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RESUMO 

A liberação de materiais radioativos na atmosfera pode ocorrer devido a acidentes durante 

a operação de uma usina nuclear.  Com a liberação de material radioativo, ocorre a formação 

de uma pluma de dispersão radioativa, cujo comportamento deve ser estimado para que se possa 

tomar as medidas de proteção radiológicas necessárias para garantir a segurança da população 

e do meio ambiente, na região afetada. Essa estimativa é feita através de sistemas 

computacionais que monitoram as condições meteorológicas e os parâmetros operacionais da 

usina, e estimam a pluma de dispersão radioativa em tempo real. 

O objetivo desse trabalho é desenvolver um modelo computacional, baseado em redes 

neurais artificiais recorrentes do tipo LSTM, para previsão do comportamento da pluma 

radioativa na atmosfera. Para treinar a rede neural, é utilizado um conjunto de dados gerados a 

partir de um simulador de dispersão atmosférica de plumas radioativas. Esse conjunto de dados 

simulados é utilizado no treinamento de diversas arquiteturas de redes neurais recorrentes, de 

modo a permitir selecionar a que melhor se ajuste as estimativas feitas pelo simulador. Desse 

modo, o modelo desenvolvido será capaz de prever o comportamento de uma pluma radioativa 

durante um acidente. Isso é particularmente importante em termos de segurança, pois 

proporcionará mais tempo e flexibilidade para que operadores e equipes de emergência tomem 

as decisões necessárias para garantir a segurança radiológica da região, reduzindo os riscos de 

erros humanos. 

 

Palavras-Chave: pluma radioativa, dispersão atmosféricas, inteligência artificial, redes neurais 

artificiais recorrentes, redes LSTM, fatores humanos. 
  



 
 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

Release of radioactive materials in the atmosphere can occur due to severe accidents during 

the operation of a nuclear power plant. As the accident progresses and the release of 

radioactivity in the atmosphere continues, radioactive dispersion plumes are formed. The 

behavior of this radioactive plume is monitored by a specialized team so that all necessary 

radiological protection measures can be taken for the safety of the population and environment 

around the nuclear power plant site. Safety monitoring is done through state-of-the-art 

computational systems that continuously track all meteorological conditions and plant status 

parameters and estimate the radioactive dispersion plume in real time. 

The objective of this work is to develop a computational model, based on recurrent artificial 

neural network techniques, which predicts in advance what will be the future behavior of a 

radioactive dispersion plume. For this, a training set is generated by a radioactive plume 

dispersion simulator. Afterwards, simulated dataset is used to train different recurrent neural 

network structures to select one with the best results. The selected model must be able to predict 

the future behavior of a dispersion plume during a severe accident. This is important since it 

will provide more time and flexibility for operators and emergency team to make their decisions 

to guarantee the radiological safety of the region, reducing the risks of human errors. 

 

Keywords: radioactive dispersion plume, atmospheric dispersion plume modeling, artificial 

intelligence, recurrent artificial neural networks, human factors. 
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1. INTRODUÇÃO 

 

1.1. APRESENTAÇÃO DO PROBLEMA 

 

Emissões de materiais radioativos para o ambiente podem ocorrer em caso de acidente durante 

a operação de uma usina nuclear e a contínua emissão desses materiais radioativos, ao longo do 

tempo, ocasiona a formação das chamadas plumas de dispersão atmosférica. Quando isso 

ocorre, é necessário que existam mecanismos capazes de estimar o comportamento da pluma 

para manter a segurança radiológica da população que se encontra dentro da zona afetada. 

A formação de uma pluma radioativa depende de diversos fatores que são relacionados ao tipo 

de acidente ocorrido, às condições operacionais da planta, as condições meteorológicas e as 

condições topográficas locais. O tempo de emissão e a concentração de radionuclídeos 

presentes na pluma de dispersão são variáveis que dependem do tipo do acidente que é iniciado 

na usina nuclear.  Variáveis relacionadas a meteorologia e topografia locais são determinantes, 

não somente para a formação da pluma de dispersão, mas também para estimativa da velocidade 

e direção na qual a pluma irá se movimentar conforme o acidente progride. 

Para estimar o comportamento dessas plumas sistemas computacionais para cálculo de 

dispersão atmosférica de radionuclídeos são utilizados.   

 

1.2. TRABALHOS RELACIONADOS 

 

Timonin & Savelieva (2005) apresentaram uma técnica de rede neural de regressão geral 

(GRNN) para a previsão espacial automática de níveis de contaminação radioativa. De acordo 

com o autor, o GRNN gera resultados com um certo grau de suavização em relação a resultados 

reais e, portanto, o nível de satisfação dos resultados encontrados depende se o grau de 

suavização é aceitável em relação ao problema e o cenário a ser modelado. 

Pereira et al. (2016) desenvolveram dois modelos de rede neural artificial para estimar a 

dispersão de pluma radioativa considerando um acidente severo de perda de refrigerante 

(LOCA). O primeiro modelo considera uma estrutura de rede neural do tipo feedforward 

Multilayer Peceptron (MLP) e a segunda rede é baseada em GRNN. Os resultados encontrados 
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foram satisfatórios e, em Pereira et al. (2017), a rede neural artificial MLP treinada no trabalho 

anterior, foi incorporada em um aplicativo de telefone móvel. 

Desterro et al. (2020) substituiram a rede neural artificial MLP implementada por Pereira et al. 

(2016) por um modelo de rede neural Deep Rectifier Artificial Neural Networks (DRNN) com 

o objetivo melhorar a acurácia do modelo. A alteração da estrutura da rede neural MLP para 

DRNN consiste na substituição das funções de ativação da estrutura da rede neural, que antes 

utilizavam funções sigmoides, por funções de ativação retificadoras. O resultado mostrou que 

o treinamento da rede neural utilizando processamento paralelo diminuiu de 4 horas de duração 

para apenas 30 minutos sem perder a acurácia dos resultados previamente encontrados. 

Outros trabalhos relacionados ao desenvolvimento de técnicas de rede neural artificial foram 

implementados para estimar a dispersão atmosférica de outros tipos de materiais poluentes não 

radioativos.  

Boznar et al. (1993) desenvolveram um modelo de rede neural artificial para a estimar a 

dispersão atmosférica de SO2 emitida a partir de uma usina termelétrica eslovena.  

Yi & Prybutok (1996) criaram um modelo de rede neural que é capaz de estimar o nível máximo 

de emissões de gás ozônio em zonas industrializadas.  

Cao et al. (2010) estudaram a distribuição de aerossol emitida ao ambiente a partir de uma fonte 

pontual considerando um curto período de emissão.  

Lauret et al. (2013) utilizaram redes neurais para estimar a dispersão de gás com foco nas 

concentrações distribuídas mais perto do solo onde o grau de complexidade da modelagem é 

geralmente maior.  

Hossain (2014) treinou um modelo capaz de calcular as concentrações de monóxido de carbono 

e materiais particulados emitidas em áreas urbanas utilizando dados de meteorologia e tráfego.  

Qiu et al. (2018) desenvolveram uma estimativa da fonte de emissão e predição da dispersão 

atmosférica de gás através de técnicas de redes neurais artificiais, enxame de partículas e 

algoritmo de maximização de expectativa.  

Oliveira et al. (2022) criaram um modelo híbrido entre aplicações computacionais de mecânica 

dos fluidos (CFD) com redes neurais para estimar a dispersão de gás, onde a aplicação de redes 

neurais tornou o modelo CFD mais rápido e eficiente.  
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1.3. JUSTIFICATIVA 

 

Em um caso de acidente em uma usina nuclear onde ocorra vazamento de material radioativo 

na atmosfera, é necessário que existam ferramentas para estimativa das consequências na região 

afetada para que medidas mitigadoras sejam tomadas o mais rápido possível para a proteção da 

população.  

Na literatura é possível encontrar diversos trabalhos que utilizam técnicas para estimar, em 

tempo real, o comportamento da pluma radioativa, o que é importante para que sejam tomadas 

decisões mitigadoras eficazes em uma situação de acidente. Porém, não foram encontrados 

trabalhos que proponham aplicações de redes neurais artificiais recorrentes que sejam capazes 

de prever o comportamento futuro da pluma na atmosfera com antecedência. Se ferramentas de 

Inteligência Artificial (IA) forem capazes de prever o comportamento de uma pluma com 

antecedência, então, um operador da usina terá mais tempo para avaliar as consequências antes 

de tomar decisões mitigadoras. Assim, o ganho de tempo na tomada de decisão possibilita que 

medidas de segurança radiológica mais eficazes possam ser avaliadas reduzindo a possibilidade 

de erros humanos. 

 

1.4. OBJETIVO 

 

Esse trabalho tem como objetivo desenvolver um modelo de previsão do comportamento de 

plumas radioativas utilizando redes neurais artificiais. É escolhida a técnica de redes neurais 

recorrentes (do inglês Recurrent Neural Networks - RNN), pois as RNN são especialmente 

adequadas para lidar com sequências de dados e capturar dependências temporais complexas.. 

Mais especificamente, são utilizadas as redes neurais recorrentes do tipo Long Short Term 

Memory (LSTM) (Goller & Kuchler, 1996).  

