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RESUMO 

 

 

Este trabalho visa resolver numericamente as equações da cinética espacial unidimensional 

para dois grupos de energia e seis grupos de nêutrons precursores e dependência temporal 

dos parâmetros nucleares. Para resolver as equações da cinética espacial, aplica-se na 

discretização espacial o método dos elementos finitos e na discretização temporal, o método 

direto implícito de Euler. As concentrações de precursores são obtidas analiticamente, 

usando técnicas de integração. Uma vez estabelecida a solução das equações da cinética 

espacial, aplica-se essa solução a casos de referências para a validação da metodologia. Para 

o problema da difusão dinâmico e dependente do tempo é utilizado um modelo de reator tipo 

placa unidimensional com dois transientes: o primeiro com um aumento linear de 3% em 1 

segundo na seção de choque de absorção e o segundo com uma diminuição linear de 1% em 

1 segundo na seção de choque de absorção. As soluções numéricas desses problemas foram 

obtidas utilizando o módulo CINE desenvolvido no programa MEF, utilizando elementos 

finitos unidimensionais quadráticos. Essas soluções foram comparadas com as soluções 

apresentadas na literatura, utilizando o método de diferença finita. Com isso, foi possível 

verificar a capacidade e a precisão do método dos elementos finitos. 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-chave: Cinética espacial, difusão de nêutrons, método dos elementos finitos, 
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ABSTRACT 

 

 

This research has the objective of solving numerically the spatial kinetic equations in one-

dimension for two energy groups and six groups of precursors neutrons and time dependence 

of nuclear parameters. To solve the spatial kinetic equations, was applied the spatial 

discretization the finite element method and the time discretization the direct method with 

implicit Euler scheme. The precursor concentrations are obtained analytically using 

integration techniques. Once the solution of the equations of spatial kinetics, apply this 

solution to cases of references to validate the methodology. For the problem of dynamic, 

time-dependent diffusion is used a reactor type slab-dimensional with two transients: the first 

with a linear increase of 3% in 1 second in the cross section of absorption and the second 

with a linear decrease of 1 % in 1 second in the cross section of absorption. The numerical 

solutions of these problems were obtained using the CINE module developed in MEF 

program using finite element one-dimensional quadratic. These solutions were compared 

with the solutions presented in the literature, using the finite difference method. Thus, it was 

possible to verify the capacity and accuracy of the finite element method. 
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problem. 
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1. INTRODUÇÃO 

 

Um dos problemas centrais no desenvolvimento de um reator nuclear é o cálculo do 

tamanho e da composição do sistema, necessários para manter o reator crítico, ou seja, com a 

potência constante. Nos reatores nucleares, os mecanismos de produção de nêutrons são 

provenientes dos processos de fissão de nuclear, espalhamento de nêutrons para energia de 

interesse, bem como, nêutrons gerados por fontes externas. Já, os mecanismos de perdas de 

nêutrons estão relacionados a captura de nêutrons, espalhamento para energias diferentes da de 

interesse e fuga de nêutrons pelas regiões de contorno. (DUDERSTADT e HAMILTON,1976). 

Portanto, o estudo da população neutrônica em reatores é de grande interesse. 

Este problema é tratado pela Teoria de Transporte de Nêutrons utilizando a equação 

integro-diferencial de Boltzmann (LEWIS e MILLER, 1984). Ela estuda a mudança dos 

nêutrons pelo meio material, e tem a sua distribuição no espaço, energia, direção e tempo. 

Portanto, é necessário um profundo conhecimento das características, propriedades e limitações 

associadas a seções de choque. (DUDERSTADT, 1979). 

A equação fundamental que descreve o transporte de nêutrons é uma variante linear da 

equação de Boltzmann, facilmente deduzida a partir do princípio da conservação do número de 

nêutrons em um elemento de volume, de maneira semelhante a outros problemas clássicos como 

transporte de massa, condução de calor, etc. 

Entretanto, a equação de transporte de nêutrons é de difícil solução em vista da 

complexidade das suas funções e dos números de variáveis que definem o problema, tais como 

espaço, dependência angular, energia dos nêutrons e tempo (r, Ω, E, t). Na utilização desta 

equação no estudo, segundo (MAIA, 1979), o comportamento da população de nêutrons no 

interior do núcleo do reator nuclear, por exemplo, é impossível fazer uma formulação 

matemática explícita e fiel, devido a diversos fatores tais como: elementos constituintes, arranjo 

geométrico, perfil, dentre outros. 

Tais fatores implicam em um alto grau de heterogeneidade. A energia dos nêutrons varia 

desde alguns MeV quando são emitidos durante a fissão até a ordem de fração de eV, quando 

entram em equilíbrio térmico com o meio. O grande número de isótopos com propriedades 

distintas que variam sua concentração no tempo e no espaço, variação das seções de choque 

com a energia, espalhamento anisotrópico e outros fatores (MAIA, 1979). 

Desta maneira, encontrar soluções para a equação de transporte de nêutrons, somente é 

possível quando o sistema for simplificado ou idealizado, de tal maneira que se obtenha uma 

formulação matemática explícita. As simplificações e idealizações dos sistemas são feitas de 
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acordo com os interesses, com as soluções a serem objetivadas. Sendo assim, sob certas 

condições, pode-se considerar que as propriedades do sistema, em um determinado intervalo de 

tempo não se alteram (MAIA,1979). 

Entretanto, para calcular as condições necessárias para atingir a criticalidade, utiliza-se 

a Teoria da Difusão de Nêutrons (DUDERSTADT e HAMILTON, 1976). Nesse caso, a teoria 

da difusão de nêutrons recai em um problema de autovalor e de fonte fixa associado a equação 

de transporte de nêutrons. A teoria da difusão é uma aproximação para o termo de fuga de 

nêutrons. 

Dentre os métodos utilizados pela Teoria de Transporte de Nêutrons para tratar o 

problema da dependência angular do fluxo de nêutrons, podemos destacar, o tratamento da 

variável angular pelo Método de Harmônicos Esféricos, também conhecido como aproximação 

PN.  

O método PN foi desenvolvido detalhadamente por (MARK, 1957), que consiste, 

basicamente, na expansão de todos as funções angulares em termos de harmônicos esféricos.  

Quanto à dependência energética da Equação de Transporte de Nêutrons, dois métodos 

podem ser utilizados (DUDERSTADT, 1979 e MAIA, 1979): 

 

a) Divide-se o intervalo de energia de interesse em um número finito de subintervalos, 

denominados grupos de energia. Os parâmetros nucleares são obtidos de tal forma que as 

taxas de reações são conservadas. A teoria que trata deste modelo é a Teoria de Multigrupo; 

b) Considera-se a energia como uma variável contínua e expande-se os termos dependentes 

em polinômios que tem o mesmo intervalo de definição, ou seja, de zero a infinito, como 

são os casos dos Polinômios de Laguerre, Tchebycheff, etc. 

 

Quando esses dois métodos são aplicados à equação de transporte de nêutrons, as 

variáveis da energia são discretizadas. 

Quanto ao fato do espalhamento exibir o caráter de ser anisotrópico, é necessário 

expandir a dependência angular das seções de choque em Polinômios de Legendre. Assim, 

truncando a série no termo correspondente à ordem zero, tem-se o modelo de espalhamento 

isotrópico e truncando o termo de ordem um, tem-se o modelo de espalhamento linearmente 

anisotrópico. 

Os primeiros métodos de aplicação a ser desenvolvido foram baseados em uma versão 

simplificada da teoria de transporte; conhecida como teoria da difusão de nêutrons 
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(LAMARSH, 1966). Esta versão simplifica o cálculo da variação espacial da distribuição 

neutrônica, ignorando a sua dependência angular. Porém, com estas simplificações, a teoria não 

oferece bons resultados para pontos situados próximos às fontes e fronteiras físicas, não 

podendo ser aplicada em pequenos sistemas, como células, nos quais os cálculos precisos são 

fundamentais. 

Com a utilização das soluções numéricas geradas por aproximações e métodos 

numéricos de discretização, a equação de transporte de nêutrons tem as suas variáveis 

independentes, angulares e energéticas simplificadas, possibilitando assim, desenvolver um 

sistema de equações lineares e as suas soluções numéricas requerem uma discretização nas 

variáveis do espaço e do tempo (MAIA, 1979). 

As equações da cinética espacial, na formulação de grupo de energia têm sido aceitas 

pela maioria dos pesquisadores em Física de Reatores, como a melhor aproximação para a 

simulação do comportamento dos nêutrons em um reator nuclear. Vários métodos têm sido 

desenvolvidos por muitos pesquisados para encontrar uma solução numérica para as equações 

da cinética espacial, já que não se tem conhecimento de uma solução analítica completa dessas 

equações (PETERSEN, 2011). 

Os principais métodos desenvolvidos para resolver as equações da cinética espacial de 

nêutrons (STACEY, 1969) e (SUTTON e AVILES, 1996) os Métodos Diretos (métodos que 

apresentam dependência espacial) e os Métodos Indiretos (métodos que definem à priori a 

dependência das variáveis no tempo). Entretanto, nesse trabalho, os métodos indiretos não são 

abordados. 

Para obter a discretização espacial da equação da concentração dos precursores e a 

equação de difusão de nêutrons dependente do tempo, são utilizados principalmente o método 

das diferenças finitas (MDF) ou o método dos elementos finitos (MEF) (SUTTON e 

AVILES,1996). 

