 apresentadas na seção

4.4. Assim, a solução sincronizada no instante tn +∆t∗ pode ser obtida diretamente resolvendo

as seguintes equações para o caso cartesiano:
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e para o caso axissimétrico:
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Ni(b̂k ·∇ûn +RigxT̂ k) rdΩ

−
∫

Ω

∆tMx

2
b̂k ·∇Ni

[
b̂k ·∇ûn +

∂ p̂n+1/2

∂x
− ∂ Ŝk
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ĉk ·∇Ni

]
1

∆t∗

[
∆v̂∗k+1 +

∆tMr

2
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5 Código Computacional

5.1 Malha Adaptativa

Nas simulações numéricas, o custo computacional está diretamente relacionado ao nú-

mero de elementos em que o domínio é subdividido. Nesse contexto, o uso de uma malha

adaptativa possibilita um refinamento localizado nas regiões que demandam maior nível de dis-

cretização, utilizando elementos menores, ao mesmo tempo em que economiza recursos com-

putacionais em áreas menos críticas.

O refinamento localizado é importante em regiões com variações significativas das va-

riáveis de interesse, como camadas limites, descontinuidades ou zonas com altas curvaturas,

onde ocorrem grandes gradientes. Além disso, em problemas transientes, nos quais os detalhes

do escoamento podem evoluir consideravelmente ao longo do tempo, a capacidade de adaptar a

malha conforme a simulação avança garante que o esforço computacional seja direcionado para

as áreas mais relevantes.

Neste trabalho, o refinamento da malha é realizado utilizando o estimador de erro apre-

sentado em Zienkiewicz e Zhu (1987). Esse estimador, baseado na distribuição uniforme do

erro entre os elementos, calcula o erro associado ao gradiente de velocidade e sugere uma nova

configuração de malha. Essa estratégia requer a especificação prévia do número máximo de ele-

mentos desejado e do tamanho mínimo permitido para qualquer região do domínio, conforme

descrito em De Sampaio e Coutinho (1999). Além disso, a conexão dos novos nós à malha

existente é realizada por meio do algoritmo de Bowyer (1981).

A quantidade de passos de tempo necessária para o primeiro refinamento da malha é

determinada com base na estimativa da escala temporal adequada para acompanhar a evolu-

ção dos maiores vórtices do escoamento. Assim, o número de passos de tempo é calculado

como nsteps = tscale/2∆t∗ , sendo o valor arredondado para o inteiro mais próximo. Aqui,

tscale = L/uo representa o tempo característico para seguir o maior vórtice, onde L é a dimensão

característica do problema e uo é a velocidade de referência, enquanto ∆t∗ é o passo de tempo

de sincronização utilizado para avançar a solução numérica.



49

5.2 Computação Paralela

Com problemas cada vez maiores e mais complexos os quais exigem um maior número

de elementos e malhas progressivamente mais refinadas, a demanda por maior poder computa-

cional cresce exponencialmente. Nesse contexto, a ferramenta de paralelização OpenMP (Open

Multi-Processing), projetada para sistemas de memória compartilhada e compatível com lingua-

gens como Fortran, C e C++, permite reduções significativas no tempo de execução de códigos

(Dagum e Menon, 1998).

Em códigos baseados em elementos finitos, como o empregado neste trabalho, etapas

como a montagem de matrizes globais e a solução de sistemas de equações algébricas deman-

dam um alto esforço computacional. O OpenMP possibilita que as iterações usados pelas rotinas

responsáveis por esses cálculos sejam distribuídas entre os núcleos de processamento disponí-

veis, acelerando significativamente essas tarefas e otimizando o desempenho geral do programa.

5.3 Pré e Pós Processamento

Neste trabalho, o pré e o pós-processamento foram realizados utilizando o software co-

mercial GiD – The Personal Pre and Post Processor, amplamente empregado em simulações de

dinâmica de fluidos computacional. Durante o pré-processamento, ele foi utilizado para a cria-

ção dos modelos geométricos, geração das malhas e definição das condições de contorno e dos

números adimensionais. No pós-processamento, foi utilizado para a visualização dos campos

velocidade, pressão e temperatura em vários instantes de tempo, permitindo uma visualização

dinâmica dos resultados.