É desenvolvido um modelo de previsão para a posição do ponto da pluma onde a taxa de dose 

de radiação é máxima. Para a geração dos dados necessários para o treinamento da rede neural 

recorrente, é utilizado um simulador, baseado no simulador do Sistema de Controle Ambiental 

(SCA) da Central Nuclear Almirante Álvaro Alberto (CNAAA), doravante denominado 

Simulador de Dispersão Atmosférica (SDA), que implementa o modelo matemático básico de 

dispersão atmosférica para os diferentes tipos de acidentes, porém utilizando dados típicos de 

reatores PWR. Diversas arquiteturas de redes neurais artificiais recorrentes são testadas para 
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ajustar o melhor modelo que consiga prever a movimentação dessas plumas. Ao fim, é 

selecionada a melhor arquitetura de rede capaz de prever a movimentação do ponto de máxima 

taxa de dose de corpo inteiro ao longo do tempo. 

 

1.5. ORGANIZAÇÃO DO TRABALHO 

 

Esse trabalho é dividido em seções, onde as duas seções seguintes têm como objetivo 

fundamentar a teoria que envolve redes neurais artificiais recorrentes e modelos de dispersão 

atmosférica respectivamente. Na seção de modelagem de dispersão atmosférica, também são 

introduzidos o funcionamento e a metodologia referente ao simulador utilizado para gerar os 

dados de treinamento da rede. A Seção 4 introduz as arquiteturas de rede neural recorrente que 

foram testas e geração dos dados. A Seção 5 apresenta os resultados encontrados a partir do 

treinamento das redes testadas e verifica qual rede foi a mais eficiente na previsão do ponto de 

máxima dose de corpo inteiro. As seções finais consistem na apresentação de conclusão, 

sugestões para trabalhos futuros e referências bibliográficas utilizadas. 
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2. REDES NEURAIS ARTIFICIAIS 

 

A rede neural artificial é uma vertente da inteligência artificial utilizada para o aprendizado de 

máquina.  A RNA consiste em criar um modelo matemático que seja capaz de reproduzir o 

comportamento da transferência de informações do sistema nervoso humano.  

O neurônio é uma unidade básica do sistema nervoso humano que possui a capacidade de 

transmitir informações através de impulsos elétricos. A Figura 2.1 apresenta a estrutura 

esquemática de um neurônio que é constituído de um corpo celular com diversos dendritos 

(canais de entrada) e um axônio (canal de saída). Os neurônios estão interligados uns aos outros 

através de conexões entre axônios e dendritos, denominadas sinapses. É nessa interconexão que 

as informações são transmitidas ao longo do sistema nervoso. Estima-se que o cérebro humano 

possua dezenas de bilhões de neurônios conectados formando uma complexa rede neural. 

 

 

Figura 2.1 – Estrutura de um neurônio. 

Fonte: Domínio http://www.ic.uff.br/. 

 

A transmissão de informação através do sistema nervoso é feita a partir de impulsos elétricos 

recebidos pelos dendritos de um neurônio. Se um impulso elétrico ultrapassar certo limiar, então 

o neurônio irá liberar uma substância neurotransmissora que irá fluir através de seu axônio até 

atingir as suas sinapses onde haverá as conexões com os dendritos dos neurônios adjacentes. O 

neurotransmissor pode ser inibido ou excitado nas atividades pós-sinápticas, aumentando ou 

diminuindo a intensidade com que a informação a ser transmitida será propagada ao longo dessa 

rede neural até o cérebro. 

http://www.ic.uff.br/


14 

 

 

2.1. NEURÔNIO ARTIFICIAL 

 

McCulloch & Pitts (1943) foram os primeiros cientistas a desenvolver uma metodologia capaz 

de reproduzir matematicamente o funcionamento de um neurônio humano. O modelo consiste 

em uma rede bastante simples de dois neurônios conectados a um terceiro neurônio, onde as 

informações binárias são transferidas para o terceiro neurônio somente se extrapolado um dado 

limiar de ativação. O neurônio artificial criado por McCulloch & Pitts (1943) ficou conhecido 

na literatura como o neurônio MP (Figura 2.2). 

 

 

Figura 2.2 – Representação de um neurônio MP. 

Fonte: o autor (2023). 

 

2.2. NEURÔNIO PERCEPTRON 

 

O modelo de 14eurônio MP desenvolvido por McCulloch & Pitts (1943) até então era bastante 

simples, mas era uma primeira tentativa de reproduzir o funcionamento de um neurônio. Porém, 

ainda havia a necessidade de melhor implementar a inibição ou excitação das atividades pós-

sinápticas na transferência de informações entre neurônios. Rosenblatt (1958) desenvolveu um 

modelo matemático que acrescentava um valor de peso wi para cada neurônio xi permitindo 

com que esse peso pudesse ser ajustado de modo a transferir as informações interneurônios nas 

proporções adequadas como uma forma de atividade pós-sináptica. O modelo desenvolvido por 

Rosenblatt (1958) se sobrepôs ao modelo anteriormente criado e ficou reconhecidamente 

chamado de Perceptron (Figura 2.3). 

 

1

2

3
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Figura 2.3 – Representação de uma rede neural Perceptron. 

Fonte: o autor (2023). 

 

É possível calcular a saída de um Perceptron quando os valores de entrada são introduzidos. 

Considerando que xi representa os valores de entrada, wi representam os pesos sinápticos e b é 

o valor de viés (bias) introduzido, temos que ν representa a pré-ativação do Perceptron, que é 

dado pela Equação 2.1. 

 
𝜈 = ∑ 𝑥𝑖𝑤𝑖 + 𝑏

𝑛

𝑖=1

 
(2.1) 

Então, o resultado y do neurônio de saída é dado por y = φ(ν), onde φ representa uma função 

de ativação conhecida. Existem diversas funções de ativação que são comumente utilizadas, 

como, por exemplo: função degrau, linear, sigmoide logística e tangente hiperbólica. 

 

2.3. REDE NEURAL TIPO PERCEPTRON MULTICAMADAS 

 

O modelo desenvolvido para o Perceptron recebeu muitas críticas devido a dificuldade de se 

obter boas respostas relacionadas a problemas não-lineares, como por exemplo, a função XOR. 

Isso ocorria porque selecionar apenas uma certa quantidade de neurônios em apenas uma 

camada ainda restringia bastante a capacidade da rede neural de aprender problemas mais 

complexos. Para superar essa limitação, Rumelhart et al. (1986) desenvolveram um modelo de 

rede neural artificial Perceptron multicamadas (MLP – Multi-layer Perceptron). O modelo 

propunha a utilização de camadas de neurônios (Figura 2.4). Desta forma foi possível criar 

modelos de redes neurais que fossem capazes de resolver problemas mais complexos. 
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Figura 2.4 – Representação esquemática de uma rede neural MLP. 

Fonte: o autor (2023). 

 

2.4. TREINAMENTO DE UMA MLP 

 

Considerando que uma rede neural tem como objetivo o aprendizado, é necessário que exista 

um treinamento. Ou seja, é necessário apresentar um grupo de exemplos do problema que se 

deseja resolver para que a rede seja capaz de aprender a resolvê-los. Esse treinamento consiste 

em introduzir dados de entrada (parâmetros do problema) com os seus respectivos dados de 

saída (resultados), para que a rede tenha a capacidade de ajustar matematicamente os valores 

de seus pesos sinápticos de modo a criar um modelo que seja capaz de reproduzir aquele 

problema. 

O ajuste de peso no treinamento de uma rede neural é comumente feito através do algoritmo de 

retropropagação (backpropagation) de erro. Esse algoritmo consiste no reajuste dos pesos a 

partir do valor do erro quadrático entre os dados de saída desejados e os dados de saída 

calculados pela rede neural. O algoritmo de retropropagação de erro pode ser descrito da 

seguinte forma: 

1. Inicializar todos os pesos de todas as camadas com valores aleatórios não nulos. 

2. Propagar as entradas xi até a sua saída com os respectivos pesos atuais. 

3. Calcular o erro entre a saída calculada pela rede e o valor a ser aprendido. 

4. Ajustar todos os pesos wi da rede de forma a minimizar o erro. 

5. Repetir o processo 3 e 4 para todas as camadas ocultas até a primeira camada. 
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6. Repetir o processo 1 a 5 até que um critério de parada seja atingindo, como um número pré-

definido de épocas de treinamento ou quando o erro alcança um valor aceitável. 

É possível formular um cálculo matemático para o ajuste dos pesos feito pelo algoritmo de 

retropropagação para uma rede neural do tipo MLP.  

Considerando um neurônio k da camada de saída da rede neural MLP da Figura 2.4, pode-se 

definir ek como o erro instantâneo dada pela Equação 2.2. 

 𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘 (2.2) 

Onde dk é o valor desejado como resultado e yk é o valor efetivamente calculado pela 

propagação da rede neural com os pesos sinápticos atuais. 

Então calcula-se o gradiente local para o neurônio k da camada de saída que é dado por: 

 𝛿𝑘 =  𝑒𝑘 𝜑𝑘′(𝜈𝑘) (2.3) 

φ’(νk) refere-se a derivada da função de ativação do neurônio k da camada de saída. 

Portanto, o ajuste do peso wkj é calculado pela seguinte expressão: 

 𝛥𝑤𝑘𝑗 =  𝜂 𝛿𝑘 𝑦𝑗 (2.4) 

Δwkj representa a diferença entre o peso a ser atualizado menos o peso atual e η é a taxa de 

aprendizado. 