O interesse de se comparar os resultados obtidos entre o método das diferenças finitas e 

o método dos elementos finitos a reatores heterogêneos motivou diversas publicações de 

trabalhos abordando os problemas e as vantagens de cada método. Entre as principais 

conclusões pode-se citar que o método dos elementos finitos, em muitos casos, permite a 

obtenção de resultados com números menores de equações e consequentemente com um tempo 

menor de processamento. 

Este trabalho visa resolver numericamente as equações da cinética espacial a uma 

dimensão com dependência temporal dos parâmetros nucleares e utilizando dois grupos de 

energia e seis grupos de nêutrons precursores. 
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Para resolver as equações da cinética espacial a uma dimensão, aplica-se o método dos 

elementos finitos na discretização espacial. Na resolução temporal do problema de difusão 

dinâmica é utilizado o método direto implícito de Euler. A solução para a concentração de 

precursores é obtida por uma integração analítica. 

A validação da metodologia empregada na solução das equações da cinética espacial é 

estabelecida pela comparação de resultados obtidos nesse trabalho com os obtidos pela 

literatura. Nos testes utilizamos um modelo de reator tipo placa, a uma dimensão e com dois 

transientes. O primeiro denominado BSS-6-A1 sofre um aumento de 3% em um segundo na 

sua seção de choque de absorção e o segundo denominado BSS-6-A2 sofre uma redução de 1% 

também em um segundo na sua seção de choque de absorção. As soluções numéricas obtidas 

pelo módulo CINE do programa MEF são comparadas as soluções de referência. Com isso, foi 

possível verificar a capacidade e a precisão do método dos elementos finitos. A seguir, será 

feita uma breve descrição do conteúdo de cada capítulo. 

O segundo capítulo descreve a resolução da equação de transporte na forma integro 

diferencial e apresenta derivações dependente do tempo e da energia. Aplicando vários 

métodos de aproximações, dentre eles, a aproximação da difusão, obtém-se a solução da 

equação da difusão de nêutrons dependente do tempo e da equação da concentração dos 

precursores. Discutiremos também o formalismo multigrupo das equações da difusão 

neutrônica, considerando as equações das concentrações dos precursores.  

No terceiro capítulo, abordam-se as soluções numéricas da equação da cinética espacial 

para dois grupos de energia e seis grupos da concentração dos nêutrons precursores, discretizada 

espacialmente pelo método dos elementos finitos. Pela integração analítica da equação da 

concentração de precursores, pela utilização do método de Galerkin para a função teste (w) e 

pela interpolação das variáveis do problema por funções definidas em subdomínios, obtém-se 

a solução das equações da cinética espacial, na forma matricial, onde foi utilizado o método 

direto implícito de Euler, na variação temporal. Para resolver o sistema de equações foi utilizado 

o método iterativo Successive Over-Relaxation (SOR). Para o tempo inicial (t=0), são 

assumidos os valores dos fluxos obtidos no regime estacionário.  

No quarto capítulo, são apresentados os resultados dos dois exemplos numéricos que 

abordam o problema da difusão unidimensional, nos regimes estacionário e transiente, e são 

estabelecidas comparações entre resultados obtidos, tanto na distribuição espacial do fluxo de 

nêutrons quanto no fator de multiplicação efetivo de nêutrons, com os resultados obtidos na 

literatura utilizando o método das diferenças finitas. Para os dois modelos de reatores tipo placa, 

o BSS-6-A1 e o BSS-6-A2 foram utilizados no módulo CINE do programa MEF para 
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discretizações com elementos finitos unidimensionais quadráticos com um número variado de 

elementos no intuito de aferir a precisão do método.  

No quinto capítulo, apresentam-se as conclusões e as perspectivas para os trabalhos 

futuros. No apêndice A, mostra-se o problema da difusão estacionária de nêutrons. No apêndice 

B, apresentam-se as formas matriciais das equações da solução analítica. No apêndice C são 

apresentadas as descrições e as definições do programa MEF. 
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2. EQUAÇÃO DA DIFUSÃO DE NÊUTRONS DEPENDENTE DO TEMPO 

 

2.1. EQUAÇÃO DE TRANSPORTE DE NÊUTRONS DEPENDENTE DO TEMPO 

 

O comportamento dos nêutrons no reator nuclear é adequadamente descrito pela 

equação de transporte de nêutrons dependente do tempo para fluxo angular com o balanço das 

partículas no espaço de fases (𝒓,𝛀, 𝐸, 𝑡) (SUTTON e AVILES, 1996): 

 

 

1

𝑉(𝐸)

𝜕

𝜕𝑡
𝜓(𝒓,𝛀, 𝐸, 𝑡)

= −𝛀.∇𝜓(𝒓,𝛀, 𝐸, 𝑡) − Σ𝑡(𝒓, 𝐸, 𝑡)𝜓(𝒓,𝛀, 𝐸, 𝑡)

+ ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝒓, 𝛀
′ → 𝛀,𝐸′ → 𝐸, 𝑡)𝜓(𝒓,𝛀′, 𝐸′, 𝑡)

+ (1 − 𝛽)
𝜒0(𝐸)

4𝜋
∫ 𝑑𝐸′𝑣Σ𝑓(𝒓, 𝐸

′, 𝑡)∫ 𝑑𝛀′𝜓(𝒓,𝛀′, 𝐸′, 𝑡)

+∑𝜆𝑖
𝜒𝑖(𝐸)

4𝜋

𝐼

𝑖=1

𝑐𝑖(𝒓, 𝑡) 

(2.1) 

 

As concentrações de precursores satisfazem a equação: 

 

 
𝜕

𝜕𝑡
𝑐𝑖(𝒓, 𝑡) = −𝜆𝑖𝑐𝑖(𝒓, 𝑡) + 𝛽𝑖∫ 𝑑𝐸𝑣Σ𝑓(𝒓, 𝐸, 𝑡)∫ 𝑑𝛀𝜓(𝒓,𝛀, 𝐸, 𝑡), 𝑖 = 1,… , 𝐼. (2.2) 

 

sendo, 

 

Σ𝑡(𝒓, 𝐸, 𝑡): seção de choque macroscópica total; 

𝜓(𝒓,𝛀, 𝐸, 𝑡): fluxo angular do nêutron; 

Σ𝑠(𝒓,𝛀
′ → 𝛀,𝐸′ → 𝐸, 𝑡)𝜓(𝒓,𝛀′, 𝐸′, 𝑡): seção de choque macroscópica de 

transferência, que descreve a probabilidade que uma partícula com uma energia 

inicial E’ e direção Ω’ sofra uma colisão em r no tempo t, resultando em mudança 

de direção e energia; 

𝑣Σ𝑓(𝒓, 𝐸
′, 𝑡): seção de choque macroscópica de fissão, assumida como isotrópica; 

𝜒0(𝐸): distribuição de energia dos nêutrons de fissão (espectro), assumida 

isotrópica; 
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𝜒𝑖(𝐸): espectro para cada I da família de precursores i (espectro de nêutrons 

atrasados); 

𝑐𝑖(𝒓, 𝑡): i-ésimo termo da concentração dos nêutrons precursores; 

𝜆𝑖(𝒓, 𝑡): i-ésimo termo da constante de decaimento; 

𝛽𝑖: i-ésimo termo da fração dos nêutrons atrasados; 

𝑣 (𝐸): número médio de nêutrons liberados por fissão induzidas por nêutrons com 

energia E; 

(1 − 𝛽): fração de fissão de nêutrons prontos; 

𝛀 = 𝐯/v: direção do movimento do nêutron. 

 

As soluções numéricas das equações de transporte dependente do tempo e de 

precursores para os problemas das cinéticas de reatores de interesse prático são difíceis de 

obtenção, então, aplica-se os métodos de aproximação. Neste tópico, é abordado o método de 

aproximação da equação de transporte de nêutrons dependente do tempo e equação da difusão 

dependente do tempo. As derivações da equação da difusão a partir da equação de transporte 

de nêutrons são descritas em detalhes em (HENRY, 1972 e 1975) e (DUDERSTADT e 

HAMILTON, 1976). 

Segundo (SUTTON e AVILES, 1996), são definidos o fluxo escalar e a corrente líquida 

como zero e os momentos angular, respectivamente, do fluxo angular: 

 

 𝜙 = ∫ 𝑑𝛀𝜓 𝑒 𝑱 = ∫ 𝑑𝛀𝛀𝜓 (2.3) 

 

Integrando as equações (2.1) sobre a variável angular, tem-se: 

 

 

1

𝑉(𝐸)

𝜕

𝜕𝑡
𝜙(𝒓, 𝐸, 𝑡)

= −∇. 𝑱(𝒓, 𝐸, 𝑡) − Σ𝑡(𝒓, 𝐸, 𝑡)𝜙(𝒓, 𝐸, 𝑡)

+ ∫ 𝑑𝐸′Σ𝑆(𝒓, 𝐸
′ → 𝐸, 𝑡)𝜙(𝒓, 𝐸′, 𝑡)

+ (1 − 𝛽)𝜒0(𝐸)∫ 𝑑𝐸
′𝑣Σ𝑓(𝒓, 𝐸

′, 𝑡)𝜙(𝒓, 𝐸′, 𝑡)

+∑𝜆𝑖𝜒𝑖(𝐸)𝑐𝑖(𝒓, 𝑡)

𝐼

𝑖=1

 

(2.4) 

 

As equações dos precursores podem ser escritas em termos do fluxo escalar: 



8 

 

