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RESUMO

A liberagdo de materiais radioativos na atmosfera pode ocorrer devido a acidentes durante
a operacdo de uma usina nuclear. Com a liberacdo de material radioativo, ocorre a formacéo
de uma pluma de dispersdo radioativa, cujo comportamento deve ser estimado para que se possa
tomar as medidas de protecdo radioldgicas necessarias para garantir a seguranca da populacao
e do meio ambiente, na regido afetada. Essa estimativa é feita através de sistemas
computacionais que monitoram as condi¢fes meteoroldgicas e 0s parametros operacionais da

usina, e estimam a pluma de dispersdo radioativa em tempo real.

O objetivo desse trabalho é desenvolver um modelo computacional, baseado em redes
neurais artificiais recorrentes do tipo LSTM, para previsdo do comportamento da pluma
radioativa na atmosfera. Para treinar a rede neural, é utilizado um conjunto de dados gerados a
partir de um simulador de dispersdo atmosférica de plumas radioativas. Esse conjunto de dados
simulados € utilizado no treinamento de diversas arquiteturas de redes neurais recorrentes, de
modo a permitir selecionar a que melhor se ajuste as estimativas feitas pelo simulador. Desse
modo, o0 modelo desenvolvido sera capaz de prever o comportamento de uma pluma radioativa
durante um acidente. Isso é particularmente importante em termos de seguranga, pois
proporcionara mais tempo e flexibilidade para que operadores e equipes de emergéncia tomem
as decisfes necessarias para garantir a seguranca radiolégica da regido, reduzindo os riscos de

erros humanos.

Palavras-Chave: pluma radioativa, dispersao atmosféricas, inteligéncia artificial, redes neurais
artificiais recorrentes, redes LSTM, fatores humanos.



ABSTRACT

Release of radioactive materials in the atmosphere can occur due to severe accidents during
the operation of a nuclear power plant. As the accident progresses and the release of
radioactivity in the atmosphere continues, radioactive dispersion plumes are formed. The
behavior of this radioactive plume is monitored by a specialized team so that all necessary
radiological protection measures can be taken for the safety of the population and environment
around the nuclear power plant site. Safety monitoring is done through state-of-the-art
computational systems that continuously track all meteorological conditions and plant status

parameters and estimate the radioactive dispersion plume in real time.

The objective of this work is to develop a computational model, based on recurrent artificial
neural network techniques, which predicts in advance what will be the future behavior of a
radioactive dispersion plume. For this, a training set is generated by a radioactive plume
dispersion simulator. Afterwards, simulated dataset is used to train different recurrent neural
network structures to select one with the best results. The selected model must be able to predict
the future behavior of a dispersion plume during a severe accident. This is important since it
will provide more time and flexibility for operators and emergency team to make their decisions

to guarantee the radiological safety of the region, reducing the risks of human errors.

Keywords: radioactive dispersion plume, atmospheric dispersion plume modeling, artificial
intelligence, recurrent artificial neural networks, human factors.
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1. INTRODUCAO

1.1. APRESENTACAO DO PROBLEMA

EmissOes de materiais radioativos para 0 ambiente podem ocorrer em caso de acidente durante
a operacdo de uma usina nuclear e a continua emissdo desses materiais radioativos, ao longo do
tempo, ocasiona a formacdo das chamadas plumas de dispersdo atmosférica. Quando isso
ocorre, € necessario que existam mecanismos capazes de estimar o comportamento da pluma

para manter a seguranca radiologica da populacdo que se encontra dentro da zona afetada.

A formacao de uma pluma radioativa depende de diversos fatores que sao relacionados ao tipo
de acidente ocorrido, as condi¢Ges operacionais da planta, as condi¢cdes meteoroldgicas e as
condigdes topogréficas locais. O tempo de emissdo e a concentragdo de radionuclideos
presentes na pluma de disperséao sdo variaveis que dependem do tipo do acidente que € iniciado
na usina nuclear. Variaveis relacionadas a meteorologia e topografia locais sdo determinantes,
ndo somente para a formacao da pluma de dispersdo, mas também para estimativa da velocidade

e direcdo na qual a pluma ird se movimentar conforme o acidente progride.

Para estimar o comportamento dessas plumas sistemas computacionais para célculo de

dispersdo atmosfeérica de radionuclideos sao utilizados.

1.2. TRABALHOS RELACIONADOS

Timonin & Savelieva (2005) apresentaram uma técnica de rede neural de regressdo geral
(GRNN) para a previsao espacial automatica de niveis de contaminacdo radioativa. De acordo
com o autor, 0o GRNN gera resultados com um certo grau de suavizagao em relagéo a resultados
reais e, portanto, o nivel de satisfacdo dos resultados encontrados depende se o grau de

suavizacdo € aceitavel em relacdo ao problema e o cenario a ser modelado.

Pereira et al. (2016) desenvolveram dois modelos de rede neural artificial para estimar a
dispersdo de pluma radioativa considerando um acidente severo de perda de refrigerante
(LOCA). O primeiro modelo considera uma estrutura de rede neural do tipo feedforward
Multilayer Peceptron (MLP) e a segunda rede é baseada em GRNN. Os resultados encontrados
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foram satisfatérios e, em Pereira et al. (2017), a rede neural artificial MLP treinada no trabalho

anterior, foi incorporada em um aplicativo de telefone movel.

Desterro et al. (2020) substituiram a rede neural artificial MLP implementada por Pereira et al.
(2016) por um modelo de rede neural Deep Rectifier Artificial Neural Networks (DRNN) com
0 objetivo melhorar a acuracia do modelo. A alteragdo da estrutura da rede neural MLP para
DRNN consiste na substituicdo das funcgdes de ativacdo da estrutura da rede neural, que antes
utilizavam funcgdes sigmoides, por funcdes de ativacdo retificadoras. O resultado mostrou que
o treinamento da rede neural utilizando processamento paralelo diminuiu de 4 horas de duracéo

para apenas 30 minutos sem perder a acuracia dos resultados previamente encontrados.

Outros trabalhos relacionados ao desenvolvimento de técnicas de rede neural artificial foram
implementados para estimar a dispersdo atmosférica de outros tipos de materiais poluentes ndo

radioativos.

Boznar et al. (1993) desenvolveram um modelo de rede neural artificial para a estimar a

dispersdo atmosférica de SO, emitida a partir de uma usina termelétrica eslovena.

Yi & Prybutok (1996) criaram um modelo de rede neural que é capaz de estimar o nivel maximo

de emissdes de gas 0zénio em zonas industrializadas.

Cao et al. (2010) estudaram a distribuicdo de aerossol emitida ao ambiente a partir de uma fonte

pontual considerando um curto periodo de emissao.

Lauret et al. (2013) utilizaram redes neurais para estimar a dispersdo de gas com foco nas
concentracdes distribuidas mais perto do solo onde o grau de complexidade da modelagem é

geralmente maior.

Hossain (2014) treinou um modelo capaz de calcular as concentracdes de mondxido de carbono
e materiais particulados emitidas em &reas urbanas utilizando dados de meteorologia e trafego.

Qiu et al. (2018) desenvolveram uma estimativa da fonte de emissdo e predi¢do da dispersao
atmosférica de gas através de técnicas de redes neurais artificiais, enxame de particulas e

algoritmo de maximizacao de expectativa.

Oliveira et al. (2022) criaram um modelo hibrido entre aplica¢cdes computacionais de mecanica
dos fluidos (CFD) com redes neurais para estimar a dispersao de gas, onde a aplicagédo de redes

neurais tornou 0 modelo CFD mais rapido e eficiente.
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1.3. JUSTIFICATIVA

Em um caso de acidente em uma usina nuclear onde ocorra vazamento de material radioativo
na atmosfera, é necessario que existam ferramentas para estimativa das consequéncias na regido
afetada para que medidas mitigadoras sejam tomadas o mais rapido possivel para a protecéo da

populagéo.

Na literatura € possivel encontrar diversos trabalhos que utilizam técnicas para estimar, em
tempo real, o comportamento da pluma radioativa, 0 que € importante para que sejam tomadas
decisdes mitigadoras eficazes em uma situacdo de acidente. Porém, ndo foram encontrados
trabalhos que proponham aplicacdes de redes neurais artificiais recorrentes que sejam capazes
de prever o comportamento futuro da pluma na atmosfera com antecedéncia. Se ferramentas de
Inteligéncia Artificial (1A) forem capazes de prever o comportamento de uma pluma com
antecedéncia, entdo, um operador da usina terd mais tempo para avaliar as consequéncias antes
de tomar decisdes mitigadoras. Assim, o0 ganho de tempo na tomada de decisdo possibilita que
medidas de seguranca radiologica mais eficazes possam ser avaliadas reduzindo a possibilidade

de erros humanos.

1.4. OBJETIVO

Esse trabalho tem como objetivo desenvolver um modelo de previsdo do comportamento de
plumas radioativas utilizando redes neurais artificiais. E escolhida a técnica de redes neurais
recorrentes (do inglés Recurrent Neural Networks - RNN), pois as RNN sdo especialmente
adequadas para lidar com sequéncias de dados e capturar dependéncias temporais complexas..
Mais especificamente, sdo utilizadas as redes neurais recorrentes do tipo Long Short Term
Memory (LSTM) (Goller & Kuchler, 1996).