Agora é possível notar que o cálculo do ajuste de peso de uma camada de saída é, em parte, 

calculado pelo erro instantâneo que depende do valor de saída desejado (d) e o valor de saída 

efetivamente calculado pela rede neural (y) para aquele conjunto de pesos atuais. Porém, 

considerando a conexão sináptica entre um neurônio de uma camada escondida e uma anterior, 

não haverá mais conexão direta com a saída da rede neural. Portanto, o cálculo do erro total de 

um neurônio de uma camada interna não será mais dado em função de um erro instantâneo, mas 

de um somatório de todos os erros das camadas posteriores multiplicado pelo seu respectivo 

peso. Ou seja, considerando um neurônio j da camada escondida da rede neural MLP 

apresentada na Figura 2.4, temos que o cálculo do erro é calculado pela Equação 2.5. 

 𝛿𝑗 = 𝜑𝑗′(𝜈𝑗) ∑ 𝛿𝑘 𝑤𝑘𝑗

𝑘𝜖𝐶

 
(2.5) 

E, consequentemente, o ajuste do peso wji é dado pela seguinte expressão: 
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 𝛥𝑤𝑗𝑖 =  𝜂 𝛿𝑗  𝑦𝑖 (2.6) 

Finalmente, é possível escrever a equação global do ajuste de peso wkj e wji apresentados na 

Equação 2.7 e Equação 2.8 respectivamente. 

 𝛥𝑤𝑘𝑗 =  𝜂(𝑒𝑘 𝜑′
𝑘

(𝜈𝑘))𝑦𝑖 (2.7) 

 𝛥𝑤𝑗𝑖 =  𝜂 (𝜑′
𝑗
(𝜈𝑗) ∑(𝑒𝑘 𝜑′

𝑘
(𝜈𝑘) 𝑤𝑘𝑗)

𝑘𝜖𝐶

) 𝑦𝑖 (2.8) 

De forma esquemática, a Figura 2.5 abaixo apresenta um formato esquemático para o algoritmo 

de retropropagação considerando uma rede neural perceptron multicamadas. A estrutura da rede 

da figura é organizada em uma camada de entrada de dois neurônios, uma camada intermediária 

escondida com três neurônios e uma camada de saída com dois neurônios e considerando uma 

função de ativação qualquer φ.  

 

 

Figura 2.5 – Algoritmo de retropropagação para redes MLP. 

Fonte: o autor (2023). 

 

Observando as Equações 2.7 e 2.8 acima, fica claro que, conforme o processo de 

retropropagação progride, a quantidade de termos referente ao gradiente local da derivada da 
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função de ativação (φ’(ν)) tende a aumentar. A influência matemática que o acúmulo desses 

termos gera no cálculo do ajuste de pesos por retropropagação ocasionou diversas críticas a 

esses modelos que se sucederam ao longo dos anos. 

 

2.5. REDE NEURAL PROFUNDA 

 

O desenvolvimento do MLP, apesar de inovador, ainda assim recebeu críticas sobre a 

inconsistência de resultados quando os problemas complexos demandavam estruturas de redes 

neurais com muitas camadas (redes neurais profundas). Hochreiter (1991, 1998) verificou que 

a rede neural profunda possuía problemas de desaparecimento de gradiente e esse efeito ficava 

cada vez mais evidente conforme a quantidade de camadas com gradientes locais aumentavam. 

Glorot & Bengio (2010) fizeram um estudo de aplicações de funções de ativação sigmoide em 

estruturas de redes MLP profundas e verificaram que nas camadas mais profundas o 

desempenho durante o treinamento era ruim ou próximo de zero.  

Para verificar o efeito da função sigmoide no desaparecimento de gradiente e, 

consequentemente, as inconsistências no treinamento de redes neurais profundas é necessário 

entender o comportamento dessa função. A Equação 2.9 define a função sigmoide φ(x) e a 

Figura 2.6 apresenta o gráfico da função com a sua respectiva derivada φ’(x).  

É possível verificar que a função sigmoide possui uma derivada que tende a zero quando x 

tende a +∞ ou -∞. E, como foi visto anteriormente, a derivada da função de ativação que 

compõe o gradiente local é importante para o cálculo dos reajustes de pesos no treinamento de 

uma rede neural. No processo de retropropagação de erro e correção de pesos, são feitas, a cada 

camada, multiplicações pela derivada da função. Com o aumento do número de camadas, cresce 

proporcionalmente a quantidade de multiplicações sucessivas pela derivada da função. Assim 

sendo, como a derivada possui valores menores do que a unidade (podendo ser relativamente 

bem menores) a multiplicação dos termos tende a zero para uma grande quantidade de camadas 

e, consequentemente, acarreta pouco ou praticamente nenhum treinamento da rede ao longo das 

épocas. 

 
𝜑(𝑥) =  

1

1 + 𝑒−𝑥
 

(2.9) 
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Figura 2.6 – Gráfico da função sigmoide e sua derivada. 

Fonte: Domínio https://matheusfacure.github.io/. 

 

Com o objetivo de resolver o problema das redes neurais profundas, Glorot et al. (2011) 

desenvolveu um grupo de funções de ativação chamadas de funções retificadas. Dentre elas, a 

função mais conhecida é a chamada ReLU (Rectified Linear Unit). Essa função de ativação 

proposta por Glorot et al. (2011) possui características capazes de superar o problema de 

desaparecimento de gradiente que tendem surgir em redes neurais profundas. A função de 

ativação ReLU é definida pela Equação 2.10 e a Figura 2.7 apresenta o comportamento gráfico 

da função e de sua respectiva derivada.  

 𝜑(𝑥) = max (0, 𝑥) (2.10) 

 

Figura 2.7 – Gráfico da função ReLU e sua derivada. 

Fonte: Domínio https://matheusfacure.github.io/. 

 

É possível verificar na Figura 2.7 que a função ReLU possui uma derivada constante para 

valores positivos, enquanto a função sigmoide possui um comportamento decrescente. Dessa 

forma, é possível garantir que o reajuste de pesos do treinamento de uma rede neural com 

algoritmo de retropropagação não sofrerá efeitos de desaparecimento de gradiente com tanta 
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velocidade conforme a quantidade de camadas na estrutura da rede aumenta. Por outro lado, 

para valores negativos o gradiente é nulo, causando uma esparsidade no modelo, o que traz 

benefícios em termos de eficiência no treinamento. O modelo desenvolvido de redes neurais 

que possui uma função de ativação retificadora ficou conhecida como redes neurais profundas 

retificadas (do inglês Deep Rectifier Neural Network - DRNN) . 

 

2.6. REDE NEURAL RECORRENTE 

 

As estruturas de redes neurais apresentadas são conhecidas como redes neurais do tipo 

feedfoward. Por exemplo, é possível verificar na Figura 2.4 que uma rede neural do tipo MLP 

é uma rede do tipo feedfoward pois ela sempre propaga os valores na direção da entrada 

(esquerda) para a saída (direita), não havendo retorno (realimentação) de nenhuma informação 

anterior. Verifica-se que esse tipo de estrutura feedforward não mantém nenhuma memória do 

que foi calculado anteriormente e todas as suas informações são consideradas independentes a 

cada rodada.  

Apesar de existirem inúmeras aplicações para redes neurais feedfowards, muitos problemas 

dependem de informações passadas para que se possa complementar um raciocínio e chegar a 

uma conclusão. Um exemplo claro é a leitura de um livro, onde é necessário que o leitor 

mantenha em memória o que foi lido anteriormente para entender o contexto da frase presente 

no meio do texto. Caso contrário, a informação contida naquela frase não fará sentido lógico 

no contexto do texto completo. Caso contrário, a informação daquela frase no contexto do texto 

lido não fará nenhum sentido lógico. Outro exemplo é quando um indivíduo está assistindo um 

filme e procura predizer o que irá acontecer no final. Note que só será possível prever o final 

de um filme depois de assisti-lo até certo ponto, a partir do qual conclusões podem ser tomadas 

sobre um possível desfecho. Ou seja, nota-se que existe uma dependência temporal de todo um 

histórico de informações para que uma conclusão possa ser tomada.  

Em geral, problemas que envolvem séries temporais e sequências, não conseguem ser 

adequadamente solucionados com redes neurais artificiais do tipo feedforward. Para superar 

isso, Goller & Kuchler (1996) desenvolveram as conhecidas redes neurais artificiais 

recorrentes. Essas arquiteturas de redes neurais possuem a capacidade de serem 

retroalimentadas com informações calculadas anteriormente. Assim como as arquiteturas 

feedforward, que recebem os dados de entrada, a rede neural artificial recorrente possui um 
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componente extra que retorna informações anteriores junto aos dados de entrada. Essa 

retroalimentação particular das redes neurais artificiais recorrentes são chamadas de feedbacks. 

Dessa forma, o modelo da rede incorpora a capacidade de manter informações passadas de 

modo a tomar decisões para o passo seguinte. A Figura 2.8 apresenta a diferença na arquitetura 

entre as redes neurais artificial recorrentes e a rede neural artificial feedforward. 

 

 

Figura 2.8 – Diferença entre uma rede neural recorrente e uma rede neural feedfoward. 

Fonte: o autor (2023). 

 

De forma simplificada, pode-se definir uma célula recorrente como na Figura 2.9, onde ht 

representa o estado atual da célula, xt e yt são as entradas e saídas da célula respectivamente. A 

Equação 2.11 apresenta a relação geral de recorrência para o mecanismo de memorização 

temporal da célula, onde ht-1 é o estado anterior da célula. Note que fw representa a aplicação da 

função de ativação relacionada ao respectivo peso w daquela célula. 