 
𝜕

𝜕𝑡
𝑐𝑖(𝒓, 𝑡) = −𝜆𝑖𝑐𝑖(𝒓, 𝑡) + 𝛽𝑖∫ 𝑑𝐸𝑣Σ𝑓(𝒓, 𝐸, 𝑡)𝜙(𝒓, 𝐸, 𝑡), 𝑖 = 1,… , 𝐼. (2.5) 

 

As equações (2.4) e (2.5) são exatas e para resolvê-las assume-se o fluxo angular como 

linearmente anisotrópico em relação a variável angular, resultando numa equação conhecida 

como aproximação PN com fraca dependência angular como abordado por (CASE e ZWEIFEL, 

1967) ou (HENRY, 1972): 

 

 𝜓(𝒓,𝛀, 𝐸, 𝑡) ≈
1

4𝜋
[𝜙(𝒓, 𝐸, 𝑡) + 3𝛀 . 𝑱(𝒓, 𝐸, 𝑡)] (2.6) 

 

Multiplicando a equação (2.1) por Ω e integrando na variável angular obtêm-se: 

 

 

1

𝑉(𝐸)

𝜕

𝜕𝑡
𝑱(𝒓, 𝐸, 𝑡) + ∇∫𝛀𝛀𝜓(𝒓, 𝐸, 𝛀, 𝑡)𝑑𝛀 + Σ𝑡(𝒓, 𝐸, 𝑡)𝑱 (𝒓, 𝐸, 𝑡)

= ∫ Σ𝑠1(𝑟, 𝐸
′ → 𝐸, 𝑡)𝑱(𝑟, 𝐸′, 𝑡)

∞

0

𝑑𝐸′ 

(2.7a) 

 

O termo de fissão é nulo pois assume-se que o termo: 
1

𝑉(𝐸)

𝜕

𝜕𝑡
𝑱(𝒓, 𝐸, 𝑡), seja muito menor 

que as taxas de reação. 

Usando a aproximação P1 para resolver a integral, 

 

 ∇∫ΩΩ(
1

4𝜋
𝜙(𝒓, 𝑡, 𝐸) +

3

4𝜋
𝛀𝑱(𝒓, 𝑡, 𝐸))𝑑Ω = ∇(

1

3
𝜙(𝒓, 𝑡, 𝐸)) (2.7b) 

 

O grupo de equações (2.4) e (2.7a) são referentes às equações P1 dependente do tempo. 

Eliminando as variáveis da energia continua em favor da formulação do grupo de energia, 

conforme pode ser visto em (HENRY, 1975) ou (DUDERSTADT e HAMILTON, 1976), as 

formas multigrupo das equações (2.4) e (2.5) são deduzidas segundo (SUTTON e AVILES, 

1996) da seguinte forma: 
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1

𝑉𝑔
𝜕

𝜕𝑡
𝜙𝑔(𝒓, 𝑡) = −∇. 𝑱𝑔(𝒓, 𝑡) − Σ𝑟

𝑔(𝒓, 𝑡)𝜙𝑔(𝒓, 𝑡)

+ ∑ Σ𝑠
𝑔𝑔′(𝒓, 𝑡) + (1 − 𝛽)𝜒0

𝑔
∑ 𝑣Σ𝑓

𝑔′(𝒓, 𝑡)𝜙𝑔′
𝐺

𝑔′=1𝑔′=1

(𝒓, 𝑡)

+∑𝜆𝑖𝜒𝑖
𝑔
𝑐𝑖

𝐼

𝑖=1

(𝒓, 𝑡), 𝑔 = 1,… , 𝐺, 

(2.8) 

 

 
𝜕

𝜕𝑡
𝑐𝑖(𝒓, 𝑡) = −𝜆𝑖𝑐𝑖(𝒓, 𝑡) + 𝛽𝑖 ∑ 𝑣Σ𝑓

𝑔′

𝐺

𝑔′=1

(𝒓, 𝑡)𝜙𝑔′(𝒓, 𝑡), 𝑖 = 1,… , 𝐼, (2.9) 

 

Ignorando a complicação do grupo da velocidade 𝑉𝑔 da equação (2.8) que deveria ter 

as suas funções na posição r e no tempo t. É introduzido um grupo de seção de choque de 

transporte Σ𝑡𝑟
𝑔

, quando é definido na forma integral: 

 

 ∫ 𝑑𝐸[Σ𝑡(𝒓, 𝐸, 𝑡)𝑱(𝒓, 𝐸, 𝑡) − ∫ 𝑑𝐸
′ Σ𝑠1(𝒓, 𝐸

′ → 𝐸, 𝑡)𝑱(𝒓, 𝐸′, 𝑡)]
𝐸𝑔−1

𝐸𝑔

 (2.10) 

 

Logo, a equação (2.10) pode ser igualada por: 

 

 Σ𝑡𝑟
𝑔
(𝒓, 𝑡)𝑱𝑔(𝒓, 𝑡) (2.11) 

 

Segundo (SUTTON e AVILES, 1996) em (HENRY, 1972) são apresentados discursões 

de aproximações inerentes a esta substituição. Fazendo a anulação do termo envolvido na 

derivação do tempo do fluxo da corrente na equação (2.7). Isto é geralmente uma excelente 

aproximação para prática de problemas de cinéticas de reatores (WEINBERG e WIGNER, 

1958). A forma do grupo da equação (2.7), depois de todas essas aproximações, pode ser escrita 

como: 

 

 
1

3
∇𝜙𝑔(𝒓, 𝑡) + Σ𝑡𝑟

𝑔 (𝒓, 𝑡)𝑱𝑔(𝒓, 𝑡) = 0 (2.12) 

 

Para definir o coeficiente da difusão do grupo g 𝐷𝑔 = 1/(3Σ𝑡𝑟
𝑔
 ), pode se reescrever a 

equação (2.12), obtendo assim, a Lei de Fick: 



10 

 

 𝑱𝑔(𝒓, 𝑡) = −𝐷𝑔(𝒓, 𝑡)∇𝜙𝑔(𝒓, 𝑡) (2.13) 

 

Fazendo as junções das equações (2.8) e (2.13) ela apresentará a forma da equação P1 

da equação da difusão dependente do tempo. Substituindo a equação (2.13) na equação (2.8) 

vem: 

 

 

1

𝑉𝑔
𝜕

𝜕𝑡
𝜙𝑔(𝒓, 𝑡) = ∇ . 𝐷𝑔(𝒓, 𝑡)∇𝜙𝑔(𝒓, 𝑡) − Σ𝑟

𝑔(𝒓, 𝑡)𝜙𝑔(𝒓, 𝑡)

+ ∑ Σ𝑠
𝑔𝑔′(𝒓, 𝑡) + (1 − 𝛽)𝜒0

𝑔
∑ 𝑣Σ𝑓

𝑔′(𝒓, 𝑡)𝜙𝑔′
𝐺

𝑔′=1𝑔′≠𝑔

(𝒓, 𝑡)

+∑𝜆𝑖𝜒𝑖
𝑔
𝑐𝑖

𝐼

𝑖=1

(𝒓, 𝑡), 𝑔 = 1,… , 𝐺. 

(2.14) 

 

Esta é a equação da difusão de nêutrons multigrupo dependente do tempo que acoplada 

com a equação (2.9) para concentração de precursores, constituem as equações da cinética 

espacial. Apesar das aproximações usadas nas derivações destas equações, será assumido que 

elas descrevem adequadamente o comportamento da dependência do tempo para o fluxo de 

nêutrons nos reatores nucleares. 

 

2.2. EQUAÇÕES DE DIFUSÃO DE NÊUTRONS MULTIGRUPO DEPENDENTE DO 

TEMPO 

 

2.2.1. Cinética de reatores nucleares 

 

Para um reator nuclear operar em um nível constante, a taxa de produção via fissão de 

nêutrons deverá ser balanceada pela perda via absorção ou fuga de nêutrons. Neste caso a 

potência permanece constante, que é a condição de operação de um reator nuclear. Essa 

condição é conhecida como o estado crítico de um reator. Algum desvio dessa condição de 

balanço resultará em uma dependência temporal da população de nêutrons e, 

consequentemente, uma variação temporal da potência do reator. Ao estudo do comportamento 

de um reator cuja densidade ou fluxo variam com o tempo, chama-se de cinética de reator 

(DUDERSTADT e HAMILTON, 1976). 
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Deve-se reconhecer que as mudanças no comportamento da população neutrônica, 

muitas vezes, não estão sob o controle do operador do reator. Em alguns casos, isso dependerá 

da composição do núcleo, que dependerá também de outras variáveis que não estão diretamente 

acessíveis ao controle, tais como a temperatura do combustível ou refrigerante. Entretanto, 

essas variáveis dependem, por sua vez, do nível de potência do reator e, consequentemente, do 

fluxo de nêutrons (PETERSEN, 2011). O estudo dessas causas intrínsecas do comportamento 

da população de nêutrons é chamado de Dinâmica de Reator Nuclear. (STACEY, 1969). Neste 

trabalho, dá – se ênfase à cinética de reator nuclear, mais especificamente às variações do fluxo 

de nêutrons em função do tempo, ou seja, o comportamento transiente do fluxo de nêutrons 

devido a mudanças nos parâmetros nucleares (seção de choque de absorção) para pequenos 

intervalos de tempo. 