Além disso, aqui o GiD foi personalizado para gerar automaticamente os arquivos de

entrada necessários para o código utilizado na simulação, além de processar os arquivos de

saída do mesmo, otimizando o fluxo entre as etapas de pré e pós-processamento. Essa inte-

gração garantiu maior eficiência na execução e análise dos resultados, adaptando o software às

necessidades específicas de cada problema estudado.
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6 Resultados e Discussões

Este capítulo apresenta os exemplos numéricos desenvolvidos neste trabalho, detalhando

suas configurações e resultados com o objetivo de verificar e validar o código computacional

utilizado para resolver as equações governantes em coordenadas cartesianas e cilíndricas. O

código foi implementado em Fortran 90, uma versão da linguagem Fortran amplamente em-

pregada na computação numérica, e foi executado no Laboratório de Computação Paralela do

Instituto de Engenharia Nuclear, utilizando recursos otimizados para alto desempenho.

As simulações foram realizadas em malhas triangulares 2D com interpolação linear,

contemplando casos de geometrias planas e axissimétricas. Para geometrias planas, os estudos

envolveram a estratificação térmica em uma cavidade quadrada, convecção natural ao redor

de um cilindro aquecido e convecção mista ao redor de um cilindro aquecido sob forças de

empuxo. Para geometrias axissimétricas, os casos analisados incluem o escoamento em um

duto horizontal de seção circular, considerando duas condições térmicas distintas: temperatura

constante e fluxo de calor constante na parede ao longo do eixo.

Em todas as simulações foi empregado o valor de γ = 1, ou seja, utilizando-se somente

o operador de captura de descontinuidade. Ao final do exemplo de convecção mista ao redor

de um cilindro aquecido, é feita uma comparação do emprego de γ = 0, em que apenas o

peso SUPG é considerado, permitindo avaliar o impacto da captura de descontinuidade sobre a

solução numérica.

Por último foi feita a simulação de um caso prático da industria nuclear envolvendo a

geometria axissimétrica de uma região do vaso de pressão de um reator tipo PWR (Pressurized

Water Reactor). Esse estudo qualitativo considera as características geométricas bem como o

número de Reynolds aplicado no caso real.

6.1 Verificação do Modelo

6.1.1 Estratificação Térmica em uma Cavidade Quadrada

Neste exemplo, considera-se uma cavidade quadrada de lado L (Figura 2) com as se-

guintes condições de contorno: as fronteiras superior e inferior são termicamente isoladas; a

pressão de referência p = 0 é aplicada no centro da cavidade; uma condição de não desliza-
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mento é imposta em todas as paredes; a temperatura na parede esquerda é Tmax = To +∆T/2; e

a temperatura na parede direita é Tmin = To −∆T/2. Como condição inicial, assume-se que o

fluido na cavidade está em repouso à temperatura uniforme To.

A simulação transiente tem início em t = 0, momento em que as condições de contorno

impostas nas paredes paralelas opostas induzem um fluxo de convecção natural dentro da ca-

vidade. Para números de Rayleigh suficientemente altos, esse fluxo resulta em estratificação

térmica no domínio.

Figura 2: Domínio de análise para o problema de convecção livre em uma cavidade quadrada.

Os resultados numéricos foram parametrizados em função dos números de Prandtl e

Rayleigh. As simulações foram realizadas para Ra = 104, Ra = 105 e Ra = 106, enquanto o

número de Prandtl foi mantido constante em Pr = 0,71 para todos os casos.

Os transientes foram analisados no intervalo de tempo de t = 0 até t = 30L/uo, onde

uo =
√

β (Tmax −Tmin)∥g∥L representa a velocidade de referência. Em todas as simulações,

esse período de tempo foi suficiente para garantir a convergência ao regime estacionário.

Observa-se que, à medida que o número de Rayleigh aumenta, o refinamento da malha é

mais intenso nas regiões onde os gradientes de temperatura e velocidade são mais significativos,

como próximo às paredes da cavidade. Além disso, é possível notar os detalhes das estruturas

induzidas pela convecção natural e as zonas de estratificação térmica.
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A Figura 3 apresenta a malha adaptativa final, bem como as linhas isotérmicas, isobári-

cas e o campo de velocidade para Ra = 104 e Pr = 0,71. A malha inicial foi de 1440 elementos

enquanto que a malha adaptativa final contém 2766 elementos, com o maior elemento apresen-

tando tamanho 0,05L e o menor apresentando tamanho de 0,02L.

Figura 3: Malha adaptativa, isolinhas de temperatura, isolinhas de pressão e campo de veloci-
dade para Ra = 104, Pr = 0.71.