E desenvolvido um modelo de previsdo para a posi¢do do ponto da pluma onde a taxa de dose
de radiacdo € maxima. Para a geragdo dos dados necessarios para o treinamento da rede neural
recorrente, é utilizado um simulador, baseado no simulador do Sistema de Controle Ambiental
(SCA) da Central Nuclear Almirante Alvaro Alberto (CNAAA), doravante denominado
Simulador de Dispersdo Atmosférica (SDA), que implementa o modelo matematico basico de
dispersdo atmosférica para os diferentes tipos de acidentes, porém utilizando dados tipicos de

reatores PWR. Diversas arquiteturas de redes neurais artificiais recorrentes sdo testadas para
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ajustar o melhor modelo que consiga prever a movimentacdo dessas plumas. Ao fim, é
selecionada a melhor arquitetura de rede capaz de prever a movimentagdo do ponto de méxima

taxa de dose de corpo inteiro ao longo do tempo.

1.5. ORGANIZACAO DO TRABALHO

Esse trabalho é dividido em secGes, onde as duas secOes seguintes tém como objetivo
fundamentar a teoria que envolve redes neurais artificiais recorrentes e modelos de dispersédo
atmosférica respectivamente. Na secdo de modelagem de dispersdo atmosférica, também séo
introduzidos o funcionamento e a metodologia referente ao simulador utilizado para gerar 0s
dados de treinamento da rede. A Sec¢do 4 introduz as arquiteturas de rede neural recorrente que
foram testas e geracdo dos dados. A Sec¢do 5 apresenta os resultados encontrados a partir do
treinamento das redes testadas e verifica qual rede foi a mais eficiente na previsao do ponto de
maxima dose de corpo inteiro. As secOes finais consistem na apresentagdo de concluséo,

sugestdes para trabalhos futuros e referéncias bibliogréaficas utilizadas.



13

2. REDES NEURAIS ARTIFICIAIS

A rede neural artificial € uma vertente da inteligéncia artificial utilizada para o aprendizado de
maquina. A RNA consiste em criar um modelo matematico que seja capaz de reproduzir o

comportamento da transferéncia de informacGes do sistema nervoso humano.

O neurénio é uma unidade bésica do sistema nervoso humano que possui a capacidade de
transmitir informacGes através de impulsos elétricos. A Figura 2.1 apresenta a estrutura
esquematica de um neurbnio que é constituido de um corpo celular com diversos dendritos
(canais de entrada) e um axonio (canal de saida). Os neur6nios estao interligados uns aos outros
através de conexdes entre axonios e dendritos, denominadas sinapses. E nessa interconexao que
as informacdes sdo transmitidas ao longo do sistema nervoso. Estima-se que o cérebro humano

possua dezenas de bilhdes de neurdnios conectados formando uma complexa rede neural.
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Figura 2.1 — Estrutura de um neurénio.
Fonte: Dominio http://www.ic.uff.br/.

A transmissdo de informacdo através do sistema nervoso e feita a partir de impulsos elétricos
recebidos pelos dendritos de um neurdnio. Se um impulso elétrico ultrapassar certo limiar, entéo
0 neurdnio ira liberar uma substancia neurotransmissora que ira fluir atraves de seu axonio até
atingir as suas sinapses onde havera as conexdes com os dendritos dos neurénios adjacentes. O
neurotransmissor pode ser inibido ou excitado nas atividades pos-sinapticas, aumentando ou
diminuindo a intensidade com que a informacéo a ser transmitida sera propagada ao longo dessa

rede neural até o cérebro.


http://www.ic.uff.br/
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2.1. NEURONIO ARTIFICIAL

McCulloch & Pitts (1943) foram os primeiros cientistas a desenvolver uma metodologia capaz
de reproduzir matematicamente o funcionamento de um neurénio humano. O modelo consiste
em uma rede bastante simples de dois neurdnios conectados a um terceiro neuronio, onde as
informacdes binarias sdo transferidas para o terceiro neurénio somente se extrapolado um dado
limiar de ativacdo. O neurdnio artificial criado por McCulloch & Pitts (1943) ficou conhecido

na literatura como o neurdnio MP (Figura 2.2).

®

Figura 2.2 — Representacdo de um neur6nio MP.
Fonte: o autor (2023).

2.2. NEURONIO PERCEPTRON

O modelo de 14eurénio MP desenvolvido por McCulloch & Pitts (1943) até entdo era bastante
simples, mas era uma primeira tentativa de reproduzir o funcionamento de um neurénio. Porém,
ainda havia a necessidade de melhor implementar a inibicdo ou excitacdo das atividades pds-
sinapticas na transferéncia de informacdes entre neurdnios. Rosenblatt (1958) desenvolveu um
modelo matematico que acrescentava um valor de peso w; para cada neurbnio xi permitindo
com que esse peso pudesse ser ajustado de modo a transferir as informagdes interneurénios nas
proporcdes adequadas como uma forma de atividade pés-sinaptica. O modelo desenvolvido por
Rosenblatt (1958) se sobrepds ao modelo anteriormente criado e ficou reconhecidamente

chamado de Perceptron (Figura 2.3).
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inputs

(xi)

.

Figura 2.3 — Representagdo de uma rede neural Perceptron.
Fonte: o autor (2023).

E possivel calcular a saida de um Perceptron quando os valores de entrada so introduzidos.
Considerando que xi representa os valores de entrada, w;i representam 0s pesos sinapticos e b é
o valor de viés (bias) introduzido, temos que v representa a pré-ativacdo do Perceptron, que é
dado pela Equacéo 2.1.

- (2.1)

VZinWi+b

i=1

Entdo, o resultado y do neurdnio de saida é dado por y = ¢(v), onde ¢ representa uma funcédo
de ativacdo conhecida. Existem diversas funcdes de ativacdo que sdo comumente utilizadas,

como, por exemplo: funcdo degrau, linear, sigmoide logistica e tangente hiperbdlica.
2.3. REDE NEURAL TIPO PERCEPTRON MULTICAMADAS

O modelo desenvolvido para o Perceptron recebeu muitas criticas devido a dificuldade de se
obter boas respostas relacionadas a problemas néo-lineares, como por exemplo, a fungdo XOR.
Isso ocorria porque selecionar apenas uma certa quantidade de neurénios em apenas uma
camada ainda restringia bastante a capacidade da rede neural de aprender problemas mais
complexos. Para superar essa limitacdo, Rumelhart et al. (1986) desenvolveram um modelo de
rede neural artificial Perceptron multicamadas (MLP — Multi-layer Perceptron). O modelo
propunha a utilizacdo de camadas de neurdnios (Figura 2.4). Desta forma foi possivel criar

modelos de redes neurais que fossem capazes de resolver problemas mais complexos.
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Figura 2.4 — Representacdo esquematica de uma rede neural MLP.
Fonte: o autor (2023).

2.4. TREINAMENTO DE UMA MLP

Considerando que uma rede neural tem como objetivo o aprendizado, é necessario que exista
um treinamento. Ou seja, é necessario apresentar um grupo de exemplos do problema que se
deseja resolver para que a rede seja capaz de aprender a resolvé-los. Esse treinamento consiste
em introduzir dados de entrada (parametros do problema) com os seus respectivos dados de
saida (resultados), para que a rede tenha a capacidade de ajustar matematicamente os valores
de seus pesos sinapticos de modo a criar um modelo que seja capaz de reproduzir aquele

problema.

O ajuste de peso no treinamento de uma rede neural é comumente feito através do algoritmo de
retropropagacédo (backpropagation) de erro. Esse algoritmo consiste no reajuste dos pesos a
partir do valor do erro quadratico entre os dados de saida desejados e os dados de saida
calculados pela rede neural. O algoritmo de retropropagagéo de erro pode ser descrito da

seguinte forma:

Inicializar todos os pesos de todas as camadas com valores aleatorios ndo nulos.
Propagar as entradas x; até a sua saida com o0s respectivos pesos atuais.
Calcular o erro entre a saida calculada pela rede e o valor a ser aprendido.

Ajustar todos os pesos w; da rede de forma a minimizar o erro.

o r w0 D

Repetir 0 processo 3 e 4 para todas as camadas ocultas até a primeira camada.
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6. Repetir o processo 1 a 5 até que um critério de parada seja atingindo, como um namero pre-

definido de épocas de treinamento ou quando o erro alcangca um valor aceitavel.

E possivel formular um célculo matematico para o ajuste dos pesos feito pelo algoritmo de

retropropagacéo para uma rede neural do tipo MLP.

Considerando um neurénio k da camada de saida da rede neural MLP da Figura 2.4, pode-se
definir ex como o erro instantaneo dada pela Equagdo 2.2.

ex = di — Yk (2.2)

Onde dk é o valor desejado como resultado e yk € o valor efetivamente calculado pela

propagacao da rede neural com 0s pesos sinapticos atuais.

Entdo calcula-se o gradiente local para o neurénio k da camada de saida que é dado por:

Sk = ex o' (i) (2.3)

¢ ’'(v) refere-se a derivada da funcdo de ativacdo do neurbnio k da camada de saida.