 

 

Figura 2.9 – Representação esquemática de uma célula de uma estrutura recorrente. 

Fonte: o autor (2023). 
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 ℎ𝑡 =  𝑓𝑤(𝑥𝑡 , ℎ𝑡−1) (2.11) 

Uma rede neural recorrente pode ser representada temporalmente por uma sequência de células 

recorrentes alinhadas, como representa a Figura 2.10. É importante notar que além dos pesos 

dos dados de entrada Wxh e os pesos dos dados de saída Why da célula, agora, a rede neural 

recorrente, possui um novo componente de pesos Whh que conecta uma célula a outra para criar 

o aspecto de recursividade. 

 

 

Figura 2.10 – Desdobramento temporal de uma rede neural recorrente. 

Fonte: o autor (2023). 

 

Considerando que a função de ativação fw pode ser considerada uma tangente hiperbólica, 

podemos reescrever a equação do estado da célula ht da seguinte forma: 

 ℎ𝑡 = tanh (𝑾𝒉𝒉
𝑻 ℎ𝑡−1 + 𝑾𝒙𝒉

𝑻 𝑥𝑡) (2.12) 

E consequentemente, teremos que a saída yt da célula recorrente é dada por: 

 𝑦𝑡 = 𝑾𝒉𝒚
𝑻 ℎ𝑡 (2.13) 

O algoritmo de retropropagação para os ajustes de pesos e treinamento da rede neural artificial 

recorrente segue o raciocínio similar ao de retropropagação das redes neurais feedforward. No 

caso de redes neurais recorrentes, o ajuste de pesos é nomeado de retropropagação temporal 

(backpropagation through time). Porém, redes neurais recorrentes possuem ainda mais pesos a 

serem ajustados devido a interconexão entre as células recorrentes. Isso acentua, mais uma vez, 

o problema de perda de gradiente discutido na Seção 2.4 para o caso de redes neurais profundas. 

Agora, considerando que a rede neural possui uma memória temporal, o problema de perda de 

gradiente é visto como uma forma de perda de memória. Ou seja, quanto maior for a série 
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temporal que se deseja modelar e, consequentemente, quanto maior for a quantidade de células 

recorrentes introduzidas na rede neural, maior será a quantidade de pesos disponíveis para 

serem ajustados pelo algoritmo de retropropagação. Portanto, verifica-se que a rede neural 

recorrente pode chegar a um limite de memória que, dependendo do problema, pode se 

configurar uma perda de memória de curto prazo. 

 

2.7. REDES NEURAL TIPO LSTM 

 

Para contornar o problema devido a perda de capacidade de memória de uma rede neural 

recorrente, Hochreiter & Schmidhuber (1997) desenvolveram uma estrutura celular recorrente 

chamada de memória de curto a longo prazo (do inglês Long Short-Term Memory - LSTM). 

Para entender como esse tipo de célula desenvolvido possui a capacidade de superar o problema 

do desaparecimento de gradiente, é necessário entender todos os componentes da estrutura de 

uma célula LSTM. 

A implementação da LSTM desenvolvida consiste em uma célula recorrente que possui filtros 

capazes de avaliar o nível de relevância das informações dos dados de entrada na rede. Através 

de ponderações matemáticas, a célula LSTM possui terminais que são capazes de manter 

informações julgadas relevantes para solucionar o problema e excluir aquelas as informações 

consideradas menos relevantes. Dessa forma, os portões da célula LSTM tornam possível 

estender as memórias temporais. A Figura 2.11 apresenta uma célula LSTM com seus 

respectivos terminais de avaliação de informação. 

 

 

Figura 2.11 – Componentes de uma célula LSTM. 

Fonte: o autor (2023). 
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A célula LSTM possui três grupos de dados de entrada: os valores atuais das entradas (xt), as 

informações do estado anterior da célula (ht-1) e as informações globais (ct-1). A diferença entre 

os dados de estado anterior da célula e os dados de entrada globais é que os dados de estado 

anterior são apenas temporários e substituídos por novas informações que serão atualizados 

pela célula atual, enquanto as informações globais se mantêm ao longo de toda a série temporal. 

Além disso, a saída global não interfere nos cálculos realizados pelos terminais da célula, ele 

apenas acumula de informações ao longo do tempo, como uma espécie de memória interna. 

A LSTM possui três portões internos característicos, são eles: o terminal de esquecimento (ft), 

o terminal de entrada (it) e o terminal de saída (ot).  

É no terminal de esquecimento (ft) que a rede neural elimina as informações que são julgadas 

não relevantes para solucionar o problema. O cálculo é feito através de ponderações realizadas 

com o auxílio da função sigmoide: 

 𝑓(𝑡) =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.14) 

Uma vez que o dado de entrada passa pelo terminal de esquecimento, a informação que é aceita 

pela célula segue para o terminal de entrada (it). Este refere-se ao terminal onde o dado de 

entrada é de fato tratado para seguir adiante como output da célula da rede neural. O terminal 

de entrada consiste em duas etapas, onde a primeira etapa consiste em calcular a informação 

que será atualizada para a próxima célula com o auxílio da função sigmoide (Equação 2.15) e 

uma segunda etapa que filtra as informações que serão acumuladas no terminal global (Equação 

2.16). 

 𝑖(𝑡) =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.15) 

 𝐶(𝑡) =  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.16) 

O terminal de saída (ot) consiste na construção dos dados de saída do estado atual de uma célula 

dentro da rede neural. Ela consiste em um filtro realizado com o auxílio da função sigmoide 

(Equação 2.17). 

 𝑜(𝑡) =  𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.17) 

Finalmente, a célula LSTM possui dois dados de saída: um local (ht) que é alterado por cada 

célula e um global (ct) que é continuamente memorizado ao longo das células. O cálculo de 
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saída local e o dado de saída global são dados pela Equação 2.18 e Equação 2.19 

respectivamente. 

 𝑐𝑡 =  𝑓𝑡 ∗  𝑐𝑡−1 +  𝑖𝑡 ∗ 𝐶𝑡 (2.18) 

 ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝑐𝑡) (2.19) 

Com o objetivo de verificar como as redes neurais criadas por sucessivas células do tipo LSTM 

possuem a capacidade de contornar o problema do desaparecimento de gradiente, primeiro é 

importante reescrever a equação para o cálculo de ct, referente a saída global da célula LSTM, 

com suas devidas substituições. 

 𝑐𝑡 = (𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡])) ∗ 𝑐𝑡−1 + 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) ∗  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) (2.20) 

 

O cálculo do gradiente ao longo das células LSTM é calculado aplicando 
𝜕𝑐𝑡

𝜕𝑐𝑡−1
  na Equação 2.20 

e, portanto, podemos reescrevê-la da seguinte forma: 

 𝜕𝑐𝑡

𝜕𝑐𝑡−1
= (𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡])) +

𝜕𝑐𝑡

𝜕𝑐𝑡−1
 (𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) ∗  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡])) 

(2.21) 

Verifica-se que, considerando sucessivas células, o valor do gradiente tende a ser aproximado 

pela seguinte expressão: 

 𝜕𝑐𝑡

𝜕𝑐𝑡−1
≅ (𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡])) 

(2.22) 

Portanto, verifica-se que o gradiente possui um valor, diferente de zero, ao qual irá se aproximar 

quando sucessivas células LSTM são adicionadas a uma estrutura de uma rede neural. Com 

isso, o problema do desaparecimento de gradiente consegue ser superado em aplicações de 

redes neurais recorrentes. 
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3. SIMULADOR DE DISPERSÃO ATMOSFÉRICA DE PLUMAS RADIOATIVAS 

 

Existem ferramentas que simulam a dispersão de poluentes e materiais radioativos na 

atmosfera. Cada simulador pode utilizar uma solução analítica específica que varia de acordo 

com a complexidade do problema que se deseja modelar. Diversas formulações analíticas para 

o cálculo da dispersão de plumas na atmosfera foram desenvolvidas ao longo dos anos. 

Nesse capítulo serão descritos alguns modelos analíticos que são mais utilizados em 

simuladores de dispersão de plumas e será apresentado o simulador SDA, que foi utilizado na 

geração de dados para o treinamento da rede neural recorrente desse trabalho. 

 

3.1. TEORIA DA DISPERSÃO DE PLUMAS NA ATMOSFERA 

 

A solução analítica para a dispersão atmosférica é descrita principalmente por dois modelos: 

eulerianos e lagrangianos. O modelo euleriano consiste na solução de uma equação diferencial 

baseada na conservação de massa com um sistema de referência fixo. O modelo lagrangiano 

considera que a trajetória de uma partícula é feita a partir de um campo turbulento que depende 

de condições iniciais e físicas. No caso de dispersão atmosférica, esse campo considerado no 

modelo lagrangiano, geralmente refere-se a um campo de vento. 

Considerando uma metodologia euleriana, para um dado material de concentração C(x,y,z,t) na 

atmosfera, a modelagem analítica é feita a partir da equação de conservação de massa dada por: 

 
𝜕𝐶

𝜕𝑡
=  − 𝛻(𝐶𝑣⃗) +  𝛻(𝐷𝑐𝛻𝐶) + 𝑆𝑐 (3.1) 

Onde o primeiro termo consiste em quantificar a variação temporal da concentração C de um 

material no meio, o segundo termo e terceiro termo referem-se a advecção e difusão 

respectivamente e Sc é o termo fonte de emissão. 