Para Ra = 105 e Pr = 0,71, os resultados estão ilustrados na Figura 4. Nesse caso, a

malha inicial foi de 3824 elementos enquanto que a malha adaptativa final contém 6354 ele-

mentos, com o maior elemento apresentando tamanho 0,03L e o menor apresentando tamanho

de 0,01L.
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Figura 4: Malha adaptativa, isolinhas de temperatura, isolinhas de pressão e campo de veloci-
dade para Ra = 105, Pr = 0.71.

Já para Ra = 106 e Pr = 0,71, os resultados são mostrados na Figura 5. A malha inicial

foi de 8756 elementos enquanto que a malha adaptativa final contém 11170 elementos, com o

maior elemento apresentando tamanho 0,02L e o menor apresentando tamanho de 0,005L.
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Figura 5: Malha adaptativa, isolinhas de temperatura, isolinhas de pressão e campo de veloci-
dade para Ra = 106, Pr = 0.71.

Esses resultados demonstram que, conforme o número de Rayleigh aumenta, ocorre

um refinamento progressivo da malha, refletindo a maior complexidade do escoamento e a

necessidade de capturar os detalhes das regiões de gradientes mais intensos.

A Tabela 1 compara os valores obtidos para os números de Nusselt médio e máximo com

os dados de referência fornecidos por Hortmann et al. (1990) e os resultados de (De Sampaio,

2006). O número de Nusselt é calculado como Nu = qwL/k(Tmax −Tmin), onde qw representa o

fluxo de calor local integrado ao longo da parede.
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Tabela 1: Número de Nusselt médio e máximo: comparação entre o presente resultado com os
de De Sampaio (2006) e Hortmann et al. (1990).

Fonte Ra = 104 Ra = 105 Ra = 106

Nu máx. Nu méd. Nu máx. Nu méd. Nu máx. Nu méd.

Presente 3.5421 2.2404 7.7272 4.5149 17.7331 8.8286

De Sampaio (2006) 3.5254 2.2398 7.7033 4.5123 17.4577 8.8076

Hortmann et al. (1990) 3.5309 2.2448 7.7201 4.5216 17.5360 8.8251

Observa-se que a precisão da formulação estabilizada e o uso de malhas adaptativas nos

cálculos adotados neste trabalho permitem alcançar resultados com uma concordância muito

boa em relação ao benchmark de Hortmann et al. (1990), mesmo utilizando um número sig-

nificativamente menor de pontos nodais. Esse desempenho reforça a eficácia da abordagem

empregada, evidenciando que a qualidade da solução obtida não depende exclusivamente do

grau de refinamento, mas sim da capacidade de concentrar elementos nas regiões com maiores

gradientes.

6.1.2 Convecção Natural ao Redor de um Cilindro Aquecido

Neste segundo exemplo, analisamos o escoamento ao redor de um cilindro aquecido

de diâmetro d, inicialmente em contato com o fluido em repouso. As condições de contorno

consideradas são: temperatura Tmax = To+∆T e condição de não deslizamento na superfície do

cilindro. Como condição inicial, assume-se que o fluido ao redor do cilindro está em repouso

e com temperatura uniforme Tmin = To. O diâmetro d do cilindro foi escolhido como escala de

referência para o comprimento.

As simulações foram realizadas para Pr = 0,71 e os seguintes valores de Ra: 104,

5× 104, 105, 1,5× 105, 2× 105, 5× 105 e 106. As malhas iniciais utilizadas nos casos com

o tamanho mínimo dos elementos definido como hmin = 0,02d continham 17405 elementos

enquanto que as malhas adaptativas finais, refinadas ao longo das simulações, variaram entre

40 000 e 60 000 elementos. Para verificar a influência do refinamento, os exemplo com Ra =

5× 105 e Ra = 106 também foram calculados com hmin = 0,01d e 0,005d. As simulações

realizadas com malhas mais refinadas resultaram em configurações com até xx elementos.

A Figura 6 apresenta as linhas isotérmicas com as respectivas plumas desenvolvidas

para os casos 5× 104, 105, 1.5× 105, 2× 105, 6× 105 e 106. Já a Figura 7 mostra a evolução
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da pluma térmica, capturada pela malha adaptativas em t = 14, 54 e 112 d/uo, para o caso com

Ra = 2× 105, onde uo =
√

β (Tmax −Tmin)∥g∥d representa a velocidade de referência. Esses

resultados ilustram o comportamento térmico e dinâmico do fluido em diferentes condições de

fluxo e níveis de refinamento.

Figura 6: Isolinhas de temperatura para Pr = 0.71 e, da esquerda para a direita, Ra = 5×104,
105, 1.5×105, 2×105, 5×105 e 106.
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Figura 7: Malhas adaptativas e isolinhas de temperatura para Pr = 0.71 e Ra = 2× 105 nos
tempos t = 14, 54 e 112 d/uo.