Portanto, o ajuste do peso wy; € calculado pela seguinte expressao:
Awyj = 16 y; (2.4)

Awyj representa a diferenca entre o peso a ser atualizado menos o peso atual e # é a taxa de

aprendizado.

Agora é possivel notar que o calculo do ajuste de peso de uma camada de saida €, em parte,
calculado pelo erro instantaneo que depende do valor de saida desejado (d) e o valor de saida
efetivamente calculado pela rede neural (y) para aquele conjunto de pesos atuais. Porém,
considerando a conexdo sinaptica entre um neurénio de uma camada escondida e uma anterior,
ndo havera mais conexao direta com a saida da rede neural. Portanto, o célculo do erro total de
um neurénio de uma camada interna ndo sera mais dado em funcéo de um erro instantaneo, mas
de um somatorio de todos os erros das camadas posteriores multiplicado pelo seu respectivo
peso. Ou seja, considerando um neurbnio j da camada escondida da rede neural MLP

apresentada na Figura 2.4, temos que o calculo do erro é calculado pela Equagéo 2.5.

5 = @;'(vy) Z O W (2.5)

keC

E, consequentemente, o ajuste do peso w;i € dado pela seguinte expresséo:
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Awj; = n 6; y; (2.6)

Finalmente, é possivel escrever a equacgdo global do ajuste de peso wij e wj apresentados na

Equacdo 2.7 e Equagéo 2.8 respectivamente.

Awyj = n(eg (P'k(Vk))J’i (2.7)

Awj; = 1 (‘P’j(Vj) z(é’k <P'k(Vk) ij)) Vi (2.8)
keC

De forma esquematica, a Figura 2.5 abaixo apresenta um formato esquematico para o algoritmo

de retropropagacao considerando uma rede neural perceptron multicamadas. A estrutura da rede

da figura é organizada em uma camada de entrada de dois neurdnios, uma camada intermediaria

escondida com trés neurdnios e uma camada de saida com dois neurdnios e considerando uma

funcdo de ativacao qualquer ¢.

Figura 2.5 — Algoritmo de retropropagacao para redes MLP.
Fonte: o autor (2023).

Observando as Equacbes 2.7 e 2.8 acima, fica claro que, conforme o processo de

retropropagacéo progride, a quantidade de termos referente ao gradiente local da derivada da
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funcdo de ativacdo (¢ ’(v)) tende a aumentar. A influéncia matematica que o acimulo desses
termos gera no célculo do ajuste de pesos por retropropagagdo ocasionou diversas criticas a

esses modelos que se sucederam ao longo dos anos.

2.5. REDE NEURAL PROFUNDA

O desenvolvimento do MLP, apesar de inovador, ainda assim recebeu criticas sobre a
inconsisténcia de resultados quando os problemas complexos demandavam estruturas de redes
neurais com muitas camadas (redes neurais profundas). Hochreiter (1991, 1998) verificou que
a rede neural profunda possuia problemas de desaparecimento de gradiente e esse efeito ficava
cada vez mais evidente conforme a quantidade de camadas com gradientes locais aumentavam.
Glorot & Bengio (2010) fizeram um estudo de aplicac6es de fungdes de ativacdo sigmoide em
estruturas de redes MLP profundas e verificaram que nas camadas mais profundas o

desempenho durante o treinamento era ruim ou proximo de zero.

Para verificar o efeito da funcdo sigmoide no desaparecimento de gradiente e,
consequentemente, as inconsisténcias no treinamento de redes neurais profundas é necessario
entender o comportamento dessa fungdo. A Equacdo 2.9 define a funcdo sigmoide ¢(x) e a
Figura 2.6 apresenta o gréafico da funcdo com a sua respectiva derivada ¢ ’'(x).

E possivel verificar que a funcdo sigmoide possui uma derivada que tende a zero quando x
tende a +oo ou -co. E, como foi visto anteriormente, a derivada da funcdo de ativacdo que
compde o gradiente local é importante para o calculo dos reajustes de pesos no treinamento de
uma rede neural. No processo de retropropagacao de erro e correcdo de pesos, séo feitas, a cada
camada, multiplica¢des pela derivada da fungdo. Com o aumento do nimero de camadas, cresce
proporcionalmente a quantidade de multiplicacGes sucessivas pela derivada da fungdo. Assim
sendo, como a derivada possui valores menores do que a unidade (podendo ser relativamente
bem menores) a multiplicagdo dos termos tende a zero para uma grande quantidade de camadas
e, consequentemente, acarreta pouco ou praticamente nenhum treinamento da rede ao longo das

épocas.

1 (2.9)

PO = T
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LO - we sigmoide
—— Derivada

0.0 -

Figura 2.6 — Grafico da funcéo sigmoide e sua derivada.
Fonte: Dominio https://matheusfacure.github.io/.

Com o objetivo de resolver o problema das redes neurais profundas, Glorot et al. (2011)
desenvolveu um grupo de funcgdes de ativacdo chamadas de funces retificadas. Dentre elas, a
funcdo mais conhecida é a chamada ReLU (Rectified Linear Unit). Essa fungdo de ativacdo
proposta por Glorot et al. (2011) possui caracteristicas capazes de superar o problema de
desaparecimento de gradiente que tendem surgir em redes neurais profundas. A funcdo de
ativacdo ReLU é definida pela Equacgdo 2.10 e a Figura 2.7 apresenta o comportamento grafico

da funcéo e de sua respectiva derivada.
¢(x) = max (0, x) (2.10)

—— ReLU
—— Derivada

Figura 2.7 — Gréfico da fun¢do ReLU e sua derivada.
Fonte: Dominio https://matheusfacure.github.io/.

E possivel verificar na Figura 2.7 que a funcdo RelLU possui uma derivada constante para
valores positivos, enquanto a funcao sigmoide possui um comportamento decrescente. Dessa
forma, é possivel garantir que o reajuste de pesos do treinamento de uma rede neural com

algoritmo de retropropagacdo nédo sofrera efeitos de desaparecimento de gradiente com tanta
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velocidade conforme a quantidade de camadas na estrutura da rede aumenta. Por outro lado,
para valores negativos o gradiente é nulo, causando uma esparsidade no modelo, o que traz
beneficios em termos de eficiéncia no treinamento. O modelo desenvolvido de redes neurais
que possui uma funcéo de ativacao retificadora ficou conhecida como redes neurais profundas
retificadas (do inglés Deep Rectifier Neural Network - DRNN) .

2.6. REDE NEURAL RECORRENTE

As estruturas de redes neurais apresentadas sdo conhecidas como redes neurais do tipo
feedfoward. Por exemplo, é possivel verificar na Figura 2.4 que uma rede neural do tipo MLP
¢ uma rede do tipo feedfoward pois ela sempre propaga os valores na direcdo da entrada
(esquerda) para a saida (direita), ndo havendo retorno (realimentacdo) de nenhuma informacao
anterior. Verifica-se que esse tipo de estrutura feedforward ndo mantém nenhuma memoria do
que foi calculado anteriormente e todas as suas informacgdes sdo consideradas independentes a

cada rodada.

Apesar de existirem inumeras aplicacdes para redes neurais feedfowards, muitos problemas
dependem de informacGes passadas para que se possa complementar um raciocinio e chegar a
uma conclusdo. Um exemplo claro é a leitura de um livro, onde é necessario que o leitor
mantenha em memoria o que foi lido anteriormente para entender o contexto da frase presente
no meio do texto. Caso contrario, a informacéo contida naquela frase ndo fara sentido I6gico
no contexto do texto completo. Caso contrario, a informacéo daquela frase no contexto do texto
lido ndo fara nenhum sentido I6gico. Outro exemplo é quando um individuo esta assistindo um
filme e procura predizer o que ird acontecer no final. Note que so serd possivel prever o final
de um filme depois de assisti-lo até certo ponto, a partir do qual conclusdes podem ser tomadas
sobre um possivel desfecho. Ou seja, nota-se que existe uma dependéncia temporal de todo um

historico de informacdes para que uma conclusdo possa ser tomada.

Em geral, problemas que envolvem séries temporais e sequéncias, ndo conseguem ser
adequadamente solucionados com redes neurais artificiais do tipo feedforward. Para superar
isso, Goller & Kuchler (1996) desenvolveram as conhecidas redes neurais artificiais
recorrentes. [Essas arquiteturas de redes neurais possuem a capacidade de serem
retroalimentadas com informacdes calculadas anteriormente. Assim como as arquiteturas

feedforward, que recebem os dados de entrada, a rede neural artificial recorrente possui um
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componente extra que retorna informacdes anteriores junto aos dados de entrada. Essa
retroalimentagéo particular das redes neurais artificiais recorrentes sdo chamadas de feedbacks.
Dessa forma, o modelo da rede incorpora a capacidade de manter informacGes passadas de
modo a tomar decisdes para 0 passo seguinte. A Figura 2.8 apresenta a diferenca na arquitetura

entre as redes neurais artificial recorrentes e a rede neural artificial feedforward.

Figura 2.8 — Diferenca entre uma rede neural recorrente e uma rede neural feedfoward.
Fonte: o autor (2023).