Como o campo de vento (v) é calculado pelos dados meteorológicos que são medidos em campo 

e a fonte (Sc) está sempre em constante monitoramento, então pode-se concluir que única 

variável da equação acima é a concentração do material C. 
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Para seguir adiante com os cálculos da equação diferencial para descrever a dispersão da 

concentração do material C, é necessário introduzir termos referentes aos efeitos de turbulência. 

A teoria da turbulência de Reynolds, verifica que, para descrever o efeito de turbulência, é 

necessário sobrepor dois efeitos: o efeito médio temporal e o efeito de flutuação turbulenta. Ou 

seja, em teoria, isso consiste na substituição das variáveis do problema por variáveis referentes 

a média temporal e de flutuação.  

Considerando uma variável genérica (ϕ), temos que a média temporal (ϕ) e a flutuação 

turbulenta (ϕ*) são dadas respectivamente pelas equações abaixo. 

 𝜙̅ =  
1

𝛥𝑡
∫ 𝜙(𝑡)𝑑𝑡

𝛥𝑡

0

 (3.2) 

 𝜙∗ =  
1

𝛥𝑡
∫ 𝜙∗(𝑡)𝑑𝑡

𝛥𝑡

0

= 0 (3.3) 

Com as duas definições acima, é possível verificar que ϕ = ϕ + ϕ*, garantindo que o efeito da 

variável ϕ é, de fato, a sobreposição desses dois efeitos. 

Voltando a equação governante, de acordo com a teoria de Reynolds, a média temporal e 

flutuação turbulenta são introduzidas nas variáveis de velocidade (v) e concentração (C). 

Portanto, a equação governante média pode ser reescrita da seguinte forma: 

 

𝜕𝐶̅

𝜕𝑡
+

𝜕𝐶∗̅̅ ̅

𝜕𝑡
= − 𝛻(𝐶̅𝑣̅⃗) −  𝛻(𝐶∗̅̅ ̅𝑣̅⃗) −  𝛻 (𝐶̅𝑣∗⃗⃗⃗⃗⃗̅̅ ̅) −  𝛻 (𝐶∗̅̅ ̅𝑣∗⃗⃗⃗⃗⃗̅̅ ̅) + 𝛻(𝐷𝑐𝛻𝐶̅)

+ 𝛻(𝐷𝑐𝛻𝐶∗̅̅ ̅) + 𝑆𝑐̅ 

(3.4) 

Devido a relação entre média temporal e flutuação turbulenta, algumas propriedades podem ser 

estabelecidas de modo a reduzir a equação acima, tais como  𝜙∗̅̅̅̅ = 0 e 𝜙𝜙∗̅̅ ̅̅ ̅̅ = 0. Aplicando 

essas propriedades na equação acima, temos que: 

 
𝜕𝐶̅

𝜕𝑡
=  − 𝛻(𝐶̅𝑣̅⃗) −  𝛻 (𝐶∗̅̅ ̅𝑣∗⃗⃗⃗⃗⃗̅̅ ̅) +  𝛻(𝐷𝑐𝛻𝐶̅) + 𝑆𝑐̅ (3.5) 

Explicitando os componentes turbulentos para cada direção (u*, v*, w*) implícitos pelo campo 

de vento v* e considerando uma difusão isotrópica, é possível reescrever a equação acima no 

formato conhecido para dispersão atmosférica de um material de concentração C. 
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𝜕𝐶̅

𝜕𝑡
=  − 𝛻(𝐶̅𝑣̅⃗) +  𝐷𝑐𝛻²𝐶̅ + 𝑆𝑐̅ −  

𝜕 (𝑢∗⃗⃗⃗⃗⃗̅̅ ̅𝐶∗̅̅ ̅)

𝜕𝑥
− 

𝜕 (𝑣∗⃗⃗⃗⃗⃗̅̅ ̅𝐶∗̅̅ ̅)

𝜕𝑦
−  

𝜕 (𝑤∗⃗⃗⃗⃗⃗⃗̅̅ ̅̅ 𝐶∗̅̅ ̅)

𝜕𝑧
 (3.6) 

Existem diversos modelos matemáticos desenvolvidos com o objetivo de aproximar o 

movimento de uma pluma de dispersão atmosférica solucionando a equação diferencial acima. 

Dentre eles se destacam os modelos gaussianos e os modelos de bufadas (puffs), onde cada 

modelo desenvolvido possui as suas próprias premissas e simplificações. Portanto, cada 

abordagem é indicada para diferentes tipos de aplicações e níveis de complexidade do problema 

a ser modelado. 

O modelo gaussiano (Gifford, 1960) considera que a dispersão de uma pluma é proveniente de 

uma fonte de emissão estacionária e o material emitido possui escoamento estacionário e 

homogêneo. Ou seja, trata-se de um modelo de dispersão que considera que a emissão é 

contínua e sempre em uma mesma direção. A Figura 3.1 apresenta um exemplo esquemático 

de uma fonte emissora criando uma pluma de dispersão que poderia ser aproximada por um 

modelo gaussiano.  

 

 

Figura 3.1 – Pluma de dispersão gaussiana a partir de uma fonte emissora. 

Fonte: Crowl & Louvar (2011). 

 

A equação que rege a dispersão atmosférica por um modelo gaussiano é derivada da equação 

da conservação de massa sob a hipótese que a turbulência é homogênea e constante, o fluxo de 

emissão é constante, o contaminante é estável e a topografia é constante. Com isso, a equação 

geral do modelo gaussiano que rege a dispersão atmosférica de uma pluma é apresentada na 

Equação 3.7 a seguir. 
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𝐶(𝑥, 𝑦, 𝑧) =

𝑄

2 𝜋𝜎𝑦𝜎𝑧𝑣
 𝑒

−
1
2

(
𝑦

𝜎𝑦
)

2

(𝑒
−

1
2

(
𝑧−𝐻

𝜎𝑧
)
) + 𝛼𝑒

−
1
2

(
𝑧+𝐻

𝜎𝑧
)
 (3.7) 

Onde C é a concentração de um poluente no ponto de coordenadas x, y, z; Q é a taxa de emissão 

do poluente da fonte emissora; σy é o coeficiente de dispersão horizontal da concentração da 

pluma em função da direção do vento e da distância da fonte; σz é o coeficiente de dispersão 

vertical da concentração da pluma em função da direção do vento e da distância da fonte; v é a 

velocidade média do vento na altura da fonte emissora; z é ponto de amostragem em relação ao 

solo; y é o ponto de amostragem na direção y; H é a altura geométrica da fonte emissora; α é o 

coeficiente de reflexão no solo. 

O modelo Gaussiano, apesar de ser um grande avanço para as estimativas do comportamento 

das plumas radioativas, ainda era muito restrito a problemas mais simples devido as 

simplificações feitas. Com isso, foi desenvolvido o modelo de dispersão por bufadas (Sullivan 

et al., 1993; Ehrhardt & Weis, 1996) que pode ser considerado como um modelo híbrido entre 

o modelo gaussiano e langrangiano. Isso acontece pois considera-se que os cálculos das 

concentrações são feitos considerando distribuições gaussianas enquanto a trajetória de 

movimentação da pluma segue um modelo lagrangiano. Esse modelo é conhecido como 

bufadas pois considera que toda a liberação é feita de uma única vez e, considerando a 

ocorrência de sucessivas bufadas, é possível recriar um perfil de uma pluma. A Figura 3.2 

apresenta um exemplo esquemático de uma fonte emissora gerando sucessivas bufadas. 

 

 
Figura 3.2 – Sucessivas bufadas provenientes de uma fonte emissora. 

Fonte: Crowl & Louvar (2011). 
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A pluma de dispersão no modelo de bufadas é recriada a partir de uma sequência de bufadas. 

Portanto, é possível escrever a equação que rege o modelo de bufadas para a concentração 

C(x,y,z) de um certo material emitido como a somatória de todas as bufadas ocorridas. 

𝐶(𝑥, 𝑦, 𝑧) =
𝑄𝛥𝑡

2𝜋
3
2

∑
1

𝜎𝑥𝑘𝜎𝑦𝑘𝜎𝑧𝑘
𝑒

(−
(𝑥𝑘−𝑥)2

2𝜎𝑥𝑘
2 −

(𝑦𝑘−𝑦)2

2𝜎𝑦𝑘
2 −

(𝑧𝑘−𝑧)2

2𝜎𝑧𝑘
2 )

𝑁

𝑘=1

 (3.8) 

Onde QΔt refere-se ao termo fonte; N é o número total de bufadas; (xk, yk, zk) referem-se à 

posição da k-ésima bufada; σik refere-se ao desvio da i-ésima direção da distribuição gaussiana 

da k-ésima bufada.  

A diferença entre os métodos gaussianos e o método de bufadas é que o modelo matemático 

gaussiano considera sempre que a emissão é feita de forma contínua seguindo uma trajetória 

fixa. Já o modelo matemático de bufadas não considera uma emissão contínua e sim uma 

liberação completa e imediata de todo o gás onde, a cada bufada, é possível haver a mudança 

de direção. De forma prática, é possível assimilar o modelo gaussiano a contínua emissão de 

gases através de uma chaminé, enquanto o de bufadas caracteriza o rompimento de um vaso de 

pressão onde gás seria imediatamente expelido. A Figura 3.3 apresenta como a diferença entre 

os métodos gaussiano e bufadas facilitam a mudança de direção de uma pluma. Portanto, é 

possível notar que o modelo de bufadas é a modelagem matemática mais indicada para 

problemas onde a mudança de direção do vento impacta os resultados do problema, enquanto 

o modelo gaussiano é mais indicado para cenários onde mudança de direção não é decisivo. 