É relevante comparar as previsões deste trabalho para o número de Nusselt médio com

as correlações experimentais disponíveis na literatura. O número de Nusselt médio é calculado

como ⟨Nu⟩= ⟨qw⟩d/k(Tmax −Tmin), onde ⟨qw⟩ representa o fluxo de calor médio na superfície

do cilindro.
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De acordo com Churchill e Chu (1975), os dados experimentais para a faixa de escoa-

mento laminar (Ra ≤ 109) podem ser bem descritos pela seguinte expressão:

⟨Nu⟩= 0,36+
0,518Ra1/4

[1+(0,559/Pr)9/16]4/9 (6.1)

Uma correlação alternativa na faixa laminar é fornecida por Hyman et al. (1953):

⟨Nu⟩= 0,53
[(

Pr
Pr+0,952

)
Ra

]1/4

(6.2)

A Figura 8 apresenta a comparação entre os valores de Nusselt médio obtidos aqui

com os das expressões fornecidas pelas Eqs. 6.1 e 6.2. Observa-se uma concordância bastante

satisfatória entre os resultados numéricos e as correlações experimentais.

Figura 8: Comparação dos resultados do número de Nusselt médio com resultados das corre-
lações experimentais de Churchill e Chu (1975) e Hyman et al. (1953).

Em princípio, com os modelos 2D que utilizamos aqui, poderíamos calcular soluções

de convecção livre fisicamente significativas até Ra = 109, embora às custas de discretizações

muito finas tanto no espaço quanto no tempo. A transição para a turbulência começa para

números de Rayleigh da ordem de 109. Para tais números de Rayleigh altos, o fluxo começa a

apresentar algumas características importantes em 3D que os modelos 2D não podem capturar.
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No entanto, isso não é uma limitação do método dos elementos finitos estabilizados

proposto aqui, que também pode ser empregado em cálculos 3D. Porém, a tarefa de calcular

fluxos de convecção livre turbulenta em 3D para números de Rayleigh muito altos, enquanto se

usa discretizações muito finas no espaço e no tempo, pode se tornar extremamente cara. Nesse

caso, recorrer a modelos RANS ou LES seria uma escolha mais viável.

6.1.3 Convecção Mista ao Redor de um Cilindro Aquecido sob Forças de

Empuxo

Neste terceiro exemplo, analisamos o efeito das forças de flutuabilidade no escoamento

transversal ao redor de um cilindro aquecido. As condições de contorno consideradas são as

seguintes: o fluxo incidente, que se aproxima com velocidade uo, está à temperatura Tmin = To;

a superfície do cilindro mantém-se à temperatura Tmax = To+∆T ; e uma condição de não desli-

zamento é aplicada na superfície do cilindro. Inicialmente, a temperatura do fluido é assumida

como uniforme e igual a To.

O domínio de análise, representado esquematicamente na Figura 9, ilustra como as for-

ças de empuxo podem atuar dependendo da orientação do vetor gravidade g. Essas forças

podem tanto auxiliar quanto se opor ao fluxo convectivo, alterando significativamente o com-

portamento do escoamento ao redor do cilindro.

Figura 9: Escoamento cruzado ao redor de um cilindro aquecido, ilustrando esquematicamente
os casos de convecção auxiliada pela flutuabilidade e convecção oposta à flutuabilidade.

Foram realizadas três simulações. Em todos os casos, foram considerados Re = 100

e Pr = 1. Na primeira análise, a força de empuxo não foi considerada, representando um pro-
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blema de escoamento por convecção forçada pura (Ri = 0). As outras duas análises representam

condições de escoamento por convecção mista, com Ri = 0,25. Uma apresenta a flutuabilidade

auxiliando o escoamento, enquanto a outra considera a flutuabilidade se opondo à convecção.

Em todos os casos, a malha inicial era composta por 2151 elementos. Para o caso de

convecção forçada pura (Ri = 0), a malha adaptativa final continha 9958 elementos. Já nos pro-

blemas de convecção mista (Re = 100, Pr = 1, Ri = 0,25), as malhas adaptativas apresentaram

12440 elementos para o caso em que a flutuabilidade se opõe à convecção e 7555 elementos

para o caso em que a flutuabilidade auxilia a convecção. Em todas as análises, o tamanho mí-

nimo dos elementos foi fixado em 0,02d.