 

2.2.2. A importância dos nêutrons atrasados nas equações da cinética 

 

 Segundo (PETERSEN, 2011), a fissão dá origem a fragmentos que são elementos com 

menor número de massa do que o núcleo original. Alguns desses fragmentos são instáveis e nos 

processos de decaimento eles emitem nêutrons. Tais nêutrons que são emitidos após o processo 

da fissão são chamados de nêutrons atrasados e os núcleos que os emitem são chamados de 

precursores de nêutrons atrasados  

Os nêutrons atrasados não têm as mesmas propriedades que os nêutrons prontos 

produzidos diretamente da fissão. A energia média dos nêutrons prontos é muito maior do que 

a energia média dos nêutrons atrasados (STACEY, 1974). O fato dos nêutrons atrasados serem 

gerados com energias mais baixas tem dois impactos significantes na maneira que eles 

procedem no ciclo de vida do nêutron. Primeiramente, os nêutrons atrasados têm uma 

probabilidade muito menor de causar fissões rápidas do que os nêutrons prontos, devido ao fato 

de que sua energia média está abaixo do mínimo requerido para a ocorrência de fissão em 

reatores rápidos. Em segundo lugar, os nêutrons atrasados têm uma probabilidade menor de 

fuga do núcleo, porque eles são gerados com energias mais baixas e, por isso, viajam distâncias 

mais curtas do que os nêutrons rápidos (PETERSEN, 2011). 

Para obter o balanceamento dos nêutrons em um reator nuclear, as equações multigrupo 

da cinética espacial para g grupos de energia e I nêutrons precursores atrasados (HENRY, 1975) 

e (DUDERSTADT e HAMILTON, 1976), são: 
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1

𝑉𝑔
𝜕𝜙𝑔

𝜕𝑡
(𝒓, 𝑡) = ∇. 𝐷𝑔(𝐫, t)∇𝜙𝑔(𝒓, 𝑡)

− Σ𝑡
𝑔
𝜙𝑔(𝒓, 𝑡) + ∑ Σ𝑠

𝑔′→𝑔

𝐺

𝑔′=1

𝑔′≠𝑔

𝜙𝑔′(𝒓, 𝑡)

+ (1 − 𝛽𝑒𝑓𝑓)𝜒0
𝑔
∑ 𝜈

𝐺

𝑔′=1

Σ𝑓
𝑔′
𝜙𝑔′(𝒓, 𝑡)  +∑𝜆𝑖

𝐼

𝑖=1

𝜒𝑖
𝑔
𝐶𝑖(𝒓, 𝑡)

+ 𝑠𝑔     𝑔 = 1,… , 𝐺 

(2.15) 

 

Sabe-se que a variação temporal da concentração dos precursores é dada pela produção 

do precursor pela fissão e pela perda causada pelo decaimento. 

Os nêutrons produzidos pelo grupo i, podem ser contabilizados da seguinte forma: 

multiplicando a taxa de produção de nêutrons na fissão pela fração de nêutrons atrasados. 

A equação de balanço que representa a variação temporal da concentração de 

precursores é dada por: 

 

 
𝜕𝐶𝑖 (𝒓, 𝑡)

𝜕𝑡
= 𝛽𝑖∑𝑣

𝐺

𝑔=1

Σ𝑓
𝑔
(𝒓, 𝑡)𝜙𝑔(𝒓, 𝑡) − 𝜆𝑖𝐶𝑖(𝒓, 𝑡) 𝑖 = 1,… , 𝐼       (2.16) 

 

onde: 

𝜙𝑔(𝒓, 𝑡): fluxo de nêutrons do grupo g na posição 𝐫 e tempo t. 

𝐶𝑖(𝒓, 𝑡): concentração de precursores de nêutrons no grupo 𝑖, na 

posição 𝒓 e tempo 𝑡. 

𝑉𝑔: velocidade do nêutrons do grupo 𝑔. 

𝐷𝑔(𝒓, 𝑡): coeficiente de difusão do grupo 𝑔, na posição 𝒓 e tempo 𝑡 

Σ𝑟
𝑔(𝒓, 𝑡): seção de choque de remoção do grupo 𝑔, na posição 𝒓 e tempo 𝑡. 

       𝛴𝑠
𝑔′→𝑔(𝒓, 𝑡): seção de choque de espalhamentos do grupo 𝑔′𝑝ara o grupo 𝑔, 𝑛𝑎  

posição 𝒓 e tempo 𝑡. 

𝛴𝑡
𝑔

: seção de choque macroscópica total do grupo 𝑔. 

𝑣𝛴𝑓
𝑔
:  seção de choque macroscópica de fissão do grupo 𝑔, multiplicado pelo  

número médio de nêutrons emitidos na fissão não depende de (𝐫, t). 

𝛴𝑎
𝑔
: seção de choque macroscópica de absorção do grupo 𝑔.  
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Σ𝑐
𝑔
: seção de choque macroscópica de captura do grupo 𝑔. 

∑ : seção de choque macroscópica de espalhamento do grupo 𝑔 para 𝑔′
𝑔→𝑔′
𝑠 . 

𝛽𝑒𝑓𝑓: fração efetiva total de nêutrons atrasados. 

𝜒0
𝑔
: espectro de nêutrons prontos do grupo 𝑔. 

𝜒𝑖
𝑔
: espectro de nêutrons atrasados do grupo 𝑔.  

𝑣: número de fissão de nêutrons.  

𝜆𝑖: constante de decaimento do grupo 𝑖 de precursores. 

𝛽𝑖 ∶ fração de nêutrons atrasados do grupo 𝑖. 

𝑠𝑔: fonte externa de nêutrons do grupo 𝑔. 

(1 − 𝛽𝑒𝑓𝑓): fração de fissão de nêutrons emitidas como nêutrons prontos. 

 

Usando as equações da cinética espacial, podemos estabilizar os mecanismos de 

produção e perda de nêutrons através do cálculo da potência do reator. Assim de que a potência 

permanece constante, a quantidade de nêutrons gerados é igual a quantidade de nêutrons 

absorvidos. O desequilíbrio da população de nêutrons pode resultar no desligamento do reator, 

caso mais nêutrons sejam absorvidos do que gerados. Caso contrário, pode resultar em um 

aumento de potência que comprometerá a estrutura e funcionamento do reator (PETERSEN, 

2011). 

E as relações das seções de choque são definidas (DUDERSTADT,1976) como: 

 

 Σ𝑡
𝑔
= Σ𝑎

𝑔
+ ∑ Σ𝑠

𝑔′→𝑔

𝐺

𝑔′=1

 (2.17) 

 

 
Σ𝑎
𝑔
= Σ𝑓

𝑔
+Σ𝑐

𝑔
 (2.18) 

 

 

Σ𝑅
𝑔
≡ Σ𝑎

𝑔
+ ∑ Σ𝑠

𝑔′→𝑔

𝐺

𝑔′=1
𝑔′≠1

 (2.19) 

 

As seções de choque de remoção (Σ𝑅
𝑔
) caracterizam a probabilidade que o nêutron tem 

de ser removido do grupo g por absorção e/ou espalhamento para o grupo g’. 

No caso de dois grupos de energia, considera-se nulo o espalhamento com ganho de 

energia. Portanto, para a seção de choque de remoção do grupo térmico resulta: 
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 Σ𝑅
2 = Σ𝑎

2 + Σ𝑠
2→1 = Σ𝑎

2 (2.20) 

 

Escrevendo as equações da cinética de multigrupo com a utilização da variável u(x,t), 

teremos um campo vetorial q(x,y)=(qx,qy), é dado pelo produto do coeficiente de difusão D pelo 

gradiente da função do fluxo de nêutrons u(x,t) 

 

 𝒒 = −𝑫∇𝒖, (2.21) 

 

Sendo Q(x,y) a fonte ou sumidouro da quantidade envolvida. O balanço dos fluxos de 

nêutrons resulta: 

 

 ∇. 𝒒 = 𝑸(𝑥, 𝑦), (2.22) 

 

Substituindo a equação (2.21) na equação (2.22), obtém-se a equação de Poisson 

 

 ∇. (𝑫∇𝒖) + 𝑸 = 0. (2.23) 

 

Que deve ser satisfeita em todo domínio. 

Aplicando a equação de Poisson (equação 2.23) na equação (2.15) teremos os sistemas 

de equações da cinética de multigrupo representado por um sistema parabólico segundo 

(GROSSMAN e HENNART,2007) da seguinte maneira: 

 

 
𝜕𝒖

𝜕𝑡
− 𝛻.𝑫𝛻𝒖 + 𝑸𝒖 = 0.   (2.24) 

 

Onde: 

 

𝒖(𝒙, 𝑡): vetor coluna constituído pelas variáveis representando o fluxo de nêutrons e a 

concentração dos precursores: 

 

 𝒖 = {𝜙1,… ,𝜙𝐺,𝐶1,… , 𝐶𝐼}
𝑇 = {𝛷  𝐶}[(𝐺+𝐼)𝑥(𝐺+𝐼)]          (2.25) 

 

D: matriz diagonal dos coeficientes de difusão: 
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 𝑫 = 𝑑𝑖𝑎𝑔[𝑣1𝐷1  , … ,  𝑣𝐺𝐷𝐺 , 0, … ,0][(𝐺+𝐼)𝑥(𝐺+𝐼)]
𝑇          (2.26) 

 

E Q: bloco matriz: 

 

 𝑸 = [
𝑯 𝚪
𝑩 𝚲

]
[(𝐺+𝐼)𝑥(𝐺+𝐼)]

        (2.27) 

 

No qual: 

 

H: matriz de absorção, espalhamento e seções de choque de fissão 

 

 𝑯 = +𝑣𝑔′Σ𝑎
𝑔′
𝛿𝑔𝑔′ − (1 − 𝛿𝑔𝑔′)𝑣𝑔Σ𝑠

𝑔→𝑔′
− (1 − 𝛽𝑒𝑓𝑓)𝑣𝑔𝜒0

𝑔
𝑣Σ𝑓

𝑔′
 [𝐺𝑥𝐺] (2.28) 