De forma simplificada, pode-se definir uma célula recorrente como na Figura 2.9, onde ht
representa o estado atual da célula, x: e yt sdo as entradas e saidas da célula respectivamente. A
Equacdo 2.11 apresenta a relacdo geral de recorréncia para 0 mecanismo de memorizagao
temporal da célula, onde ht.1 é 0 estado anterior da célula. Note que fw representa a aplicacdo da

funcdo de ativacao relacionada ao respectivo peso w daquela célula.

®

-

fw

Célula

Figura 2.9 — Representacao esquematica de uma célula de uma estrutura recorrente.
Fonte: o autor (2023).



23

he = fu(xe, heq) (2.11)

Uma rede neural recorrente pode ser representada temporalmente por uma sequéncia de células
recorrentes alinhadas, como representa a Figura 2.10. E importante notar que além dos pesos
dos dados de entrada Wxn e 0s pesos dos dados de saida Why da célula, agora, a rede neural
recorrente, possui um novo componente de pesos Whn que conecta uma célula a outra para criar

0 aspecto de recursividade.

© ®

Why Why Why
RNN —
Whh Whh
Wih Wih Wih
o0 0

Figura 2.10 — Desdobramento temporal de uma rede neural recorrente.
Fonte: o autor (2023).

Considerando que a funcéo de ativagdo fw pode ser considerada uma tangente hiperbolica,

podemos reescrever a equacdo do estado da célula h: da seguinte forma:
h, = tanh (Whyhe_q + WEpx,) (2.12)
E consequentemente, teremos que a saida y: da célula recorrente € dada por:
Ve = Whyh, (2.13)

O algoritmo de retropropagacgéo para os ajustes de pesos e treinamento da rede neural artificial
recorrente segue o raciocinio similar ao de retropropagacao das redes neurais feedforward. No
caso de redes neurais recorrentes, 0 ajuste de pesos € nomeado de retropropagacdo temporal
(backpropagation through time). Porém, redes neurais recorrentes possuem ainda mais pesos a
serem ajustados devido a interconexdo entre as células recorrentes. Isso acentua, mais uma vez,
o0 problema de perda de gradiente discutido na Secdo 2.4 para o caso de redes neurais profundas.
Agora, considerando que a rede neural possui uma memaria temporal, 0 problema de perda de

gradiente é visto como uma forma de perda de memoria. Ou seja, quanto maior for a série
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temporal que se deseja modelar e, consequentemente, quanto maior for a quantidade de células
recorrentes introduzidas na rede neural, maior serd a quantidade de pesos disponiveis para
serem ajustados pelo algoritmo de retropropagacéo. Portanto, verifica-se que a rede neural
recorrente pode chegar a um limite de memoria que, dependendo do problema, pode se

configurar uma perda de memoria de curto prazo.

2.7. REDES NEURAL TIPO LSTM

Para contornar o problema devido a perda de capacidade de memoria de uma rede neural
recorrente, Hochreiter & Schmidhuber (1997) desenvolveram uma estrutura celular recorrente
chamada de memdria de curto a longo prazo (do inglés Long Short-Term Memory - LSTM).
Para entender como esse tipo de célula desenvolvido possui a capacidade de superar o problema
do desaparecimento de gradiente, € necessario entender todos os componentes da estrutura de
uma célula LSTM.

A implementacdo da LSTM desenvolvida consiste em uma célula recorrente que possui filtros
capazes de avaliar o nivel de relevancia das informacdes dos dados de entrada na rede. Através
de ponderacBes matematicas, a célula LSTM possui terminais que sdo capazes de manter
informacdes julgadas relevantes para solucionar o problema e excluir aquelas as informagdes
consideradas menos relevantes. Dessa forma, os portdes da célula LSTM tornam possivel
estender as memorias temporais. A Figura 2.11 apresenta uma célula LSTM com seus

respectivos terminais de avalia¢do de informacdo.

Figura 2.11 — Componentes de uma célula LSTM.
Fonte: o autor (2023).
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A célula LSTM possui trés grupos de dados de entrada: os valores atuais das entradas (x), as
informagdes do estado anterior da célula (ht.1) e as informagdes globais (ct.1). A diferenga entre
os dados de estado anterior da célula e os dados de entrada globais é que os dados de estado
anterior sdo apenas temporarios e substituidos por novas informacdes que serdo atualizados
pela célula atual, enquanto as informac6es globais se mantém ao longo de toda a série temporal.
Além disso, a saida global ndo interfere nos calculos realizados pelos terminais da célula, ele

apenas acumula de informac6es ao longo do tempo, como uma espécie de memoria interna.

A LSTM possui trés portdes internos caracteristicos, sao eles: o terminal de esquecimento (fy),
o terminal de entrada (i) € o terminal de saida (ov).

E no terminal de esquecimento (f;) que a rede neural elimina as informagdes que sio julgadas
ndo relevantes para solucionar o problema. O calculo é feito através de ponderacdes realizadas

com o auxilio da funcéo sigmoide:
f@®) = o(Wrlhe—q, x¢] + by) (2.14)

Uma vez que o dado de entrada passa pelo terminal de esquecimento, a informac&o que € aceita
pela célula segue para o terminal de entrada (it). Este refere-se ao terminal onde o dado de
entrada é de fato tratado para seguir adiante como output da célula da rede neural. O terminal
de entrada consiste em duas etapas, onde a primeira etapa consiste em calcular a informacéo
que sera atualizada para a proxima célula com o auxilio da funcdo sigmoide (Equacdo 2.15) e
uma segunda etapa que filtra as informagdes que serdo acumuladas no terminal global (Equacgéo
2.16).

i(t) = o(Wilhe—1, x¢] + by) (2.15)
C(t) = tanh(W.[h,_1, x,] + b,) (2.16)

O terminal de saida (ot) consiste na construcao dos dados de saida do estado atual de uma célula
dentro da rede neural. Ela consiste em um filtro realizado com o auxilio da fungdo sigmoide
(Equacdo 2.17).

o(t) = o(W,[he—1, x¢] + b,) (2.17)

Finalmente, a célula LSTM possui dois dados de saida: um local (h;) que € alterado por cada

célula e um global (ct) que é continuamente memorizado ao longo das células. O célculo de
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saida local e o dado de saida global sdo dados pela Equacdo 2.18 e Equacdo 2.19

respectivamente.
e = fr* o1+ i Gy (2.18)
hs = o, * tanh (¢;) (2.19)

Com o objetivo de verificar como as redes neurais criadas por sucessivas células do tipo LSTM
possuem a capacidade de contornar o problema do desaparecimento de gradiente, primeiro é
importante reescrever a equacao para o calculo de c, referente a saida global da célula LSTM,

com suas devidas substitui¢oes.
Ct = (O'(Wf [ht—lixt])) * Cpqg + o(Wilhe—1, x]) * tanh(W,[he—1, x,]) (2.20)

6ct
Oct—1

O célculo do gradiente ao longo das células LSTM é calculado aplicando

na Equacdo 2.20

e, portanto, podemos reescrevé-la da seguinte forma:

dc, dc;

dcr—q

(2.21)

= (0(Wylhe—1, %)) + 5 —— (@W;lhe—y, x.]) * tanh(W[he_s, x]))

dc—q

Verifica-se que, considerando sucessivas células, o valor do gradiente tende a ser aproximado

pela seguinte expressao:

dc;
dcr—q

(2.22)

= (O'(Wf[ht—lrxt]))

Portanto, verifica-se que o gradiente possui um valor, diferente de zero, ao qual ira se aproximar
guando sucessivas células LSTM sdo adicionadas a uma estrutura de uma rede neural. Com
isso, 0 problema do desaparecimento de gradiente consegue ser superado em aplicacOes de

redes neurais recorrentes.
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3. SIMULADOR DE DISPERSAO ATMOSFERICA DE PLUMAS RADIOATIVAS

Existem ferramentas que simulam a dispersdo de poluentes e materiais radioativos na
atmosfera. Cada simulador pode utilizar uma solucéo analitica especifica que varia de acordo
com a complexidade do problema que se deseja modelar. Diversas formulagc6es analiticas para

o calculo da dispersao de plumas na atmosfera foram desenvolvidas ao longo dos anos.

Nesse capitulo serdo descritos alguns modelos analiticos que sdo mais utilizados em
simuladores de dispersdo de plumas e sera apresentado o simulador SDA, que foi utilizado na

geracdo de dados para o treinamento da rede neural recorrente desse trabalho.
3.1. TEORIA DA DISPERSAO DE PLUMAS NA ATMOSFERA

A solucdo analitica para a dispersdo atmosférica é descrita principalmente por dois modelos:
eulerianos e lagrangianos. O modelo euleriano consiste na solucdo de uma equacao diferencial
baseada na conservacao de massa com um sistema de referéncia fixo. O modelo lagrangiano
considera que a trajetoria de uma particula € feita a partir de um campo turbulento que depende
de condicdes iniciais e fisicas. No caso de dispersdo atmosférica, esse campo considerado no

modelo lagrangiano, geralmente refere-se a um campo de vento.