A Figura 10 apresenta as malhas adaptativas e as linhas isobáricas para o primeiro caso

(Re = 100, Pr = 1, Ri = 0) em diversos tempos. Nessa figura é possível observar a adaptação

da malha seguindo os vórtices gerados ao longo da evolução da simulação. Essa adaptação é

guiada pela estimativa de erro no gradiente de velocidade.

A Figura 11 apresenta as malhas adaptativas e as linhas isobáricas em t = 99d/u0. Ela

também revela que, no caso em que a flutuabilidade auxilia a convecção, o comportamento de

desprendimento de vórtices foi suprimido. Este resultado está em concordância com os obtidos

por Patnaik et al. (1999), confirmando a influência estabilizadora das forças de flutuabilidade

no escoamento ao redor do cilindro.

As forças de arrasto (FD) e transversais (FL) por unidade de comprimento atuando no

cilindro quente foram determinadas a partir do campo de escoamento utilizando as seguintes

expressões:

FD =
∫

Γc

[(
µ

∂u
∂y

+µ
∂v
∂x

)
ny +2µ

∂u
∂x

nx − pnx

]
dΓ (6.3)

FL =
∫

Γc

[(
µ

∂u
∂y

+µ
∂v
∂x

)
nx +2µ

∂v
∂y

ny − pny

]
dΓ (6.4)

Nas Eqs. 6.3 e 6.4, foram utilizadas as notações x1 = x, x2 = y, u1 = u e u2 = v para

representar as coordenadas espaciais e as componentes das velocidades, respectivamente. Essas

expressões levam em conta as forças viscosas e de pressão, demonstrando as interações entre o

escoamento e a superfície do cilindro.
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t = 2d/uo

t = 12d/uo

t = 28d/uo

t = 128d/uo

t = 188d/uo

Figura 10: Cilindro em escoamento cruzado com Red = 100: algumas malhas adaptativas e os
correspondentes campos de pressão.
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(a)

(b)

(c)

Figura 11: Escoamento cruzado ao redor de um cilindro aquecido com Re = 100 e Pr = 1:
malhas adaptativas e isolinhas de pressão em t = 99d/u0: (a) convecção forçada (Ri = 0);
(b) Ri = 0.25 com flutuabilidade opondo-se à convecção; (c) Ri = 0.25 com flutuabilidade
auxiliando a convecção.

A frequência de desprendimento de vórtices ( f ) foi determinada por meio da análise

do histórico da força transversal e expressa de forma adimensional pelo número de Strouhal,

definido como St = f d/u0. Os coeficientes de força de arrasto e transversal são calculados

como CD = 2FD/ρu2
0d e CL = 2FL/ρu2

0d, respectivamente. Além disso, o fluxo de calor médio

do cilindro ⟨qw⟩ foi expresso em termos adimensionais pelo número de Nusselt médio, dado

por ⟨Nu⟩= ⟨qw⟩d/k(Tmax −Tmin).

A Figura 12 mostra a evolução dos coeficientes de arrasto e de sustentação no cilindro

para os três casos simulados e a Tabela 2 apresenta os valores médios do coeficiente de arrasto

CD (médio), o coeficiente de força transversal CL (rms), o número de Nusselt médio ⟨Nu⟩ e o

número de Strouhal (St) também para os três casos simulados.
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(a)

(b)

(c)

Figura 12: Evolução temporal dos coeficientes de força para o problema de um cilindro circular
em escoamento cruzado: (a) convecção forçada (Ri = 0); (b) Ri = 0.25 com flutuabilidade
opondo-se à convecção; (c) Ri = 0.25 com flutuabilidade auxiliando a convecção.
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No caso de convecção auxiliada pela flutuabilidade, o padrão de desprendimento de

vórtices foi eliminado, como discutido anteriormente. No entanto, os valores de CD (médio) e

⟨Nu⟩ mostraram pouca variação entre os três casos analisados. Por outro lado, a força trans-

versal CL (rms), associada ao processo de desprendimento de vórtices, foi consideravelmente

maior no caso de convecção opondo-se à flutuabilidade. Esse comportamento, juntamente com

a redução do número de Strouhal para essa condição, está em conformidade com os resultados

obtidos por Patnaik et al. (1999), destacando os efeitos das forças de flutuabilidade na dinâmica

do escoamento.

Tabela 2: Convecção mista ao redor de um cilindro aquecido: dados estatísticos.