Onde {
𝛿𝑔𝑔′ = 1, se g = g’ 

𝛿𝑔𝑔′ = 0, 𝑠𝑒 𝑔 ≠ 𝑔′
 

 

𝚪 e B são as matrizes dos nêutrons precursores  

 

 𝚪 = 𝑣𝑔𝜒𝑖
𝑔
𝜆𝑖  [𝐺𝑥𝐼] (2.29) 

 

 𝑩 = 𝛽𝑖𝑣Σ𝑓
𝑔

 [𝐼𝑥𝐺] (2.30) 

 

𝚲: matriz diagonal de decaimento 

 

 𝚲 = −𝑑𝑖𝑎𝑔[𝜆1 , … . , 𝜆𝐼]
𝑇 [𝐼𝑥𝐼] (2.31) 

 

S: vetor coluna do grupo da fonte externa 

 

 𝒔 = [𝑣1𝑠1 , … , 𝑣𝐺   𝑠𝐺 , 0, … ,0][(𝐺+𝐼)]     
𝑇  = 0              (2.32) 

 

As condições de contorno: 

 

 ∇. (𝑫∇𝒖) + 𝑸 = 0  𝑒𝑚 Ω  (2.33) 
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 𝒖(𝒓) = 0  𝑒𝑚   Γ𝑢         (2.34) 

 

 
𝜕𝒖(𝒙)

𝜕𝒏̅
= 0    𝑒𝑚  Γ𝑞        (2.35) 

 

Para porção Γ𝑢: fluxo zero ou condições de Dirichlet de contorno Γ = Ω̅ − Ω. 

E para Γ𝑞: Condições Newmann ou de corrente zero. 

 

Onde: Γ = Γ𝑢 ∪ Γ𝑞 e Γ𝑢 ∩ Γ𝑞 = ∅ e 𝒏̅ é a normal para Γ𝑞. 

 

 

Figura 1: A normal externa ao contorno Γ (RIBEIRO, 2004). 

 

Conforme a descrição apresentada no anexo A, o método utilizado na obtenção da 

solução analítica das equações da cinética espacial é o método dos elementos finitos (MEF), 

bem como os principais motivos de sua implementação são (GROSSMAN e HENNART, 

2007): 

 

a) A formulação do problema da condição do contorno é chamada de “fraca” ou forma 

variacional, que pode ser obtido diretamente da equação original ou de alguma forma 

equivalente; 

b) A discretização dada pelo domínio aproximado Ω𝑒, que é a união da partes geometricamente 

simples ou elementos, por exemplos, retangulares e triangulares em problemas com duas 

dimensões; 

c) A formulação e solução do problema algébrico linear resultante da expansão dos 

coeficientes pela aplicação do passo, utiliza a formulação fraca do passo. Na aproximação 
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discreta, os coeficientes resultantes pela aproximação de Galerkin no espaço do passo 

satisfaz um sistema de equações diferenciais ordinárias. 

 

Resumidamente, a aplicação do método dos elementos finitos, consiste em diferentes 

métodos numéricos que aproximam a solução de problemas de valor de fronteira descritos tanto 

por equações diferenciais ordinárias quanto por equações diferenciais parciais através da 

subdivisão da geometria do problema em elementos menores, chamados de elementos finitos, 

nos quais a aproximação da solução exata pode ser obtida por interpolação de uma solução 

aproximada. 
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3. SOLUÇÃO DAS EQUAÇÕES DA CINÉTICA ESPACIAL PELO MÉTODO DOS 

ELEMENTOS FINITOS 

 

3.1. FORMULAÇÃO FRACA DA EQUAÇÃO DA CINÉTICA ESPACIAL. 

 

Para obter a formulação fraca da equação da cinética espacial, utiliza-se a equação (2.24) 

definida no domínio Ω juntamente com as condições de contorno definidas em Γ pelas equações 

(2.34 ) e (2.35). 

A obtenção da formulação fraca é realizada multiplicando-se a equação (2.24) por uma 

função peso w e integrando sobre todo domínio Ω. 

 

 𝑤 = {𝑤1(𝑥),𝑤2(𝑥),… ,𝑤𝑛(𝑥)}, (3.1) 

 

onde 𝑤𝑛(𝑥)é uma função contínua definida no domínio Ω. 

 

Deste modo a equação (2.24) na forma integral pode ser escrita por: 

 

 ∫ (
𝜕𝒖

𝜕𝑡
− ∇. 𝐷∇𝒖 + 𝑸𝒖) .𝒘𝑑Ω = 0

Ω

. (3.2) 

 

Aplicando-se a derivação por partes explicitada abaixo: 

 

 ∫ (∇.𝑫∇𝒖). 𝑤𝑑Ω = ∫ ∇. (𝑫∇𝒖.𝒘)𝑑Ω − ∫ 𝑫𝛻𝒖. 𝛻𝒘𝑑𝛺,
𝛺ΩΩ

 (3.3) 

 

Onde, o primeiro termo do lado da esquerda da igualdade na equação (3.3) pode ser 

transformado em uma condição de contorno: 

 

 ∫ ∇. (𝑫∇𝒖𝒘)𝑑Ω = ∫ 𝑫𝒘𝛻𝒖. 𝐧𝑑𝛤.
ΓΩ

 (3.4) 

 

Substituindo a equação (3.4) em (3.3), tem-se: 
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 ∫ (∇.𝑫∇𝒖).𝑤𝑑Ω = ∫ 𝑫𝒘𝛻𝒖. 𝐧𝑑𝛤
Γ

−∫ 𝑫𝛻𝒖. 𝛻𝒘𝑑𝛺.
𝛺Ω

 (3.5) 

 

Substituindo a equação (3.5) na equação (3.2), obtém-se: 

 

 ∫
𝜕𝒖

𝜕𝑡
𝒘𝑑Ω − (∫ 𝑫𝒘𝛻𝒖. 𝐧𝑑𝛤

Γ

−∫ 𝑫𝛻𝒖. 𝛻𝒘𝑑𝛺
𝛺

) + ∫ 𝑸𝒖.𝒘𝑑Ω
Ω

= 0
Ω

. (3.6) 

 

Utilizando as condições de contorno definidas nas equações (2.34) e (2.35) que 

equivalem a dizer que o fluxo é nulo no contorno Γ𝑢 e que a corrente é nula na direção normal 

ao contorno Γ𝑞: 

 

 ∫ 𝑫𝒘𝛻𝒖. 𝐧𝑑𝛤
Γ

= 0. (3.7) 

 

Logo, a equação (3.2) pode ser reescrita na forma: 

 

 ∫ (
𝜕𝒖

𝜕𝑡
+ 𝑫∇𝒖. ∇ + 𝑸𝒖)𝒘𝑑Ω = 0

Ω

 (3.8) 

 

3.2. APROXIMAÇÕES DAS EQUAÇÕES DA CINÉTICA ESPACIAL PELO MÉTODO 

DOS ELEMENTOS FINITOS.  

 

A geração de soluções aproximadas para a equação (2.24) é obtida pela substituição de 

u, por funções básicas definidas em um subdomínio Ω𝑒 tal que Ω = ∑Ω𝑒  Uma condição 

necessária para a definição dessas funções básicas é que essas funções tenham as mesmas 

propriedades de diferenciabilidade e continuidade da função u, caso contrário poderá haver 

dificuldades em obter a solução da equação (CORREIA FILHO, 1981).  

O método dos elementos finitos propicia a definição dessas funções básicas com as quais 

se pode aproximar tanto a geometria assim como todas as variáveis que definem o problema 

em questão: o fluxo de nêutrons, concentração de precursores, etc. Portanto, pode-se, aproximar 

a geometria pelo método dos elementos finitos da seguinte forma: 
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 [𝒙]𝑙
𝑒 =∑𝑁𝑖([𝒙]𝑙

𝑒)𝑖  

𝑚

𝑖=1

 (3.9) 

 

A utilização do método de Galerkin, que preconiza a utilização da mesma função de 

interpolação para a função peso 𝒘 e a função do fluxo de nêutron 𝒖, resulta: 

 

 𝐮𝑙
𝑒 =∑𝑁𝑖([𝒖]𝑙

𝑒)𝑖

𝑚

𝑖=1

 (3.10) 

 

 𝐰𝑙
𝑒 =∑𝑁𝑖([𝒘]𝑙

𝑒)𝑖

𝑚

𝑖=1

 (3.11) 

 

 𝐮̇𝑙
𝑒 =∑𝑁𝑖([𝒖]̇ 𝑙

𝑒)𝑖

𝑚

𝑖=1

 (3.12) 

 

Onde 𝐮𝑙
𝑒 é a componente l do vetor u; 𝑁𝑖 é a função de interpolação associada ao nó i e 

elemento e. Ambos são definidos no subdomínio Ω𝑒. Supondo que esse subdomínio é 

representado por um elemento quadrático unidimensional com 3 nós (m=3), as coordenadas do 

sistema podem ser representadas pelas seguintes formas matriciais: 

 

 𝐍 = {𝑁𝑖 𝑁𝑗 𝑁𝑘} (3.13) 

 

 𝑥𝑖
𝑒 = 𝐍{

([𝒙]𝑙
𝑒)𝑖

([𝒙]𝑙
𝑒)𝑗

([𝒙]𝑙
𝑒)𝑘

} (3.14) 

 

 𝐮𝑖
𝑒 = 𝐍{

([𝒖]𝑙
𝑒)𝑖

([𝒖]𝑙
𝑒)𝑗

([𝒖]𝑙
𝑒)𝑘

} (3.15) 

 

 𝐰𝑖
𝑒 = 𝐍{

([𝒘]𝑙
𝑒)𝑖

([𝒘]𝑙
𝑒)𝑗

([𝒘]𝑙
𝑒)𝑘

} (3.16) 
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Onde i, j e k são os nós do elemento finito em questão. 