Considerando uma metodologia euleriana, para um dado material de concentragdo C(x,y,z,t) na

atmosfera, a modelagem analitica é feita a partir da equacédo de conservacdo de massa dada por:

ac
== " V(CD) + V(D.VC) + S, (3.1)

Onde o primeiro termo consiste em quantificar a variagdo temporal da concentracdo C de um
material no meio, o segundo termo e terceiro termo referem-se a adveccdo e difuséo

respectivamente e S¢ € o termo fonte de emisséo.

Como o campo de vento (v) € calculado pelos dados meteorologicos que sdo medidos em campo
e a fonte (Sc¢) estda sempre em constante monitoramento, entdo pode-se concluir que Unica

variavel da equagdo acima é a concentracdo do material C.
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Para seguir adiante com os célculos da equacgdo diferencial para descrever a dispersdo da
concentracdo do material C, é necessario introduzir termos referentes aos efeitos de turbuléncia.
A teoria da turbuléncia de Reynolds, verifica que, para descrever o efeito de turbuléncia, é
necessario sobrepor dois efeitos: o efeito medio temporal e o efeito de flutuacéo turbulenta. Ou
seja, em teoria, isso consiste na substituicdo das variaveis do problema por variveis referentes

a média temporal e de flutuacéo.

Considerando uma variavel genérica (¢), temos que a média temporal (¢) e a flutuacdo

turbulenta (¢*) sdo dadas respectivamente pelas equagdes abaixo.

At

_—1 d 3.2
¢—A—t0¢>(t)t (3.2)

1 At
0

Com as duas defini¢es acima, é possivel verificar que ¢ = ¢ + ¢, garantindo que o efeito da

variavel ¢ €, de fato, a sobreposicao desses dois efeitos.
Voltando a equacdo governante, de acordo com a teoria de Reynolds, a média temporal e
flutuacdo turbulenta sdo introduzidas nas variaveis de velocidade (v) e concentracdo (C).
Portanto, a equacdo governante média pode ser reescrita da seguinte forma:
aC N ac*
ot 0t

= -7(¢%) - v(C7%) - v (V") - 7 (CTv°) + 7 (v C) 3.4)

+ V(D.VC*) + S,

Devido a relacdo entre média temporal e flutuacdo turbulenta, algumas propriedades podem ser
estabelecidas de modo a reduzir a equagdo acima, tais como ¢* = 0 e ¢p¢p* = 0. Aplicando

essas propriedades na equacdo acima, temos que:
c 5 _—— o

=== = 7(CP) - 7 (CV) + 7(DVO) + S, (3.5)
Explicitando os componentes turbulentos para cada diregdo (u”, v', w*) implicitos pelo campo

de vento v" e considerando uma difuséo isotropica, é possivel reescrever a equagio acima no

formato conhecido para disperséo atmosférica de um material de concentracéo C.
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a—f = —7(CV) + DV*C + 5, - - - (3.6)

Existem diversos modelos matematicos desenvolvidos com o objetivo de aproximar o
movimento de uma pluma de dispersdo atmosférica solucionando a equacao diferencial acima.
Dentre eles se destacam 0s modelos gaussianos e 0s modelos de bufadas (puffs), onde cada
modelo desenvolvido possui as suas proprias premissas e simplificacdes. Portanto, cada
abordagem € indicada para diferentes tipos de aplicacdes e niveis de complexidade do problema

a ser modelado.

O modelo gaussiano (Gifford, 1960) considera que a dispersdo de uma pluma é proveniente de
uma fonte de emissdo estacionaria e o material emitido possui escoamento estacionario e
homogéneo. Ou seja, trata-se de um modelo de dispersdo que considera que a emissao é
continua e sempre em uma mesma direcdo. A Figura 3.1 apresenta um exemplo esquematico
de uma fonte emissora criando uma pluma de dispersdo que poderia ser aproximada por um

modelo gaussiano.

Conflnuous Releose Dscurs Here
|
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Figura 3.1 — Pluma de dispersdo gaussiana a partir de uma fonte emissora.
Fonte: Crowl & Louvar (2011).

A equacdo que rege a dispersao atmosférica por um modelo gaussiano é derivada da equacao
da conservacdo de massa sob a hipotese que a turbuléncia € homogénea e constante, o fluxo de
emissdo é constante, o contaminante é estavel e a topografia é constante. Com isso, a equacao
geral do modelo gaussiano que rege a dispersdo atmosférica de uma pluma é apresentada na

Equacdo 3.7 a seguir.
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C(x,y,2z) = ZnaQW e_%("ly) (e_%(ZUzH)) + ae_%(z;r;l) (3.7)
Onde C € a concentragdo de um poluente no ponto de coordenadas X, Y, z; Q é a taxa de emissao
do poluente da fonte emissora; oy é 0 coeficiente de dispersdo horizontal da concentragcdo da
pluma em funcéo da direcdo do vento e da distancia da fonte; o; € 0 coeficiente de dispersdo
vertical da concentracdo da pluma em funcédo da direcdo do vento e da distancia da fonte; v é a
velocidade média do vento na altura da fonte emissora; z € ponto de amostragem em relag¢éo ao
solo; y é o ponto de amostragem na direcdo y; H é a altura geométrica da fonte emissora; « é 0
coeficiente de reflex&o no solo.

O modelo Gaussiano, apesar de ser um grande avan¢o para as estimativas do comportamento
das plumas radioativas, ainda era muito restrito a problemas mais simples devido as
simplificacGes feitas. Com isso, foi desenvolvido o modelo de disperséo por bufadas (Sullivan
et al., 1993; Ehrhardt & Weis, 1996) que pode ser considerado como um modelo hibrido entre
0 modelo gaussiano e langrangiano. Isso acontece pois considera-se que os calculos das
concentracdes sdo feitos considerando distribuicdes gaussianas enquanto a trajetéria de
movimentacdo da pluma segue um modelo lagrangiano. Esse modelo é conhecido como
bufadas pois considera que toda a liberacdo € feita de uma Unica vez e, considerando a
ocorréncia de sucessivas bufadas, é possivel recriar um perfil de uma pluma. A Figura 3.2

apresenta um exemplo esquematico de uma fonte emissora gerando sucessivas bufadas.
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Figura 3.2 — Sucessivas bufadas provenientes de uma fonte emissora.
Fonte: Crowl & Louvar (2011).
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A pluma de dispersdo no modelo de bufadas € recriada a partir de uma sequéncia de bufadas.
Portanto, € possivel escrever a equacdo que rege o0 modelo de bufadas para a concentragdo

C(x,y,z) de um certo material emitido como a somatdria de todas as bufadas ocorridas.

N (k=2)?_ ie=y)? (zk=2)*
C(x,y,2) = tz 200 2% 2% (3.8)
%k= kaUkazk

Onde Qat refere-se ao termo fonte; N é o nimero total de bufadas; (X« Yk, zk) referem-se a
posicéo da k-ésima bufada; oik refere-se ao desvio da i-ésima dire¢do da distribuigdo gaussiana

da k-ésima bufada.

A diferenca entre os métodos gaussianos e 0 método de bufadas é que o modelo matematico
gaussiano considera sempre que a emissao € feita de forma continua seguindo uma trajetdria
fixa. J& 0 modelo matematico de bufadas ndo considera uma emisséo continua e sim uma
liberacdo completa e imediata de todo o gas onde, a cada bufada, € possivel haver a mudanca
de direcdo. De forma prética, € possivel assimilar o modelo gaussiano a continua emissao de
gases através de uma chaming, enquanto o de bufadas caracteriza o rompimento de um vaso de
pressdo onde gas seria imediatamente expelido. A Figura 3.3 apresenta como a diferenca entre
0s métodos gaussiano e bufadas facilitam a mudanca de direcdo de uma pluma. Portanto, é
possivel notar que o modelo de bufadas é a modelagem matematica mais indicada para
problemas onde a mudanca de direcdo do vento impacta os resultados do problema, enquanto

0 modelo gaussiano é mais indicado para cenarios onde mudanca de direcdo ndo é decisivo.

Figura 3.3 — A mudanga de direcdo gerada para diferentes tipos de modelagem matematica.
Fonte: Lagzi et. al (2013).
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3.2. SIMULADOR DE DISPERSAO ATMOSFERICA

O Simulador de Dispersdo Atmosférica (SDA), utilizado neste trabalho, baseou-se no simulador
doSistema de Controle Ambiental (SCA) (PEN/COPPE/UFRJ, 1987) que foi desenvolvido para
fazer o acompanhamento atmosférico ao redor das usinas nucleares de Angra | e Angra Il da
CNAAA. O SDA implementa 0 modelo matematico de célculo de dispersdo baseado em

bufadas com trajetoria lagrangiana, como visto anteriormente.

Os célculos de dispersdo sao feitos em uma zona de controle limitada ao redor da CNAAA que
possui 11 km de extensédo vertical e 17 km de extensdo horizontal conforme mostra a Figura
3.4. A zona de monitoramento controlada é dividida em uma malha tridimensional n&o-
divergente refinada com 215 divisdes na direcdo vertical e 335 divises na direcdo horizontal.
Além disso, por ser especifico para a zona de monitoramento da CNAAA, o simulador SCA, e
consequentemente, o SDA utilizado neste trabalho, ja possui todo 0 mapeamento topografico

implementado internamente.