CD (médio) CL (rms) Nu (médio) Strouhal

Ri = 0 1.4000 0.2748 5.8823 0.1677

Ri = 0.25, Empuxo oposto a convecção 1.3801 0.4494 5.7812 0.1462

Ri = 0.25, Empuxo favorável a convecção 1.5005 0.0022 5.9402 −−

Tomando este caso como exemplo, é possível verificar os efeitos da captura de descon-

tinuidade na redução dos valores de temperatura negativos quando comparados à formulação

SUPG (γ = 0). Esses valores negativos são devidos à difusão introduzida pela presença dos pe-

sos na formulação estabilizada. Ao introduzir o peso considerando a velocidade de transporte

apenas (γ = 1), a quantidade de difusão adicionada nas regiões de maiores gradientes é reduzida

evitando a geração de valores de temperaturas negativas (não físicas) na solução.

A Figura 13 mostra as regiões do domínio que possuem valores negativos de tempera-

tura (região em branco ao redor do cilindro) no caso do escoamento cruzado ao redor de um

cilindro aquecido com Re = 100, Pr = 1 e Ri = 0.25 com flutuabilidade opondo-se à convecção.

Na Figura 13 (a), é possível observar uma grande região de valores negativos de temperatura

que ocorrem ao longo do domínio para o caso com γ = 0, com valores de Tmin = −0.01106.

Na Figura 13 (b), é possível observar o efeito produzido pelo uso de γ = 1. Aqui, apenas

dois pequenos pontos próximos ao cilindro ficaram com temperaturas negativas com valores de

Tmin = −0.00022. Isso demonstra a capacidade dessa formulação em reduzir a difusão exces-

siva produzida quando a velocidade efetiva não é considerada.
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(a)

(b)

Figura 13: Escoamento cruzado ao redor de um cilindro aquecido com Re = 100, Pr = 1 e
Ri = 0.25 com flutuabilidade opondo-se à convecção: região com temperaturas negativas para
γ = 0 (a) e para γ = 1 (b).

6.1.4 Escoamento em Duto Horizontal de Seção Circular com Tempera-

tura e Fluxo de Calor Prescritos na Parede

Neste quarto exemplo, analisamos os efeitos de duas condições de contorno distintas

aplicadas na parede de um duto horizontal de seção circular, com diâmetro d e comprimento L.

Na primeira análise, considera-se uma temperatura constante axialmente igual a Tmax, condição

de não deslizamento na parede e pressão de referência p = 0 aplicada na saída do duto. Na

segunda, aplica-se um fluxo de calor constante axialmente igual a qw = 1
4(d/L), também com

condição de não deslizamento na parede e pressão de referência p = 0 na saída.

Como condição inicial para as duas analises, assume-se que o fluido na entrada do duto

possui velocidade constante uo e temperatura Tmin = To. O domínio de análise é representado

esquematicamente na Figura 14. As simulações foram realizadas para Pr = 1 e considerando

diferentes comprimentos e valores de Reynolds. Para todos os casos foi utilizada uma malha

estruturada composta por elementos triangulares e sem o emprego de adaptação de malha.
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Figura 14: Domínio de análise para o problema de escoamento em duto horizontal com tem-
peratura e fluxo de calor prescritos na parede.

As simulações foram realizadas para os seguintes valores de Reynolds e comprimentos

de duto: Re = 100, L = 10; Re = 200, L = 20; Re = 500, L = 50; e Re = 1000, L = 100. A

malha utilizada no caso 1 possui 2 500 elementos, no caso 2 possui 5 000 elementos e no caso

3 possui 20 000 elementos. No caso 4 foi feito um estudo de convergência de malha onde a

primeira malha continha 25 000 elementos, a segunda 40 000 elementos e a terceira 60 000

elementos. Além disso, a Figura 15 apresenta o refinamento característico da malha próximo a

parede do duto que foi utilizado em todos os casos.

Figura 15: Refinamento da malha próximo a parede do duto .

De modo geral, no estudo de escoamentos internos com parede aquecida, os parâmetros

mais relevantes a serem determinados são a força de atrito (ou queda de pressão) e o fluxo de

calor na parede. Para regimes de escoamento laminar, os valores do fator de atrito e do número

de Nusselt em dutos de seção circular com temperatura ou fluxo de calor prescritos na parede

são bem conhecidos na literatura. Neste trabalho, esses valores foram calculados na região do
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duto onde os perfis de velocidade e temperatura estavam completamente desenvolvidos.

Na Figura 16 é apresentada a comparação entre os valores do fator de atrito f obtidos

neste trabalho com os valores calculados de forma analítica a partir da solução do problema de

Hagen-Poiseuille. É possível observar a boa concordância dos resultados para os escoamentos

laminares analisados. Além disso, para o caso em que Re = 1000, é possível notar a boa con-

cordância de resultados mesmo com uma menor discretização.