 

 

Figura 3.3 – A mudança de direção gerada para diferentes tipos de modelagem matemática. 

Fonte: Lagzi et. al (2013). 
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3.2. SIMULADOR DE DISPERSÃO ATMOSFÉRICA 

 

O Simulador de Dispersão Atmosférica (SDA), utilizado neste trabalho, baseou-se no simulador 

doSistema de Controle Ambiental (SCA) (PEN/COPPE/UFRJ, 1987) que foi desenvolvido para 

fazer o acompanhamento atmosférico ao redor das usinas nucleares de Angra I e Angra II da 

CNAAA. O SDA implementa o modelo matemático de cálculo de dispersão baseado em 

bufadas com trajetória lagrangiana, como visto anteriormente.  

Os cálculos de dispersão são feitos em uma zona de controle limitada ao redor da CNAAA que 

possui 11 km de extensão vertical e 17 km de extensão horizontal conforme mostra a Figura 

3.4. A zona de monitoramento controlada é dividida em uma malha tridimensional não-

divergente refinada com 215 divisões na direção vertical e 335 divisões na direção horizontal. 

Além disso, por ser específico para a zona de monitoramento da CNAAA, o simulador SCA, e 

consequentemente, o SDA utilizado neste trabalho, já possui todo o mapeamento topográfico 

implementado internamente. 

 

 
Figura 3.4 – Mapa da zona de monitoramento da CNAAA. 

Fonte: o autor (2023). 

 

O simulador opera através de ciclos com intervalos de 15 minutos, onde cada ciclo se refere ao 

progresso do acidente selecionado e é associado a uma respectiva condição meteorológica. 

Portanto, para realizar uma simulação no SDA é necessário introduzir os arquivos com as 

informações meteorológicas e selecionar qual será o acidente que será simulado ao longo dos 

ciclos.  
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O SDA compreende 3 módulos básicos que subdividem os cálculos para a estimativa da 

dispersão. São eles: módulo do cálculo do termo fonte, módulo do cálculo do campo de vento 

e módulo do cálculo da dispersão de doses. O fluxograma da Figura 3.5 resume as 

interdependências entre os 3 módulos do simulador. 

 

 

Figura 3.5 – Representação esquemática das entradas e saídas dos diferentes módulos do SDA. 

Fonte: o autor (2023). 

 

3.2.1. MÓDULO TERMO FONTE 

 

O módulo termo fonte tem como objetivo calcular a quantidade e o tipo de material radioativo 

que é disponibilizado para liberação para o meio ambiente. Para isso, é importante identificar 

qual o tipo de acidente está ocorrendo na usina, pois a quantidade e o tipo de material radioativo 

que é liberado possuem características diretas ao tipo de acidente em andamento. Além disso, 

a liberação depende do status dos diversos componentes eletromecânicos da usina, uma vez que 

o projeto de uma usina nuclear prevê diversas barreiras em série para evitar que o material 

radioativo chegue à atmosfera.  

 

3.2.2. MÓDULO CAMPO DE VENTO 

 

O módulo campo de vento tem como função reunir todas as informações meteorológicas da 

usina. Na CNAAA os registros meteorológicos são feitos a partir de 4 torres (nomeadas torre 

A, B, C, D) localizadas em diferentes pontos da central nuclear. A torre A possui 3 pontos de 

MÓDULO
CAMPO DE VENTO

MÓDULO
TERMO FONTE

MÓDULO
DISPERSÃO

Campo de vento

Liberação

Doses,
Concentrações

Status da usina

Dados 
meteorológicos
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medição em diferentes cotas enquanto as demais torres possuem apenas um único ponto de 

medição. Os parâmetros medidos em cada torre estão resumidos na Tabela 3.1. 

 

Tabela 3.1 – Parâmetros meteorológicos medidos em cada torre e ponto de medição 

Torre Pontos de Medição  Parâmetros Meteorológicos 

A 3 
Velocidade do vento, direção do vento, estabilidade do vento e 

temperatura 

B 1 Velocidade do vento, direção do vento e estabilidade 

C 1 Velocidade do vento, direção do vento e estabilidade 

D 1 Velocidade do vento, direção do vento e estabilidade 

Fonte: o autor (2023). 

 

A zona de monitoramento é discretizada em uma malha que aplica um modelo tridimensional, 

não-divergente que considera a topografia complexa do local. Portanto, o objetivo do módulo 

campo de vento é calcular a distribuição espacial discretizada do vento dentro dessa zona de 

monitoramento. 

 

3.2.3. MÓDULO DISPERSÃO 

 

Como pode ser visto na Figura 3.5, o módulo termo fonte e campo de vento são módulos 

independentes, onde o primeiro depende especificamente das condições de funcionamento da 

usina nuclear e o segundo depende das condições meteorológicas e topográficas locais. Em uma 

simulação feita no SDA, esses dois módulos não dependem de informações entre si para realizar 

a sua tarefa. Porém, o módulo dispersão depende diretamente do campo gerado pelo módulo do 

campo de vento e a liberação calculada pelo módulo termo fonte. Uma vez que os dois módulos 

são finalizados, então o simulador é capaz de iniciar o processo de estimativa de dispersão da 

pluma pelo módulo dispersão. 

O módulo de dispersão é a sessão do simulador que calcula a movimentação da pluma de 

dispersão ao longo de cada ciclo conforme o acidente progride e de acordo com as condições 

meteorológicas e topográficas locais calculados nos dois módulos anteriores. Agora, as 

equações referentes ao modelo matemático de bufadas com trajetória lagrangiana é feito para 

todos os elementos da malha discretizada.  
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O SDA calcula e arquiva o histórico da concentração média de cada radioisótopo liberado 

durante a simulação. Ao final dos cálculos do módulo de dispersão, arquivos de saída são 

criados com informações das distribuições espaciais de taxas de dose de corpo inteiro, pulmão 

e tireoide para todos os ciclos. As sequências da Figura 3.6 abaixo apresentam 4 ciclos 

resultantes de uma simulação feita no SDA que considera um acidente severo hipotético 

iniciado em 3 de novembro de 2016 às 8 horas e 30 minutos na usina de Angra II.  

 

 
 

Figura 3.6 – Distribuição espacial das taxas de dose de corpo inteiro: (a) no ciclo 8, (b) no ciclo 11, (c) no ciclo 

16, (d) no ciclo 18. 

Fonte: o autor (2023). 
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4. DESENVOLVIMENTO DO MODELO 

 

4.1. GERAÇÃO DOS DADOS 

 

O objetivo deste trabalho é criar um modelo de rede neural artificial recorrente, mais 

especificamente, do tipo LSTM, que seja capaz de prever o movimento do ponto de máxima 

taxa de dose de corpo inteiro presente na pluma radioativa em caso da ocorrência de um acidente 

severo durante a operação de um reator nuclear. Para tal, primeiramente, é necessário reunir 

informações meteorológicas que são utilizadas como dados de entrada para o simulador de 

dispersão atmosférica. Em seguida, a simulação é feita através de um Simulador de Dispersão 

Atmosférica (SDA) baseado no SCA, programa utilizado no monitoramento das usinas 

nucleares Angra I e Angra II para estimar as respectivas plumas de dispersão. Ao fim de cada 

ciclo de 15 minutos, a pluma é atualizada e é extraído o ponto de máxima dose de corpo inteiro 

para cada pluma gerada e então é formado o grupo de amostras que será utilizado no 

treinamento da rede neural.  

Os registros meteorológicos que são utilizados na simulação, são registros reais arquivados no 

histórico meteorológico da Central Nuclear Almirante Álvaro Alberto (CNAAA) datados de 

novembro de 2016. Os arquivos contêm informações de 4 torres meteorológicas contendo 

informações de velocidade, direção e estabilidade do vento atualizadas, entre outras, a cada 

quarto de hora, seguindo os critérios de medição da Tabela 3.1. 

A Tabela 4.1 apresenta as informações dos arquivos meteorológicos já compiladas do histórico 

da usina de Angra II. Note que da1, va1, ta1 e sa1 referem-se as medições de direção do vento, 

velocidade do vento, temperatura e estabilidade do vento do ponto de medição 1 da torre A 

respectivamente; da2, va2, ta2 e sa2 referem-se as medições do ponto de medição 2 da torre A; 

da3, va3, ta3 e sa3 referem-se as medições do ponto de medição 3 da torre A; db1, vb1, tb1 e 

sb1 referem-se ao ponto de medição 1 da torre B; dc1, vc1, tc1 e sc1 referem-se ao ponto de 

medição 1 da torre C; dd1, vd1, td1 e sd1 referem-se ao ponto de medição 1 da torre D; 
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Tabela 4.1 – Parâmetros meteorológicos referente aos primeiros 18 ciclos a serem simulados. 

 

Fonte: o autor (2023). 
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Para gerar o conjunto de dados utilizados para o treinamento, teste e validação da rede neural 

artificial, é utilizado o simulador SDA. 