17 Kkm

Figura 3.4 — Mapa da zona de monitoramento da CNAAA.
Fonte: o autor (2023).

O simulador opera através de ciclos com intervalos de 15 minutos, onde cada ciclo se refere ao
progresso do acidente selecionado e é associado a uma respectiva condi¢cdo meteoroldgica.
Portanto, para realizar uma simulagdo no SDA é necessario introduzir os arquivos com as
informacdes meteorologicas e selecionar qual serd o acidente que sera simulado ao longo dos

ciclos.



33

O SDA compreende 3 modulos bésicos que subdividem os célculos para a estimativa da
dispersdo. Séo eles: mddulo do célculo do termo fonte, médulo do célculo do campo de vento
e modulo do célculo da dispersdo de doses. O fluxograma da Figura 3.5 resume as

interdependéncias entre os 3 médulos do simulador.

Dado’s . MoDULO Campo de vento
meteoroldgicos CAMPO DE VENTO
MODULO Doses,
DISPERSAO Concentragdes
MODULO
Status da usina TERMO FONTE Liberagdo

Figura 3.5 — Representagdo esquematica das entradas e saidas dos diferentes madulos do SDA.
Fonte: o autor (2023).

3.2.1. MODULO TERMO FONTE

O mddulo termo fonte tem como objetivo calcular a quantidade e o tipo de material radioativo
que é disponibilizado para liberacdo para 0 meio ambiente. Para isso, & importante identificar
qual o tipo de acidente esta ocorrendo na usina, pois a quantidade e o tipo de material radioativo
que ¢é liberado possuem caracteristicas diretas ao tipo de acidente em andamento. Além disso,
a liberacao depende do status dos diversos componentes eletromecanicos da usina, uma vez que
0 projeto de uma usina nuclear prevé diversas barreiras em série para evitar que o material

radioativo chegue a atmosfera.

3.2.2. MODULO CAMPO DE VENTO

O mddulo campo de vento tem como fungdo reunir todas as informac6es meteoroldgicas da
usina. Na CNAAA os registros meteorologicos sdo feitos a partir de 4 torres (nomeadas torre
A, B, C, D) localizadas em diferentes pontos da central nuclear. A torre A possui 3 pontos de
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medicdo em diferentes cotas enquanto as demais torres possuem apenas um Unico ponto de

medicdo. Os parametros medidos em cada torre estdo resumidos na Tabela 3.1.

Tabela 3.1 — Parametros meteoroldgicos medidos em cada torre e ponto de medicao

Torre Pontos de Medicao Parametros Meteoroldgicos
A 3 Velocidade do vento, direcdo do vento, estabilidade do vento e
temperatura
B 1 Velocidade do vento, direcdo do vento e estabilidade
C 1 Velocidade do vento, direcdo do vento e estabilidade
D 1 Velocidade do vento, direcdo do vento e estabilidade

Fonte: o autor (2023).

A zona de monitoramento é discretizada em uma malha que aplica um modelo tridimensional,
ndo-divergente que considera a topografia complexa do local. Portanto, o objetivo do médulo
campo de vento é calcular a distribuicdo espacial discretizada do vento dentro dessa zona de

monitoramento.

3.2.3. MODULO DISPERSAO

Como pode ser visto na Figura 3.5, 0 médulo termo fonte e campo de vento sdo modulos
independentes, onde o primeiro depende especificamente das condi¢des de funcionamento da
usina nuclear e o segundo depende das condi¢fes meteoroldgicas e topogréficas locais. Em uma
simulacdo feita no SDA, esses dois médulos ndo dependem de informac@es entre si para realizar
a sua tarefa. Porém, o modulo dispersdo depende diretamente do campo gerado pelo médulo do
campo de vento e a liberacdo calculada pelo mddulo termo fonte. Uma vez que os dois médulos
sdo finalizados, entdo o simulador é capaz de iniciar o processo de estimativa de dispersao da

pluma pelo maédulo disperséo.

O modulo de dispersdo € a sessdo do simulador que calcula a movimentagdo da pluma de
dispersdo ao longo de cada ciclo conforme o acidente progride e de acordo com as condigdes
meteorologicas e topograficas locais calculados nos dois modulos anteriores. Agora, as
equacOes referentes ao modelo matematico de bufadas com trajetoria lagrangiana é feito para

todos os elementos da malha discretizada.
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O SDA calcula e arquiva o historico da concentracdo média de cada radioisétopo liberado
durante a simulacdo. Ao final dos céalculos do médulo de dispersao, arquivos de saida séo
criados com informacdes das distribuicdes espaciais de taxas de dose de corpo inteiro, pulméo
e tireoide para todos os ciclos. As sequéncias da Figura 3.6 abaixo apresentam 4 ciclos
resultantes de uma simulagdo feita no SDA que considera um acidente severo hipotético
iniciado em 3 de novembro de 2016 as 8 horas e 30 minutos na usina de Angra II.

Mapa SCA Mapa SCA

HE

A

=) i

Mapa SCA Mapa SCA

NN
S

Figura 3.6 — Distribuicdo espacial das taxas de dose de corpo inteiro: (a) no ciclo 8, (b) no ciclo 11, (c) no ciclo
16, (d) no ciclo 18.
Fonte: o autor (2023).
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4. DESENVOLVIMENTO DO MODELO

4.1. GERACAO DOS DADOS

O objetivo deste trabalho é criar um modelo de rede neural artificial recorrente, mais
especificamente, do tipo LSTM, que seja capaz de prever o0 movimento do ponto de maxima
taxa de dose de corpo inteiro presente na pluma radioativa em caso da ocorréncia de um acidente
severo durante a operacdo de um reator nuclear. Para tal, primeiramente, é necessario reunir
informagdes meteoroldgicas que sdo utilizadas como dados de entrada para o simulador de
dispersdo atmosférica. Em seguida, a simulagdo é feita através de um Simulador de Disperséo
Atmosférica (SDA) baseado no SCA, programa utilizado no monitoramento das usinas
nucleares Angra | e Angra Il para estimar as respectivas plumas de dispersdo. Ao fim de cada
ciclo de 15 minutos, a pluma é atualizada e é extraido o ponto de maxima dose de corpo inteiro
para cada pluma gerada e entdo é formado o grupo de amostras que sera utilizado no

treinamento da rede neural.

Os registros meteoroldgicos que sdo utilizados na simulacdo, sao registros reais arquivados no
histérico meteorolégico da Central Nuclear Almirante Alvaro Alberto (CNAAA) datados de
novembro de 2016. Os arquivos contém informacdes de 4 torres meteoroldgicas contendo
informagdes de velocidade, diregéo e estabilidade do vento atualizadas, entre outras, a cada

quarto de hora, seguindo os critérios de medicdo da Tabela 3.1.

A Tabela 4.1 apresenta as informac@es dos arquivos meteoroldgicos ja compiladas do historico
da usina de Angra Il. Note que dal, val, tal e sal referem-se as medi¢Oes de direcdo do vento,
velocidade do vento, temperatura e estabilidade do vento do ponto de medigdo 1 da torre A
respectivamente; da2, va2, ta2 e sa2 referem-se as medi¢cdes do ponto de medicédo 2 da torre A,
da3, va3, ta3 e sa3 referem-se as medicdes do ponto de medigéo 3 da torre A; dbl, vbl, thle
sbl referem-se ao ponto de medicdo 1 da torre B; dcl, vcl, tcl e scl referem-se ao ponto de
medicéo 1 da torre C; dd1, vdl, td1 e sd1 referem-se ao ponto de medicédo 1 da torre D;
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Para gerar o conjunto de dados utilizados para o treinamento, teste e validacdo da rede neural
artificial, é utilizado o simulador SDA.

Como resultado da simulacéo, € gerado um arquivo de saida referente a cada ciclo com o valor
da taxa de dose de corpo inteiro para todas as coordenadas da zona de interesse da CNAAA.
Com isso, é possivel obter um mapa de distribuicéo espacial de taxas de dose de corpo inteiro
geradas pelo simulador.

Nesse trabalho foram realizadas 34 simulacdes de dispersdo da pluma radioativa considerando
um acidente severo hipotético na usina de Angra Il. Cada simulacéo ¢ feita por um periodo de
18 ciclos de 15 minutos cada (aproximadamente 4,5 horas de simulagio), totalizando 612
simulacdes de plumas de dispersdo radioativa. Foi criado um programa que extrai as

coordenadas do ponto que possui a maxima taxa de dose de corpo inteiro de cada amostra.

As Figuras 4.1.1, 4.1.2, 4.1.3. 4.1.4 apresentam os 18 ciclos simulados quando um acidente
severo é iniciado na usina de Angra Il em 14 de novembro de 2016 as 19 horas e 30 minutos.
A figura exibe uma sequéncia de mapas plotados em forma de heatmap, onde cada cor refere-

se a uma faixa de taxa de dose e € destacado o ponto de maior taxa de dose de corpo inteiro.