 

Agrupando todas as variáveis nodais na variável un, isto é, o fluxo de nêutrons e a 

concentração dos nêutrons atrasados, o vetor u pode ser representado por: 

 

 𝒖 = 𝐍𝒖𝑛    (3.17) 

 

Onde a matriz 𝑵 é constituída pelas funções de interpolação das variáveis do problema 

e pode ser colocada na seguinte forma: 

 

 𝑁 = [
𝑁𝐺 0

0 𝑁𝐼
]
(𝐺+𝐼)x3(𝐺+𝐼)

    (3.18) 

 

Sendo que, 𝑁𝐺  e  𝑁𝐼 , apresentam as seguintes formas matriciais: 

 

 𝑁𝐺 =

[
 
 
 
 
𝑁1
1

0

…

0

𝑁2
1

0

…

0

𝑁3
1

0

…

0

0

𝑁1
2

…

0

0

𝑁2
2

…

0

0

𝑁3
2

…

0

…

…

…

…

0

0

…

𝑁1
𝐺

0

0

…

𝑁2
𝐺

0

0

…

𝑁2
𝐺 ]
 
 
 
 

𝐺x(3x𝐺)

    (3.19) 

 

 𝑁𝐼 =

[
 
 
 
 
𝑁1
1

0

…

0

𝑁2
1

0

…

0

𝑁3
1

0

…

0

0

𝑁1
2

…

0

0

𝑁2
2

…

0

0

𝑁3
2

…

0

…

…

…

…

0

0

…

𝑁1
𝐼

0

0

…

𝑁2
𝐼

0

0

…

𝑁2
𝐼 ]
 
 
 
 

𝐼x(3x𝐼)

    (3.20) 

 

O gradiente do vetor das variáveis 𝒖 pode ser aproximado pela relação: 

 

 ∇𝒖 =  ∇𝑁𝐼𝒖𝑛 (3.20a) 

 

Onde o gradiente das funções de interpolação ∇𝑁𝐼 é definido por:  
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 ∇𝑁𝐼 =

[
 
 
 
 
 
 
 
 
 𝑁1,𝑥

1 𝑁2,𝑥
1 𝑁3,𝑥

1 0 0 0 ⋯ 0 0 0

𝑁1,𝑦
1 𝑁2,𝑦

1 𝑁3,𝑦
1 0 0 0 ⋯ 0 0 0

0

0

⋯

0

0

0

0

⋯

0

0

0

0

⋯

0

0

𝑁1,𝑥
2

𝑁1,𝑦
2

⋯

0

0

𝑁2,𝑦
2

𝑁2,𝑦
2

⋯

0

0

𝑁3,𝑧
2

𝑁3,𝑦
2

⋯

0

0

⋯

⋯

⋯

⋯

⋯

0

0

⋯

𝑁1,𝑥
𝐺

𝑁1,𝑦
𝐺

0

0

⋯

𝑁2,𝑥
𝐺

𝑁2,𝑦
𝐺

0

0

⋯

𝑁3,𝑥
𝐺

𝑁3,𝑦
𝐺
]
 
 
 
 
 
 
 
 
 

𝐺𝑥(3𝑥𝐺)

 (3.21) 

 

O vetor 𝑢𝑛 tem como componentes as variáveis nodais do problema: 

 

 𝒖𝑛 = {𝜙1
1 𝜙2

1 𝜙3
1 𝜙1

2 𝜙2
2 𝜙3

2 … 𝜙3
𝐺 𝐶1

1 𝐶2
1 𝐶3

1 … 𝐶3
1}3x(𝐺+𝐼)    (3.22) 

 

E pode ser representado na forma sintética: 

 

 𝒖𝑛 = {Φ C}3x(𝐺+𝐼)    (3.23) 

 

Substituindo as aproximações definidas nas equações (3.17) e (3.20a) na equação (3.8), 

a qual representa a equação da formulação integral do problema de difusão neutrônica 

dependente do tempo, obtém-se uma forma aproximada desse problema: 

 

 ∑∫ (𝐍𝑇𝐍𝒖̇𝑛 + ∇𝑁
𝑇 . 𝑫∇𝐍𝒖𝑛 + 𝐍

𝑇𝑸𝐍𝒖𝑛)
Ω𝑒

𝑛𝑒

𝑒=1

. 𝒘𝑑Ω𝑒 = 0    (3.24) 

 

Colocando-se a equação (3.24) em sua forma matricial, resulta: 

 

 𝐀𝒖̇ + (𝐃 + 𝐐)𝒖 = 𝟎    (3.25) 

 

Ou ainda: 

 

 [
𝐀𝐺 0

0 𝐀𝐼
] {
Φ̇

𝐂̇
} + ([

𝐃̅𝐺 0

0 0
] + [

𝐇 𝚪
𝐁 𝚲

]) {
Φ
𝐂
} = {

0
0
}    (3.26) 

 

Onde os termos das matrizes têm as seguintes representações: 
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 𝑨𝐺 = ∫ 𝑵𝐺 . 𝑵𝐺𝑑Ω𝑒

Ω𝑒
 (3.27) 

 

 𝑨𝐼 = ∫ 𝑵𝐼 . 𝑵𝐼𝑑Ω𝑒

Ω𝑒
 (3.28) 

 

 𝑫𝐺 = ∫ ∇𝑵𝐺

Ω𝑒
. 𝑫̅∇𝑵𝐺𝑑Ω𝑒 (3.29) 

 

 𝑯 = ∫ 𝑵𝐺 . 𝑯̅𝑵𝐺𝑑
Ω𝑒

Ω𝑒 (3.30) 

 

 𝚪 = ∫ 𝑵𝐺 . 𝚪̅𝑵𝐼𝑑Ω𝑒

Ω𝑒
 (3.31) 

 

 𝑩 = ∫ 𝑵𝐼 . 𝑩̅𝑵𝐺𝑑Ω𝑒

Ω𝑒
 (3.32) 

 

 𝚲 = ∫ 𝑵𝐼 . Λ̅𝑵𝐼𝑑Ω𝑒

Ω𝑒
 (3.33) 

 

 𝒔𝐺 = ∫ 𝑵𝐺 . 𝒔̅𝑑Ω𝑒 = 0
Ω𝑒

 (3.34) 

 

Essas matrizes, são ditas matrizes elementares por serem definidas no subdomínio 

Ω𝑒 , são integradas numericamente pelo método de Gauss. Os símbolos G representam os grupos 

de energia dos nêutrons prontos e I os grupos da concentração dos precursores 

 

3.3. DISCRETIZAÇÃO TEMPORAL DAS EQUAÇÕES DA CINÉTICA ESPACIAL 

 

3.3.1. Método direto utilizando o método de Euler implícito 

 

Demonstra-se que o esquema implícito do método de Euler é incondicionalmente 

estável com respeito a discretização temporal (NAKAMURA, 1977). Isto consequentemente 
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permite utilizar passos de tempo (∆𝑡) maiores na solução do problema. Contudo, a escolha do 

intervalo de tempo (∆𝑡) depende também da magnitude das mudanças impostas nos parâmetros. 

Essas mudanças podem ser introduzidas na solução da equação. A evolução das propriedades, 

definidas pelo termo a esquerda da equação (3.35), no decorrer tempo requer um cálculo 

iterativo em cada intervalo de tempo. É possível notar que o esquema implícito é mais complexo 

de ser utilizado que o esquema explícito, pois o primeiro requer a inversão do sistema de 

matrizes em cada intervalo de tempo (∆𝑡). 

 

 
𝜕𝑢

𝜕𝑡
= 𝐮̇𝑡+∆𝑡 = 𝑓(𝒖𝑡+Δ𝑡, 𝑡 + ∆𝑡) (3.35) 

 

 𝐮̇𝑡+∆𝑡 =
𝒖𝑡+Δ𝑡 − 𝒖𝑡

Δ𝑡
 (3.36) 

 

Substituindo as equações (3.35) e (3.36) na equação da cinética espacial apresentada na 

forma matricial pela equação (3.25): 

 

 𝐀𝐮̇𝑡+∆𝑡 + (𝐃 + 𝐐)𝐮𝑡+∆𝑡 = 0 (3.37) 

 

 𝐀
𝐮𝑡+∆𝑡 − 𝐮𝑡

∆𝑡
+ (𝐃 + 𝐐)𝐮𝑡+∆𝑡 = 0 (3.38) 

 

Portanto, o sistema de equações, levando em consideração a composição do vetor u 

pode ser apresentada na seguinte maneira: 

 

 (
𝐀𝐺

Δ𝑡
+ 𝐃𝐺 + 𝐇)Φ𝑡+Δ𝑡 =

𝐀𝐺

Δ𝑡
Φ𝑡 − 𝚪𝐂𝑡+Δ𝑡 (3.39) 

 

 (
𝐀𝐼

Δ𝑡
+ 𝚲)𝐂𝑡+Δ𝑡 =

𝐀𝐼

Δ𝑡
𝐂𝑡 + 𝐁Φ𝑡+Δ𝑡 (3.40) 

 

O fluxo inicial obtido pelo problema estacionário é representado pela seguinte equação: 

 

 (𝐃𝐺 + 𝐇)Φ𝑡+Δ𝑡 = 0 (3.41) 
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Este problema apresentado na equação (3.41) pode ainda ser colocado na forma de um 

problema de cálculo de autovalores e autovetores definido abaixo: 

 

 (𝑫𝐺+𝑯𝑎 −𝑯𝑠)Φ = 𝚲𝑯𝑓Φ (3.42) 

 

O autovalor 𝚲 é uma constante que mantém a igualdade entre os mecanismos de 

produção e perda de nêutrons no reator. 