Figura 16: Comparação entre o fator de atrito em função do número de Reynolds para Re =
100, 200, 500 e 1000.

A Tabela 3 apresenta os resultados dos valores de Nusselt obtidos para todos os casos

considerando duas condições de contorno: temperatura e fluxo de calor constante na parede ao

longo do duto. O valor de Nusselt considerado para a condição de temperatura constante é de

3.66 e fluxo de calor constante é de 4.36. É possível observar a boa concordância dos resultados

com os valores calculados a partir da solução analítica do problema.

Tabela 3: Número de Nusselt para temperatura e fluxo de calor constantes na parede do duto.

Reynolds 100 200 500 1000

Elementos 2 500 5 000 20 000 25 000 40 000 60 000

Nu (Tmax) 3.6102 3.6167 3.6192 5.0617 3.7289 3.6263

Nu (qw) 4.3677 4.3843 4.3868 5.6253 4.4501 4.3910
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6.2 Exemplo da Aplicação: Estudo de um Downcomer de um PWR

Neste quinto e último exemplo, é analisado o escoamento em uma região do vaso de

pressão de um reator nuclear conhecida como downcomer. Nesse estudo será empregada a

formulação para geometrias axissimétricas devida a simetria axial dessa região. Na Figura 17

esta destacada a região do vaso que será modelada. Os dados utilizados foram obtidos do ex-

perimento ROCOM, (Ressendorf Coolant Mixing Model), que é uma instalação experimental

localizada na Alemanha e foi projetado para estudar a mistura de refrigerante em reatores nu-

cleares PWR, especialmente em situações de transientes térmicos e acidentes de injeção de

segurança (Kliem et al., 2008).

Figura 17: Região do vaso do reator modelada. Adaptado de Prasser et al. (2003)

Tendo em vista que a região de entrada do downcomer tem o formato de um anulus e a

de saída é uma placa com vários furos em formato de anel (Figura 18), o anulus de entrada e os

furos do placa de saída foram aproximados de tal forma que pudesse ser aplicado a condição de

escoamento 2D axissimétrico. Ademais, para essa simulação foi considerado Re = 4.154×106,

o mesmo utilizado no experimento ROCOM e condição de não deslizamento nas paredes.
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Figura 18: Tambor perfurado. Adaptado de (Höhne et al., 2006).

A Figura 19 mostra a geometria já com a malha inicial relativa à região indicada na Fi-

gura 17. A malha não estruturada empregada inicialmente possui 22206 elementos com tama-

nho mínimo dos elementos definido como hmin = 0,004d e opção de malha adaptativa ativada.

Figura 19: Downcomer com malha não estruturada.

A Figura 20 apresenta os detalhes dos campos de velocidade e pressão na região do

downcomer, permitindo uma análise qualitativa do escoamento. Na Figura 20 (a), observa-se o

campo de velocidade, onde o fluido acelera logo após a entrada e sofre descolamento na região

do primeiro degrau. Nota-se ainda a formação de uma zona de recirculação nesse degrau, além

de uma região de baixa velocidade que se estende até a saída, após o segundo degrau. Já a
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Figura 20 (b) exibe o campo de pressão, destacando uma região de baixa pressão associada à

recirculação no primeiro degrau. Também se observa um aumento de pressão na parte inferior

do downcomer, consequência da mudança de direção do escoamento, que entra verticalmente e

sai horizontalmente.

(a) (b)

Figura 20: Campo de velocidade (a) e pressão (b) no downcomer.

Este exemplo demonstra que a formulação estabilizada empregada neste trabalho é ca-

paz de prever o escoamento em condições reais. Destacando que, para uma análise mais deta-

lhada, os campo de velocidade, pressão e temperatura na região do downcomer são influencia-

dos pela interação entre o fluxo que entra pelos bocais de entrada e os efeitos da geometria do

vaso de pressão do reator. Além disso, a partir dos resultados obtidos neste trabalho, é possível

otimizar a geometria dessa região a fim de reduzir as perdas de carga bem como reduzir ou eli-

minar as vibrações que surgem em determinadas faixa de Reynolds devido ao desprendimento

de vórtices causados pelo descolamento do fluido na região dos degraus.