Maxima Taxa de Dose de Corpo Inteiro - Ciclo 1 Méxima Taxa de Dose de Corpo Inteiro - Ciclo 2
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Figura 4.1.1 — Ponto de maior taxa de dose de corpo inteiro presente na pluma de disperséo radioativa: (a) no
ciclo 1, (b) no ciclo 2.
Fonte: o autor (2023).
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Figura 4.1.2 — Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersédo radioativa: (a) no
ciclo 3, (b) no ciclo 4, (c) no ciclo 5, (d) no ciclo 6, (e) no ciclo 7, (f) no ciclo 8.
Fonte: o autor (2023).
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Figura 4.1.3 — Ponto de maior taxa de dose de corpo inteiro presente na pluma de disperséo radioativa: (a) no
ciclo 9, (b) no ciclo 10, (c) no ciclo 11, (d) no ciclo 12, (e) no ciclo 13, (f) no ciclo 14.
Fonte: o autor (2023).
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Méxima Taxa de Dose de Corpo Inteiro - Ciclo 16
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Méxima Taxa de Dose de Corpo Inteiro - Ciclo 18
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Figura 4.1.4 — Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersao radioativa: (a) no
ciclo 15, (b) no ciclo 16, (c) no ciclo 17, (d) no ciclo 18.
Fonte: o autor (2023).

De posse dos dados, foram selecionados 4 parametros de entrada para a rede neural a ser

treinada, sdo eles:

- abscissa do ponto de maior dose de corpo inteiro (Xm),

- ordenada do ponto de maior dose de corpo inteiro (Ym),

- velocidade do vento do ponto de medicéo 1 da torre A (val) e

- direcdo do vento do ponto de medicéo 1 da torre A (dal).

Portanto, para gerar o arquivo de entrada para o treinamento da rede neural, é necessario extrair
a coordenada espacial que possui a maior taxa de dose de corpo inteiro para cada ciclo de cada
simulacéo realizada e reuni-las as informag6es de velocidade e direcdo do vento do ponto de

medicdo 1 da torre A que estdo presentes nos arquivos dos registros meteorolégicos.
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A Tabela 4.2 apresenta algumas combinac6es dos referidos parametros que foram selecionados

para serem dados de entrada do treinamento da rede neural artificial recorrente.

Tabela 4.2 — Parametros utilizados para o treinamento da rede neural artificial recorrente.

xXm

Ym

val

dal

1.86E+02

7.20E+01

1.69E+00

2.39E+01

1.88E+02

7.10E+01

1.63E+00

1.61E+01

1.87E+02

7.10E+01

1.52E+00

1.32E+01

1.83E+02

6.30E+01

1.94E+00

1.83E+01

1.86E+02

7.20E+01

2.02E+00

1.85E+01

1.83E+02

7.20E+01

1.92E+00

1.59E+01

1.84E+02

7.10E+01

1.53E+00

1.91E+01

1.84E+02

7.20E+01

1.38E+00

2.25E+01

1.82E+02

7.20E+01

1.69E+00

1.66E+01

1.79E+02

7.00E+01

1.68E+00

1.61E+01

1.76E+02

7.10E+01

1.68E+00

2.13E+01

1.69E+02

7.10E+01

1.68E+00

1.82E+01

1.65E+02

6.50E+01

1.52E+00

1.87E+01

1.55E+02

7.00E+01

1.74E+00

2.24E+01

1.58E+02

4,00E+01

1.17E+00

7.78E+00

1.50E+02

4.40E+01

1.45E+00

1.85E+01

1.40E+02

3.40E+01

1.39E+00

1.71E+01

1.29E+02

4.50E+01

1.02E+00

1.40E+01

1.89E+02

7.40E+01

1.33E+00

1.72E+01

1.89E+02

7.40E+01

1.25E+00

1.46E+01

1.85E+02

7.30E+01

8.75E-01

3.41E+02

1.86E+02

7.50E+01

7.75E-01

3.50E+02

1.84E+02

7.50E+01

5.55E-01

4.76E+01

1.81E+02

7.50E+01

6.08E-03

9.92E+01

1.87E+02

7.20E+01

3.39E-01

1.98E+02

1.86E+02

7.20E+01

4.81E-01

1.76E+02

1.86E+02

7.20E+01

3.28E-01

1.93E+02

1.64E+02

7.50E+01

7.78E-01

2.06E+02

1.84E+02

6.80E+01

6.93E-01

2.04E+02

1.84E+02

6.80E+01

8.29E-01

2.09E+02

Fonte: o autor (2023).

Todos os dados de treinamento, validacéo e teste foram normalizados, utilizando o método Min-

Max, em um intervalo de [0,1]. A Tabela 4.3 apresenta as mesmas combinacdes dos parametros

ilustrados na Tabela 4.2, agora normalizados de acordo com o método Min-Max.



Tabela 4.3 — Parametros normalizados utilizados para o treinamento da rede neural artificial recorrente.

4.2. EXTRACAO DOS CONJUNTOS DE TREINAMENTO, TESTE E VALIDACAO

Xm

Ym

val

dal

0.528662

0.336449

0.562216

0.06655

0.535032

0.331776

0.541095

0.044649

0.531847

0.331776

0.503636

0.036718

0.519108

0.294393

0.642812

0.050941

0.528662

0.336449

0.672301

0.051524

0.519108

0.336449

0.638927

0.044057

0.522293

0.331776

0.509149

0.05315

0.522293

0.336449

0.458506

0.062512

0.515924

0.336449

0.562282

0.046119

0.506369

0.327103

0.557567

0.044605

0.496815

0.331776

0.557135

0.059077

0.474522

0.331776

0.558098

0.050566

0.461783

0.303738

0.504832

0.051983

0.429936

0.327103

0.579384

0.062165

0.43949

0.186916

0.389765

0.021617

0.414013

0.205607

0.480723

0.051363

0.382166

0.158879

0.461694

0.047534

0.347134

0.21028

0.340318

0.039038

0.538217

0.345794

0.442267

0.047876

0.538217

0.345794

0.415435

0.040684

0.525478

0.341122

0.290436

0.946895

0.528662

0.350467

0.257381

0.971766

0.522293

0.350467

0.184342

0.132313

0.512739

0.350467

0.002019

0.275559

0.531847

0.336449

0.112496

0.55123

0.528662

0.336449

0.159639

0.490399

0.528662

0.336449

0.10896

0.535306

0.458599

0.350467

0.258344

0.571516

0.522293

0.317757

0.230243

0.566153

0.522293

0.317757

0.27535

0.58127

Fonte: o autor (2023).
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Ao fim da extragdo da coordenada de maxima dose de corpo inteiro, 0 conjunto de 612 amostras

é separado em grupos de treinamento, teste e validacdo. Foram utilizados 80% das amostras

para o conjunto de treinamento e os 10% para o conjunto de teste e 10% para o conjunto de

validacao.
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Diversas arquiteturas de rede neural artificial recorrente do tipo LSTM foram treinadas com

objetivo de prever a posi¢do do ponto de maior taxa de dose com antecedéncia de 15 minutos,

ou seja, 1 ciclo de simulagdo. Foram variados: o nimero de épocas, a quantidade de observacbes

passadas (timesteps) através do método de janelas deslizantes e o tamanho do lote (batch).

Todas as estruturas de rede testadas possuem uma camada densa de saida de dois neurénios

com funcdo de ativacdo linear. Com isso, diferentes combinacdes de camadas internas

escondidas foram treinadas considerando camadas LSTM e densas, com fungdes de ativagédo

ReLU, para variadas quantidades de neurdnios. A Tabela 4.4 ilustra como os dados ficaram

organizados.

Tabela 4.4 — Organizagdo do conjunto de dados utilizados no treinamento, validacgdo e teste da rede neural.

Camada LSTM 1 Camada LSTM 2 Camada Densa
Rede | Epocas | Step | Batches Neurénios Fun_(;ao~de Neurdnios Fun_(;ao~de Neurdnios Fun_c;ao~de
Ativacao Ativagédo Ativagao

1 300 2 1 10 relu X X X X
2 300 2 1 4 relu X X X X
3 300 2 1 4 relu 4 relu X X
4 300 2 1 10 relu 10 relu X X
5 600 2 1 10 relu 10 relu X X
6 300 2 1 4 relu 4 relu 4 relu
7 300 2 1 4 relu X X 4 relu
8 300 2 1 10 relu X X 10 relu
9 600 2 1 10 relu X X 10 relu
10 300 2 3 4 relu X X X X
11 600 2 3 4 relu X X X X
12 300 2 3 10 relu X X X X
13 600 2 3 10 relu X X X X
14 600 2 3 5 relu 5 relu X X
15 600 2 3 10 relu 10 relu X X
16 600 2 3 10 tanh X X X X
17 600 3 3 10 relu X X X X
18 600 5 3 10 relu X X X X

Fonte: o autor (2023).
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5. RESULTADOS

A funcéo de erro (loss function) utilizada durante o treinamento foi o erro quadrado médio
(MSE). A Tabela 5.1 apresenta um resumo das redes testadas para as diversas combinacdes de
estruturas de camadas escondidas e seus respectivos resultados de erro quadratico médio para
cada grupo de treinamento, teste e validagéo.