Com as condições iniciais obtidas pela solução da equação (3.42) e com as equações 

(3.39) e (3.40) é possível calcular a evolução de Φ𝑡+Δ𝑡 (fluxo de nêutrons transiente) e 

𝐂𝑡+Δ𝑡(concentração dos precursores dos nêutrons atrasados). De uma forma simplificada, essas 

equações podem ser colocadas na seguinte forma: 

 

 𝑲𝐺Φ𝑡+Δ𝑡 = 𝑭
𝐺  (3.43) 

 

 𝑴𝐼𝑪𝑡+Δ𝑡 = 𝑹𝐼 (3.44) 

 

onde: 

 

 𝑲𝐺 =
𝑨𝐺  

Δ𝑡
+ 𝑫𝐺 +𝑯 (3.45) 

 

 𝑭𝐺 =
𝑨𝐺

Δ𝑡
Φ𝑡 − 𝚪𝑪𝑡+Δ𝑡 (3.46) 

 

 𝑴𝐼 =
𝑨𝐼

Δ𝑡
+ 𝚲 (3.47) 

 

 𝑹𝐼 =
𝑨𝐼

Δ𝑡
𝑪𝑡 + 𝑩̅Φ𝑡+Δ𝑡 (3.48) 

 

Colocando em evidência a concentração dos nêutrons atrasado 𝑪𝑡+Δ𝑡 na equação (3.40) 

resulta: 
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 𝑪𝑡+Δ𝑡 = (
𝑨𝐼

Δ𝑡
+ Λ)

−1

[
𝑨𝐼

Δ𝑡
𝑪𝑡 + 𝐵Φ𝑡+Δ𝑡] (3.49) 

 

E substituindo a equação (3.49) na equação (3.39), obtém-se a seguinte equação: 

 

 [
𝑨𝐺

Δ𝑡
+ 𝑫𝐺 +𝑯+ Γ(

𝑨𝐼

Δ𝑡
+ Λ)

−1

𝐵]Φ𝑡+Δ𝑡 = −Γ(
𝑨𝐼

Δ𝑡
+ Λ)

−1
𝑨𝐼

Δ𝑡
𝑪𝑡 +

𝑨𝐺

Δ𝑡
Φ𝑡 (3.50) 

 

Onde 𝑪𝑡 e Φ𝑡 podem ser obtidos pela solução estacionária da equação da difusão de 

nêutrons. 

 

3.3.2. Solução analítica da equação da concentração dos precursores 

 

As constantes de tempo associadas aos grupos energéticos do fluxo de nêutrons, 

segundo (SUTTON e AVILES, 1996) são muito pequenas e inversamente proporcionais a 

velocidade do grupo de nêutrons (1/ Vg), enquanto que as constantes de tempo associadas as 

concentrações dos nêutrons precursores tendem a ser muito maiores e diretamente proporcional 

as constantes de decaimento associadas a cada grupo de precursores de nêutrons atrasados (λi). 

Esta observação conduziu a se adotar uma suposição simplificada e frequentemente utilizada 

nos códigos da teoria da difusão espaço – tempo que reduz o tamanho do sistema linear a ser 

resolvido sem afetar a precisão da solução  

A simplificação é alcançada por meio da utilização da integração analítica das equações 

de precursores de nêutrons atrasados dependente do tempo. Assumindo uma variação linear da 

fonte de fissão em cada passo de tempo discretizado. Realizando essa integração analítica, a 

solução da equação (2.16) é, segundo (SUTTON e AVILES, 1996) dada por: 

 

 

𝐶𝑖(𝒓, 𝑡 + Δ𝑡) = 𝑒
−𝜆𝑖Δ𝑡𝐶𝑖(𝒓, 𝑡)

+
𝛽𝑖
𝜆𝑖
[
1 − 𝑒−𝜆𝑖Δ𝑡

𝜆𝑖Δ𝑡
− 𝑒−𝜆𝑖Δ𝑡]∑ 𝑣Σ𝑓

𝑔′(𝒓, 𝑡)𝜙𝑔′
𝐺

𝑔=1

(𝒓, 𝑡)

−
𝛽𝑖
𝜆𝑖
[
1 − 𝑒−𝜆𝑖Δ𝑡

𝜆𝑖Δ𝑡
− 1]∑𝑣Σ𝑓

𝑔′(𝒓, 𝑡 + Δ𝑡)𝜙𝑔′(𝒓, 𝑡 + Δ𝑡)

𝐺

𝑔=1

 

(3.51) 
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Esta expressão da solução analítica da concentração dos precursores, segundo 

(SUTTON e AVILES, 1996), pode ser substituída em vários esquemas de integração numérica 

que tem as variáveis 𝐶𝑖(𝑟, 𝑡 + Δ𝑡)  desconhecidas, reduzindo o sistema de equações a um em 

que as variáveis a serem calculadas nos novos passos de tempo (𝑡 + Δ𝑡)  serão apenas as 

relativas aos fluxos de nêutrons. Então, um sistema com N pontos de malha espacial, G grupos 

de nêutrons e I grupos de precursores de nêutrons atrasados totalizando 𝑁 × (𝐺 + 𝐼) variáveis 

pode ser reduzido significantemente a um sistema com  𝑁 × 𝐺 variáveis desconhecidas. Uma 

vez que o novo fluxos de nêutrons foi determinado para o tempo (𝑡 + Δ𝑡), usando o esquema 

de solução analítica da equação (3.51), os precursores podem ser eficientemente atualizados. 

Este método tem sido implementado com sucesso em vários códigos de transientes neutrônicos, 

dentre eles, o programa MEF desse trabalho (DHATT e TOUZOT, 1981) 

Usando as matrizes definidas no Apêndice B a solução numérica do sistema é 

apresentada da seguinte forma: 

 

 (
𝑨𝐺

Δ𝑡
+ 𝑫𝐺 +𝑯− Γ𝑷𝑡+Δ𝑡)Φ𝑡+Δ𝑡 = −Γ𝑻𝑡𝑪𝑡 + (

𝑨𝐺

Δ𝑡
− Γ𝑷𝑡)Φ𝑡 (3.52) 

 

No qual, Φ𝑡+Δ𝑡 é a solução da equação da difusão no instante 𝑡 + Δ𝑡, Φ𝑡 é a solução da 

equação da difusão no instante anterior, G o número de grupos de energia dos nêutrons. 

Usando dois grupos de energia e colocando a equação (3.52) em sua forma matricial 

resulta: 

 

 
[
 
 
 
𝐴1

∆𝑡
+ 𝐷1 +𝐻𝑎

1 − 𝐻𝑓
1 − Γ1𝑃𝑡+Δ𝑡

1 −Γ1𝑃𝑡+Δ𝑡
2 − 𝐻𝑓

2

−Γ2𝑃𝑡+Δ𝑡
1 +𝐻𝑠

1→2
𝐴2

Δ𝑡
+ 𝐷2 + 𝐻𝑎

2 − Γ2𝑃𝑡+Δ𝑡
2

]
 
 
 

{
Φ𝑡+Δ𝑡
1

Φ𝑡+Δ𝑡
2 }

=

[
 
 
 
𝐴1

Δ𝑡
− Γ1𝑃𝑡

1 −Γ1𝑃𝑡
2

−Γ2𝑃𝑡
1

𝐴2

Δ𝑡
− Γ2𝑃𝑡

2
]
 
 
 

{
Φ𝑡
1

Φ𝑡
2} − [

Γ1

Γ2
] 𝑇𝑡𝐶𝑡 

(3.53) 

 

3.3.2.1. Sistema de equações para a solução numérica. 

 

Assim, o sistema de equações (3.53) que representa a difusão dependente do tempo pode 

ser apresentada em uma forma simplificada: 
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 [
𝑇11 𝑇12
𝑇21 𝑇22

] {
Φ𝑡+Δ𝑡
1

Φ𝑡+Δ𝑡
2 } = [

𝐸11 𝐸12
𝐸21 𝐸22

] {
Φ𝑡
1

Φ𝑡
2} + [

𝑅1
𝑅2
] {𝐶𝑡} (3.54) 

 

na qual as componentes das matrizes e vetores são dados por: 

 

 𝑇11 =
𝐴1

Δ𝑡
+ 𝐷1 + 𝐻𝑎

1 − 𝐻𝑓
1 − Γ1𝑃𝑡+Δ𝑡

1  (3.55) 

 

 𝑇12 = −Γ
1𝑃𝑡+Δ𝑡

2 − 𝐻𝑓
2 (3.56) 

 

 𝑇21 = −Γ
2𝑃𝑡+Δ𝑡

1 + 𝐻𝑠
1→2 (3.57) 

 

 𝑇22 =
𝐴2

Δ𝑡
+ 𝐷2 + 𝐻𝑎

2 − Γ2𝑃𝑡+Δ𝑡
2  (3.58) 

 

 𝐸11 = (
𝐴1

∆𝑡
− Γ1𝑃𝑡

1) (3.59) 