Como resultado da simulação, é gerado um arquivo de saída referente a cada ciclo com o valor 

da taxa de dose de corpo inteiro para todas as coordenadas da zona de interesse da CNAAA. 

Com isso, é possível obter um mapa de distribuição espacial de taxas de dose de corpo inteiro 

geradas pelo simulador.  

Nesse trabalho foram realizadas 34 simulações de dispersão da pluma radioativa considerando 

um acidente severo hipotético na usina de Angra II. Cada simulação é feita por um período de 

18 ciclos de 15 minutos cada (aproximadamente 4,5 horas de simulação), totalizando 612 

simulações de plumas de dispersão radioativa. Foi criado um programa que extrai as 

coordenadas do ponto que possui a máxima taxa de dose de corpo inteiro de cada amostra.  

As Figuras 4.1.1, 4.1.2, 4.1.3. 4.1.4 apresentam os 18 ciclos simulados quando um acidente 

severo é iniciado na usina de Angra II em 14 de novembro de 2016 às 19 horas e 30 minutos. 

A figura exibe uma sequência de mapas plotados em forma de heatmap, onde cada cor refere-

se à uma faixa de taxa de dose e é destacado o ponto de maior taxa de dose de corpo inteiro. 

 

 
 

Figura 4.1.1 – Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersão radioativa: (a) no 

ciclo 1, (b) no ciclo 2. 

Fonte: o autor (2023). 
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Figura 4.1.2 – Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersão radioativa: (a) no 

ciclo 3, (b) no ciclo 4, (c) no ciclo 5, (d) no ciclo 6, (e) no ciclo 7, (f) no ciclo 8. 

Fonte: o autor (2023). 
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Figura 4.1.3 – Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersão radioativa: (a) no 

ciclo 9, (b) no ciclo 10, (c) no ciclo 11, (d) no ciclo 12, (e) no ciclo 13, (f) no ciclo 14. 

Fonte: o autor (2023). 
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Figura 4.1.4 – Ponto de maior taxa de dose de corpo inteiro presente na pluma de dispersão radioativa: (a) no 

ciclo 15, (b) no ciclo 16, (c) no ciclo 17, (d) no ciclo 18. 

Fonte: o autor (2023). 

 

De posse dos dados, foram selecionados 4 parâmetros de entrada para a rede neural a ser 

treinada, são eles:  

- abscissa do ponto de maior dose de corpo inteiro (Xm), 

- ordenada do ponto de maior dose de corpo inteiro (Ym), 

- velocidade do vento do ponto de medição 1 da torre A (va1) e 

- direção do vento do ponto de medição 1 da torre A (da1). 

Portanto, para gerar o arquivo de entrada para o treinamento da rede neural, é necessário extrair 

a coordenada espacial que possui a maior taxa de dose de corpo inteiro para cada ciclo de cada 

simulação realizada e reuni-las as informações de velocidade e direção do vento do ponto de 

medição 1 da torre A que estão presentes nos arquivos dos registros meteorológicos. 
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A Tabela 4.2 apresenta algumas combinações dos referidos parâmetros que foram selecionados 

para serem dados de entrada do treinamento da rede neural artificial recorrente. 

 

Tabela 4.2 – Parâmetros utilizados para o treinamento da rede neural artificial recorrente. 

 

Fonte: o autor (2023). 

  

Todos os dados de treinamento, validação e teste foram normalizados, utilizando o método Min-

Max, em um intervalo de [0,1]. A Tabela 4.3 apresenta as mesmas combinações dos parâmetros 

ilustrados na Tabela 4.2, agora normalizados de acordo com o método Min-Max. 

Xm Ym va1 da1

1.86E+02 7.20E+01 1.69E+00 2.39E+01

1.88E+02 7.10E+01 1.63E+00 1.61E+01

1.87E+02 7.10E+01 1.52E+00 1.32E+01

1.83E+02 6.30E+01 1.94E+00 1.83E+01

1.86E+02 7.20E+01 2.02E+00 1.85E+01

1.83E+02 7.20E+01 1.92E+00 1.59E+01

1.84E+02 7.10E+01 1.53E+00 1.91E+01

1.84E+02 7.20E+01 1.38E+00 2.25E+01

1.82E+02 7.20E+01 1.69E+00 1.66E+01

1.79E+02 7.00E+01 1.68E+00 1.61E+01

1.76E+02 7.10E+01 1.68E+00 2.13E+01

1.69E+02 7.10E+01 1.68E+00 1.82E+01

1.65E+02 6.50E+01 1.52E+00 1.87E+01

1.55E+02 7.00E+01 1.74E+00 2.24E+01

1.58E+02 4.00E+01 1.17E+00 7.78E+00

1.50E+02 4.40E+01 1.45E+00 1.85E+01

1.40E+02 3.40E+01 1.39E+00 1.71E+01

1.29E+02 4.50E+01 1.02E+00 1.40E+01

1.89E+02 7.40E+01 1.33E+00 1.72E+01

1.89E+02 7.40E+01 1.25E+00 1.46E+01

1.85E+02 7.30E+01 8.75E-01 3.41E+02

1.86E+02 7.50E+01 7.75E-01 3.50E+02

1.84E+02 7.50E+01 5.55E-01 4.76E+01

1.81E+02 7.50E+01 6.08E-03 9.92E+01

1.87E+02 7.20E+01 3.39E-01 1.98E+02

1.86E+02 7.20E+01 4.81E-01 1.76E+02

1.86E+02 7.20E+01 3.28E-01 1.93E+02

1.64E+02 7.50E+01 7.78E-01 2.06E+02

1.84E+02 6.80E+01 6.93E-01 2.04E+02

1.84E+02 6.80E+01 8.29E-01 2.09E+02
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Tabela 4.3 – Parâmetros normalizados utilizados para o treinamento da rede neural artificial recorrente. 

 

Fonte: o autor (2023). 

 

4.2. EXTRAÇÃO DOS CONJUNTOS DE TREINAMENTO, TESTE E VALIDAÇÃO 

 

Ao fim da extração da coordenada de máxima dose de corpo inteiro, o conjunto de 612 amostras 

é separado em grupos de treinamento, teste e validação. Foram utilizados 80% das amostras 

para o conjunto de treinamento e os 10% para o conjunto de teste e 10% para o conjunto de 

validação. 

Xm Ym va1 da1

0.528662 0.336449 0.562216 0.06655

0.535032 0.331776 0.541095 0.044649

0.531847 0.331776 0.503636 0.036718

0.519108 0.294393 0.642812 0.050941

0.528662 0.336449 0.672301 0.051524

0.519108 0.336449 0.638927 0.044057

0.522293 0.331776 0.509149 0.05315

0.522293 0.336449 0.458506 0.062512

0.515924 0.336449 0.562282 0.046119

0.506369 0.327103 0.557567 0.044605

0.496815 0.331776 0.557135 0.059077

0.474522 0.331776 0.558098 0.050566

0.461783 0.303738 0.504832 0.051983

0.429936 0.327103 0.579384 0.062165

0.43949 0.186916 0.389765 0.021617

0.414013 0.205607 0.480723 0.051363

0.382166 0.158879 0.461694 0.047534

0.347134 0.21028 0.340318 0.039038

0.538217 0.345794 0.442267 0.047876

0.538217 0.345794 0.415435 0.040684

0.525478 0.341122 0.290436 0.946895

0.528662 0.350467 0.257381 0.971766

0.522293 0.350467 0.184342 0.132313

0.512739 0.350467 0.002019 0.275559

0.531847 0.336449 0.112496 0.55123

0.528662 0.336449 0.159639 0.490399

0.528662 0.336449 0.10896 0.535306

0.458599 0.350467 0.258344 0.571516

0.522293 0.317757 0.230243 0.566153

0.522293 0.317757 0.27535 0.58127



44 

 

 

4.3. ARQUITETURAS DAS REDES NEURAIS DESENVOLVIDAS 

 

Diversas arquiteturas de rede neural artificial recorrente do tipo LSTM foram treinadas com 

objetivo de prever a posição do ponto de maior taxa de dose com antecedência de 15 minutos, 

ou seja, 1 ciclo de simulação. Foram variados: o número de épocas, a quantidade de observações 

passadas (timesteps) através do método de janelas deslizantes e o tamanho do lote (batch).  

Todas as estruturas de rede testadas possuem uma camada densa de saída de dois neurônios 

com função de ativação linear. Com isso, diferentes combinações de camadas internas 

escondidas foram treinadas considerando camadas LSTM e densas, com funções de ativação 

ReLU, para variadas quantidades de neurônios. A Tabela 4.4 ilustra como os dados ficaram 

organizados. 

 

Tabela 4.4 – Organização do conjunto de dados utilizados no treinamento, validação e teste da rede neural. 

 

Fonte: o autor (2023). 