71

7 Conclusão

O principal objetivo deste trabalho foi verificar e validar a formulação estabilizada de

elementos finitos proposta, resolvendo diversos exemplos clássicos de mecânica dos fluidos e

transferência de calor bem conhecidos na literatura. Esses exemplos foram escolhidos de forma

a demostrar a capacidade desta formulação em capturar os fenômenos físicos envolvidos em

diferentes geometrias. O modelo bidimensional é apresentado tanto para coordenadas cartesi-

anas quanto para coordenadas cilíndricas, nas quais o domínio é simétrico em relação ao eixo

x. Quando a opção axissimétrica é ativada, as equações governantes escritas para x e r são

resolvida em vez da forma cartesiana, x e y. Assim, no caso axissimétrico, a direção axial cor-

responde ao eixo x, enquanto a direção radial é representada pelo eixo y positivo.

Neste trabalho, foi proposta uma formulação estabilizada de segunda ordem no tempo

para a simulação de escoamentos incompressíveis com convecção dominante utilizando espa-

ços de interpolação de mesma ordem para a velocidade e pressão. Os balanços de massa e

quantidade de movimento foram combinados a partir da série de Taylor de segunda ordem das

componentes de velocidade e temperatura, de forma a obter uma equação de atualização do

campo de pressão. Para o cálculo dos campos de velocidade e temperatura, minimizou-se a in-

tegral do quadrado dos resíduos dos balanços de quantidade de movimento e energia em relação

às variáveis livres de velocidade e temperatura.

Adicionalmente, utilizou-se o conceito de velocidade híbrida, que combina a velocidade

real e a velocidade efetiva, produzindo o efeito de captura de descontinuidade. Como resultado,

obteve-se uma formulação estabilizada que incorpora, de forma intrínseca, os pesos respon-

sáveis por controlar oscilações espaciais em escoamentos dominados por convecção, além de

contornar as restrições impostas pela escolha de espaços de interpolação iguais para a veloci-

dade e pressão.

No primeiro exemplo, foi analisada a estratificação térmica em uma cavidade quadrada

para diferentes números de Rayleigh. Observou-se o comportamento característico dos campos

de pressão, velocidade e temperatura, além do refinamento adaptativo da malha em regiões

com maiores gradientes. Comparando-se os valores obtidos para o número de Nusselt com os

disponíveis na literatura, verificou-se uma excelente concordância.

No segundo exemplo, referente à convecção natural em torno de um cilindro aquecido

para diversos números de Rayleigh, os resultados novamente demonstraram boa precisão na

estimativa do número de Nusselt médio. Além disso, esse caso permitiu avaliar de forma mais
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clara o efeito do operador de captura de descontinuidade ao comparar a solução obtida com e

sem o uso da velocidade efetiva. A análise revelou que temperaturas negativas, resultado da

difusão numérica que não representa a física do problema, foram atenuadas, reduzindo o erro

da solução para um mesmo número de elementos.

No terceiro exemplo, foram analisados os casos de convecção forçada e mista em torno

de um cilindro aquecido, com e sem os efeitos da aceleração da gravidade. Observou-se a

mudança no padrão de desprendimento de vórtices no caso em que a flutuabilidade era oposta a

convecção, bem como sua supressão no caso de flutuabilidade era auxiliada pela convecção. Os

resultados apresentaram boa concordância com dados experimentais disponíveis na literatura.

No quarto exemplo, foi analisado o escoamento em duto horizontal de seção circular

para as condições de temperatura e fluxo de calor prescritos na parede, considerando diferentes

números de Reynolds e comprimentos. Os resultados demonstraram que tanto o fator de atrito

quanto o número de Nusselt foram determinados com uma boa precisão pela formulação escrita

para geometrias axissimétricas, reproduzindo adequadamente o comportamento característicos

esperados para esses problemas sob as mesmas condições.

Por fim, foi realizada a simulação do escoamento através do downcomer, uma região crí-

tica do vaso de pressão de reatores nucleares. Aproveitando a simetria do problema em relação

ao eixo, investigou-se o comportamento do escoamento nessa área. Os resultados reforçaram

a aplicabilidade da formulação desenvolvida para tratar problemas reais, demonstrando seu po-

tencial na resolução de desafios que envolvem a dinâmica dos fluidos computacional.

Assim, os resultados obtidos evidenciam a adequação da formulação proposta para tratar

problemas envolvendo convecção natural, mista e forçada, bem como transferência de calor,

quando presente tanto em geometrias cartesianas quanto em axissimétricas. A comparação dos

resultados obtidos com dados experimentais da literatura confirma a consistência e a precisão

da formulação estabilizada apresentada. Além disso, pode-se destacar que esta pesquisa tem

potencial para gerar trabalhos subsequentes, como a identificação dos valores adequados de γ

para determinados problemas dominados por convecção.
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