Tabela 5.1 — Resultados obtidos para treinamento, teste e validacéo todas as redes testadas

Resultados
Rede . I
Treinamento |Validagdo| Teste
1 0.0024 0.0015 | 0.0021
2 0.0026 0.0015 | 0.0020
3 0.0024 0.0017 | 0.0020
4 0.0023 0.0016 | 0.0026
5 0.0021 0.0017 | 0.0044
6 0.0115 0.0080 | 0.0170
7 0.0030 0.0012 | 0.0032
8 0.0023 0.0014 | 0.0025
9 0.0022 0.0015 | 0.0035
10 0.0026 0.0015 | 0.0019
11 0.0026 0.0014 | 0.0021
12 0.0025 0.0015 | 0.0020
13 0.0025 0.0014 | 0.0019
14 0.0024 0.0015 | 0.0025
15 0.0025 0.0015 | 0.0019
16 0.0026 0.0015 | 0.0019
17 0.0024 0.0012 | 0.0022
18 0.0020 0.0037 | 0.0022

Fonte: o autor (2023).

De acordo com os resultados dos erros quadraticos médios da Tabela 5.1, as redes neurais, em
geral, mantiveram resultados consistentes (variagao relativamente pequena) para a maioria das
estruturas de redes testadas. E possivel verificar que o melhor resultado, considerando o

conjunto de teste, € encontrado com as redes 10, 13, 15 e 16, todas elas sem camada densa na
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saida e com timesteps igual a 2. Os resultados mais discrepantes encontrados sdo aqueles
quando uma camada escondida densa € combinada com uma camada LSTM, onde o erro
quadratico medio foi relativamente superior as demais redes testadas. Visto que os resultados
para camadas densas nao foram razoaveis, nenhuma estrutura de rede com camada densa foi

levada em considerag&o no processo de selecéo.

Foi escolhida a estrutura de rede nimero 10 que possui timesteps de tamanho 2 e uma camada
LSTM com 4 neurdnios. Essa rede foi treinada com 300 épocas, batches com 3 padrdes de
treinamento e funcéo de ativacdo ReLU. E possivel verificar que existem redes que encontram
resultados semelhantes ao da rede escolhida, como por exemplo as redes nimero 13, 15 e 16.
E possivel inferir que, se os resultados da rede neural ndmero 10 sio boas estimativas, entio

pode-se concluir que os resultados também serdo bons para a rede de numero 13.

Uma vez que a rede selecionada é a rede nimero 10, a Figura 5.1 apresenta os resultados de R2
calculados quando sdo comparados os resultados entre a simulacdo e a rede neural para
abscissas e ordenadas do ponto de méaxima dose de corpo inteiro nos grupos de treinamento,

teste e validacdo.

Os resultados das coordenadas do ponto de maxima dose de corpo inteiro simulados sdo
comparados com os resultados calculados pela rede neural artificial escolhida. A Figura 5.2
apresenta de forma visual a distribuicdo espacial do conjunto de dados simulados e o conjunto
de dados calculados pela rede neural para os grupos de treinamento, teste e validagéo

respectivamente.

Real x Predicdo - Eixo X Real x Predicdo - EixoY
10 1.0 °
0g | ¥=0758x+01026 . .® %) SRR A I N E—
R2=0.7673 o g . o
806 o ¢ @ § 06 T
B ° BBosa _eas-e
& 04 ® o o & 0 = 0.7819% + 0.0617
02 | aople ® e 02 g0 A Re=0.7977
." [ ] ’.-
00 % 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Real Real

Figura 5.1.1 — Gréfico de R2 para: (a) abscissas do grupo de treinamento, (b) ordenadas do grupo de
treinamento.
Fonte: o autor (2023).
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Real x Predicdo - Eixo X Real x Predicdo - Eixo Y
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Figura 5.1.2 — Gréfico de R2 para:, (a) abscissas do grupo de teste, (b) ordenadas do grupo de teste, (c) abscissas
do grupo de validagdo, (d) ordenadas do grupo de validacéo.
Fonte: o autor (2023).

Os resultados calculados possuem uma boa aproximacéao com resultados da simulacéo feita pelo
SDA. E possivel verificar que a maior densidade de pontos se encontra na regio da localizacio
do reator nuclear, o que é esperado, uma vez que esse € o ponto onde os radionuclideos liberados
pelo acidente se concentram. Porém, dependendo das condicBes climaticas e conforme o
acidente comeca a cessar, a pluma de dispersdo de radioatividade tem a tendéncia de se
movimentar na dire¢do em que as condi¢cGes meteoroldgicas indicam, movimentando também
0 ponto de maxima dose de corpo inteiro. Portanto, é importante que a rede neural aprenda a
identificar quando esse ponto deve iniciar o seu deslocamento e qual direcéo esse ponto deve

sequir.
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Figura 5.2.2 — Gréfico de dispersdo comparativo entre: (a) resultados simulados e grupo de treinamento, (b)
resultados simulados e grupo de teste, (b) resultados simulados e grupo de validacéo.
Fonte: o autor (2023).

A fim de verificar comportamento da movimentagdo do ponto de méaxima dose de corpo inteiro,
€ necesséario avaliar diversas sequéncias temporais da movimentacdo desse ponto na zona de
monitoramento da central nuclear. A Figura 5.3 destaca alguns exemplos de sequéncias com

resultados calculados por ambos o simulador e a rede neural artificial.
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Figura 5.3 — Representacéo da movimentagdo do ponto de mé&xima dose de corpo inteiro para diferentes grupos
de séries temporais selecionados aleatoriamente.
Fonte: o autor (2023).
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E possivel verificar que a rede neural artificial consegue prever de forma consistente os padrdes
de mudanca de direcdo que o ponto de méxima taxa de dose de corpo inteiro registra ao longo
do tempo conforme a progressdo do acidente severo e as condi¢cdes meteoroldgicas. Os valores
absolutos das posi¢des, entretanto, ora apresentam boa acuracia (se aproximam do ponto real),
ora possuem uma discrepancia maior. Contudo, a predi¢do da trajetoria, de uma forma global,

foi considerada razoéavel.
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6. CONCLUSAO

Esse trabalho apresenta uma abordagem para utilizacdo de técnicas de inteligéncia artificial,
através de redes neurais artificiais recorrentes, tipo LSTM, para estimar o0 movimento da pluma
de radioativa em caso de acidentes severos em usinas nucleares. A capacidade de prever o
movimento da disperséao radioativa € um grande avanco nos estudos de nivel de seguranga em

usinas nucleares e mitigacdo de acidente.

A rede neural é treinada por um conjunto de dados de 34 cenérios de 18 ciclos considerando
apenas 4 dados de entrada, sendo eles as coordenadas do ponto maximo simulado, a velocidade
do vento registrado pelo ponto de medicdo 1 da torre A e a direcdo do vento registrado pelo
ponto de medicdo 1 da torre A. O treinamento desses dados gerou um modelo de rede neural
relativamente simples de apenas uma camada LSTM com 4 neur6nios e funcdo de ativacédo
ReLU que apresentou bons resultados para o erro quadratico médio quando comparados com

os resultados simulados.

E possivel verificar através dos graficos apresentados (Figura 5.3) que o modelo de rede neural
encontrado possui a capacidade de prever, com aproximacdo razoavel, a movimentacdo do
ponto de maxima dose de corpo inteiro quando um acidente severo € iniciado no reator nuclear.
Destaca-se que a rede neural conseguiu prever as mudancas de dire¢Ges que esse ponto pode
sofrer de acordo com as condicGes meteoroldgicas locais e a progressao do acidente severo.

Apesar da estimativa ser considerada consistente, o erro encontrado comparando os resultados
da rede neural com os simulados se devem principalmente ao alto grau de ndo linearidade das
condicBes meteoroldgicas. Esse trabalho utilizou dados meteoroldgicos reais dos registros
oficiais da CNAAA, o que dificulta o aprendizado da rede neural durante o treinamento, porém

reproduz com realidade as condi¢cBes ambientais da regido.

Uma sugestdo para melhorar a estimativa seria necessario incluir os registros meteorolégicos
das demais torres presentes na CNAAA e incluir mais dados de treinamento para suprir o

aumento da quantidade de variaveis de entrada.

Esse trabalho apresenta uma primeira investigacdo de previsdo do movimento do ponto de
maior taxa de dose de uma pluma radioativa. Apesar dos resultados encontrados conseguirem
prever de forma consistente os resultados encontrados pelo simulador, é possivel estender o
nivel de complexidade do problema. Isso é possivel aumentando a quantidade de informacdes

de entradas como, por exemplo, incluir a medi¢do das demais torres, incluir mais tipos de
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acidentes severos ao problema e estender a estimativa para a previsdo da pluma inteira, ou zonas

de niveis de taxa de dose relevantes, ao invés de apenas um Unico ponto.

Investigacdes futuras € a utilizacdo de outras arquiteturas de redes neurais, como as redes do
tipo Transformers, que tém se mostrado altamente eficientes em problemas de predicdo com
dados sequenciais (Phuong & Hutter, 2022; Wen et al, 2022). Essa abordagem pode
proporcionar melhorias significativas na previsdo do comportamento da pluma radioativa,

especialmente em relacao a dependéncia temporal das informacdes.

Explorando essas possibilidades, é possivel aprimorar a capacidade de previsdao do movimento
da pluma e ampliar a aplicabilidade desse estudo em cenarios mais complexos e realistas

envolvendo a disperséo de materiais radioativos.
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