Neurônios
Função de 

Ativação
Neurônios

Função de 

Ativação
Neurônios

Função de 

Ativação

1 300 2 1 10 relu x x x x

2 300 2 1 4 relu x x x x

3 300 2 1 4 relu 4 relu x x

4 300 2 1 10 relu 10 relu x x

5 600 2 1 10 relu 10 relu x x

6 300 2 1 4 relu 4 relu 4 relu

7 300 2 1 4 relu x x 4 relu

8 300 2 1 10 relu x x 10 relu

9 600 2 1 10 relu x x 10 relu

10 300 2 3 4 relu x x x x

11 600 2 3 4 relu x x x x

12 300 2 3 10 relu x x x x

13 600 2 3 10 relu x x x x

14 600 2 3 5 relu 5 relu x x

15 600 2 3 10 relu 10 relu x x

16 600 2 3 10 tanh x x x x

17 600 3 3 10 relu x x x x

18 600 5 3 10 relu x x x x

BatchesRede Épocas Step

Camada LSTM 1 Camada LSTM 2 Camada Densa
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5. RESULTADOS 

 

A função de erro (loss function) utilizada durante o treinamento foi o erro quadrado médio 

(MSE). A Tabela 5.1 apresenta um resumo das redes testadas para as diversas combinações de 

estruturas de camadas escondidas e seus respectivos resultados de erro quadrático médio para 

cada grupo de treinamento, teste e validação. 

 

Tabela 5.1 – Resultados obtidos para treinamento, teste e validação todas as redes testadas 

 

Fonte: o autor (2023). 

 

De acordo com os resultados dos erros quadráticos médios da Tabela 5.1, as redes neurais, em 

geral, mantiveram resultados consistentes (variação relativamente pequena) para a maioria das 

estruturas de redes testadas. É possível verificar que o melhor resultado, considerando o 

conjunto de teste, é encontrado com as redes 10, 13, 15 e 16, todas elas sem camada densa na 

Treinamento Validação Teste

1 0.0024 0.0015 0.0021

2 0.0026 0.0015 0.0020

3 0.0024 0.0017 0.0020

4 0.0023 0.0016 0.0026

5 0.0021 0.0017 0.0044

6 0.0115 0.0080 0.0170

7 0.0030 0.0012 0.0032

8 0.0023 0.0014 0.0025

9 0.0022 0.0015 0.0035

10 0.0026 0.0015 0.0019

11 0.0026 0.0014 0.0021

12 0.0025 0.0015 0.0020

13 0.0025 0.0014 0.0019

14 0.0024 0.0015 0.0025

15 0.0025 0.0015 0.0019

16 0.0026 0.0015 0.0019

17 0.0024 0.0012 0.0022

18 0.0020 0.0037 0.0022

Resultados

Rede
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saída e com timesteps igual a 2. Os resultados mais discrepantes encontrados são aqueles 

quando uma camada escondida densa é combinada com uma camada LSTM, onde o erro 

quadrático médio foi relativamente superior as demais redes testadas. Visto que os resultados 

para camadas densas não foram razoáveis, nenhuma estrutura de rede com camada densa foi 

levada em consideração no processo de seleção. 

Foi escolhida a estrutura de rede número 10 que possui timesteps de tamanho 2 e uma camada 

LSTM com 4 neurônios. Essa rede foi treinada com 300 épocas, batches com 3 padrões de 

treinamento e função de ativação ReLU. É possível verificar que existem redes que encontram 

resultados semelhantes ao da rede escolhida, como por exemplo as redes número 13, 15 e 16. 

É possível inferir que, se os resultados da rede neural número 10 são boas estimativas, então 

pode-se concluir que os resultados também serão bons para a rede de número 13. 

Uma vez que a rede selecionada é a rede número 10, a Figura 5.1 apresenta os resultados de R² 

calculados quando são comparados os resultados entre a simulação e a rede neural para 

abscissas e ordenadas do ponto de máxima dose de corpo inteiro nos grupos de treinamento, 

teste e validação.  

Os resultados das coordenadas do ponto de máxima dose de corpo inteiro simulados são 

comparados com os resultados calculados pela rede neural artificial escolhida. A Figura 5.2 

apresenta de forma visual a distribuição espacial do conjunto de dados simulados e o conjunto 

de dados calculados pela rede neural para os grupos de treinamento, teste e validação 

respectivamente. 

 

 
 

Figura 5.1.1 – Gráfico de R² para: (a) abscissas do grupo de treinamento, (b) ordenadas do grupo de 

treinamento. 

Fonte: o autor (2023). 
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Figura 5.1.2 – Gráfico de R² para:, (a) abscissas do grupo de teste, (b) ordenadas do grupo de teste, (c) abscissas 

do grupo de validação, (d) ordenadas do grupo de validação. 

Fonte: o autor (2023). 

 

Os resultados calculados possuem uma boa aproximação com resultados da simulação feita pelo 

SDA. É possível verificar que a maior densidade de pontos se encontra na região da localização 

do reator nuclear, o que é esperado, uma vez que esse é o ponto onde os radionuclídeos liberados 

pelo acidente se concentram. Porém, dependendo das condições climáticas e conforme o 

acidente começa a cessar, a pluma de dispersão de radioatividade tem a tendência de se 

movimentar na direção em que as condições meteorológicas indicam, movimentando também 

o ponto de máxima dose de corpo inteiro. Portanto, é importante que a rede neural aprenda a 

identificar quando esse ponto deve iniciar o seu deslocamento e qual direção esse ponto deve 

seguir.  
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Figura 5.2.2 – Gráfico de dispersão comparativo entre: (a) resultados simulados e grupo de treinamento, (b) 

resultados simulados e grupo de teste, (b) resultados simulados e grupo de validação. 

Fonte: o autor (2023). 

 

A fim de verificar comportamento da movimentação do ponto de máxima dose de corpo inteiro, 

é necessário avaliar diversas sequências temporais da movimentação desse ponto na zona de 

monitoramento da central nuclear. A Figura 5.3 destaca alguns exemplos de sequências com 

resultados calculados por ambos o simulador e a rede neural artificial.  
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Figura 5.3 – Representação da movimentação do ponto de máxima dose de corpo inteiro para diferentes grupos 

de séries temporais selecionados aleatoriamente. 

Fonte: o autor (2023). 
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É possível verificar que a rede neural artificial consegue prever de forma consistente os padrões 

de mudança de direção que o ponto de máxima taxa de dose de corpo inteiro registra ao longo 

do tempo conforme a progressão do acidente severo e as condições meteorológicas. Os valores 

absolutos das posições, entretanto, ora apresentam boa acurácia (se aproximam do ponto real), 

ora possuem uma discrepância maior. Contudo, a predição da trajetória, de uma forma global, 

foi considerada razoável. 
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6. CONCLUSÃO 

 

Esse trabalho apresenta uma abordagem para utilização de técnicas de inteligência artificial, 

através de redes neurais artificiais recorrentes, tipo LSTM, para estimar o movimento da pluma 

de radioativa em caso de acidentes severos em usinas nucleares. A capacidade de prever o 

movimento da dispersão radioativa é um grande avanço nos estudos de nível de segurança em 

usinas nucleares e mitigação de acidente.  

A rede neural é treinada por um conjunto de dados de 34 cenários de 18 ciclos considerando 

apenas 4 dados de entrada, sendo eles as coordenadas do ponto máximo simulado, a velocidade 

do vento registrado pelo ponto de medição 1 da torre A e a direção do vento registrado pelo 

ponto de medição 1 da torre A. O treinamento desses dados gerou um modelo de rede neural 

relativamente simples de apenas uma camada LSTM com 4 neurônios e função de ativação 

ReLU que apresentou bons resultados para o erro quadrático médio quando comparados com 

os resultados simulados.  

É possível verificar através dos gráficos apresentados (Figura 5.3) que o modelo de rede neural 

encontrado possui a capacidade de prever, com aproximação razoável, a movimentação do 

ponto de máxima dose de corpo inteiro quando um acidente severo é iniciado no reator nuclear. 

Destaca-se que a rede neural conseguiu prever as mudanças de direções que esse ponto pode 

sofrer de acordo com as condições meteorológicas locais e a progressão do acidente severo.  

Apesar da estimativa ser considerada consistente, o erro encontrado comparando os resultados 

da rede neural com os simulados se devem principalmente ao alto grau de não linearidade das 

condições meteorológicas. Esse trabalho utilizou dados meteorológicos reais dos registros 

oficiais da CNAAA, o que dificulta o aprendizado da rede neural durante o treinamento, porém 

reproduz com realidade as condições ambientais da região.  

Uma sugestão para melhorar a estimativa seria necessário incluir os registros meteorológicos 

das demais torres presentes na CNAAA e incluir mais dados de treinamento para suprir o 

aumento da quantidade de variáveis de entrada. 

Esse trabalho apresenta uma primeira investigação de previsão do movimento do ponto de 

maior taxa de dose de uma pluma radioativa. Apesar dos resultados encontrados conseguirem 

prever de forma consistente os resultados encontrados pelo simulador, é possível estender o 

nível de complexidade do problema. Isso é possível aumentando a quantidade de informações 

de entradas como, por exemplo, incluir a medição das demais torres, incluir mais tipos de 
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acidentes severos ao problema e estender a estimativa para a previsão da pluma inteira, ou zonas 

de níveis de taxa de dose relevantes, ao invés de apenas um único ponto. 

Investigações futuras é a utilização de outras arquiteturas de redes neurais, como as redes do 

tipo Transformers, que têm se mostrado altamente eficientes em problemas de predição com 

dados sequenciais (Phuong & Hutter, 2022; Wen et al, 2022). Essa abordagem pode 

proporcionar melhorias significativas na previsão do comportamento da pluma radioativa, 

especialmente em relação à dependência temporal das informações. 

Explorando essas possibilidades, é possível aprimorar a capacidade de previsão do movimento 

da pluma e ampliar a aplicabilidade desse estudo em cenários mais complexos e realistas 

envolvendo a dispersão de materiais radioativos.  
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