 

 𝐸12 = −Γ1𝑃𝑡
2 (3.60) 

 

 𝐸21 = −Γ
2𝑃𝑡

1 (3.61) 

 

 𝐸22 = (
𝐴2

∆𝑡
− Γ2𝑃𝑡

2) (3.62) 

 

 𝑅1 = −Γ1𝑇𝑡 (3.63) 

 

 𝑅2 = −Γ2𝑇𝑡 (3.64) 

 

Para resolver o sistema de equações acoplados nas variáveis Φ𝑡+Δ𝑡
𝑔=1

 e Φ𝑡+Δ𝑡
𝑔=2

, 

desmembram-se as componentes referentes aos grupos de energia dos nêutrons. As seguintes 

equações surgem: 
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 𝑇11Φ𝑡+∆𝑡
1 = 𝐸11Φ𝑡

1 + 𝐸12Φ𝑡
2 − 𝑇12Φ𝑡+∆𝑡

2 + 𝑅1𝐶𝑡 (3.65) 

 

 𝑇22Φ𝑡+∆𝑡
2 = 𝐸22Φ𝑡

2 + 𝐸21Φ𝑡
1 − 𝑇21Φ𝑡+∆𝑡

1 + 𝑅2𝐶𝑡 (3.66) 

 

Devido ao grande tamanho do sistema de equação (3.54) e ao acoplamento dos 

componentes do fluxo de nêutrons referentes aos grupos energéticos um método iterativo é 

recomendado para se obter a sua solução desse sistema de equações (VERDÚ etal, 1995). Deve 

ser notado que as sub-matrizes T11, T12, T21, T22, E11, E12, E21 e E22 são simétricas e em particular 

T11 e T22 são diagonais dominantes e positivas, enquanto que a matriz T definida pelas sub-

matrizes Tij não apresenta essas propriedades. Portanto, reescrevendo o sistema de equações na 

forma apresentada em (3.65) e (3.66), ele pode ser eficientemente resolvido por um método de 

solução de sistemas de equações lineares tais como o método de Gauss ou método do gradiente 

conjugado conjuntamente com um método iterativo aplicado as equações (3.65) e 3.66). Os 

métodos iterativos usuais apresentam problemas de convergência se usados diretamente no 

sistema de equações (3.54). 

 

3.3.2.2. Método SOR 

 

Os métodos interativos são aplicados em códigos da teoria da difusão transiente para 

resolver o sistema de equações para os novos estados variáveis. Entre eles pode-se destacar o 

método “Successive Over- Relaxation” (SOR). Este método popular, por ser preciso e eficiente, 

propicia técnicas de aceleração de convergência (VARGA, 1962).  

O Algoritmo utilizado segue os seguintes passos: 

 

1. Utilizar os fluxos de neutrons Φ𝑡=0
1  e Φ𝑡=0

2  da solução estacionária para se obter o novo 

fluxo de nêutrons do grupo 1 Φ𝑡+Δ𝑡
1  à partir da equação definida em (3.65):  

 

 𝑇11[Φ𝑡+Δ𝑡
1 ]𝑖 = 𝐸11Φ𝑡

1 + 𝐸12Φ𝑡
2 − 𝑇12[Φ𝑡+Δ𝑡

2 ]𝑖−1 + 𝑅1𝐶𝑡 (3.67) 

 

2. Obter uma solução estimada para o fluxo de nêutrons do grupo 1 à partir de (3.65) e resolver 

a equação (3.66) para se obter uma estimativa do fluxo de nêutrons do grupo 2 definido por 

Φ𝑡+Δ𝑡
2 : 
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 𝑇22[Φ𝑡+Δ𝑡
2 ]𝑖 = 𝐸22Φ𝑡

2 + 𝐸21Φ𝑡
1 − 𝑇21[Φ𝑡+Δ𝑡

1 ]𝑖 + 𝑅2𝐶𝑡 (3.68) 

 

3. O processo interativo será finalizado quando o critério de convergência definido abaixo for 

atingido, ou seja: 

 

 
|[Φ𝑡+Δ𝑡

𝑔
]
𝑖
| − |[Φ𝑡+Δ𝑡

𝑔
]
𝑖−1
|

|[Φ𝑡+Δ𝑡
𝑔

]
𝑖
|

≤ 𝜖 (3.69) 

 

Onde g define o grupo de energia do fluxo de nêutrons e 𝝐 é a tolerância requerida para 

a convergência. 

 

4. A aceleração do processo iterativo pode ser obtida usando um método SOR, dado por: 

 

 𝑇11[Φ𝑡+Δ𝑡
1 ]𝑖+1 = 𝐸11Φ𝑡

1 + 𝐸12Φ𝑡
2 − 𝑇12[𝜔[Φ𝑡+Δ𝑡

2 ]𝑖 + (1 − 𝜔)[Φ𝑡
2]𝑖−1] (3.70) 

 

 𝑇22[Φ𝑡+Δ𝑡
2 ]𝑖+1 = 𝐸22Φ𝑡

2 + 𝐸21Φ𝑡
1 − 𝑇21[𝜔[Φ𝑡+Δ𝑡

1 ]𝑖+1 + (1 − 𝜔)[Φ𝑡
1]𝑖] (3.71) 

 

Para i=1, o esquema ficará com o seguinte aspecto: 

 

 𝑇11[Φ𝑡+Δ𝑡
1 ]𝑖=2 = 𝐸11Φ𝑡

1 + 𝐸12Φ𝑡
2 − 𝑇12[𝜔[Φ𝑡+Δ𝑡

2 ]𝑖=1 + (1 − 𝜔)[Φ𝑡
2]𝑖=0] (3.72) 

 

 𝑇22[Φ𝑡+Δ𝑡
2 ]𝑖=2 = 𝐸22Φ𝑡

2 + 𝐸21Φ𝑡
1 − 𝑇21[𝜔[Φ𝑡+Δ𝑡

1 ]𝑖=2 + (1 − 𝜔)[Φ𝑡
1]𝑖=1] (3.73) 

 

Onde, 𝜔 é o fator de relaxamento e é tipicamente escolhido como 1.5, [Φ𝑡+Δ𝑡
1 ]𝑖=0 e 

[Φ𝑡+Δ𝑡
2 ]𝑖=1 são os termos das equações (3.72) e (3.73) conhecidos no processo interativo 

anterior i=0 e i=1. O termo [Φ𝑡+Δ𝑡
2 ]𝑖=2 da equação (3.73) é conhecido depois de se resolver a 

equação (3.68). O processo é concluído quando as seguintes condições são satisfeitas: 

 

 ‖[Φ𝑡+∆𝑡
𝑔

]
𝑖+1

− [Φ𝑡+∆𝑡
𝑔

]
𝑖
‖ < 𝑡𝑜𝑙 (3.74) 
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4. RESULTADOS NUMÉRICOS 

 

O objetivo deste capítulo é apresentar os resultados numéricos obtidos para o fluxo de 

nêutrons utilizando o método dos elementos finitos e compara-los com os resultados numéricos 

do fluxo de nêutrons obtidos pelo método de diferenças finitas, em uma dimensão, presentes 

nas literaturas. 

Assume-se como condição inicial, que a distribuição do fluxo de nêutrons no reator será 

dada pela solução da equação da difusão, em estado estacionário e definida como problema de 

autovalor. Desta forma, podemos determinar as concentrações iniciais de nêutrons precursores 

usando o fluxo de nêutrons do problema de autovalor, para serem utilizados nos cálculos de 

transientes usando as equações da cinética espacial.  

 

4.1. EXEMPLOS NUMÉRICOS UNIDIMENSIONAIS 

 

O primeiro e o segundo problema de teste são os reatores tipo placa BSS-6 –A1 e BSS-

6 - A2 (ANL-7416, 1977), com uma dimensão. Os resultados numéricos obtidos com o método 

dos elementos finitos são comparados com os resultados encontrados na literatura (diferenças 

finitas). 

A utilização da equação (3.54) permite a simulação numérica da equação da cinética 

espacial e comparações dos resultados numéricos nas seguintes propriedades: concentração dos 

precursores (estático e temporal), fator criticalidade keff e fluxo de nêutrons, nos exemplos 

numéricos BSS-6-A1 e BSS-6-A2 (ANL-7416, 1977). 

O problema teste na fase inicial do programa MEF é um reator tipo placa de uma 

dimensão (NAGAYA e KOBAYASHI, 1995), com três regiões. As regiões extremas 1 e 3 são 

compostas por um combustível com as mesmas propriedades físicas e a região 2, central, 

composta por um combustível com propriedades diferentes das regiões 1 e 3. Como condição 

de contorno, aplica-se a condição de fluxo nulo nas extremidades do núcleo do reator como 

mostrado na figura 2. 
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Figura 2: Geometria do reator tipo placa com uma dimensão BSS – 6 (ANL-7416, 1977). 

 

 

Figura 3: Discretização do reator tipo placa 

 

Na figura 2 mostra-se a geometria do reator e na figura 3 mostra-se a discretização do 

núcleo do reator utilizando vinte quatro elementos finitos unidimensionais quadráticos com o 

mesmo comprimento para todos os elementos. Para testar a convergência do método outras 

discretizaçãoes são utilizadas tais como 6, 48, 96, 104 e 192 elementos finitos. 

O principal motivo da escolha deste modelo de reator como problema teste, é devido as 

suas características serem simplificadas em relação aos reatores reais, podendo assim, utilizar 

as equações da cinética espacial e um amplo aporte teórico, que permite a verificação da 

precisão do método dos elementos finitos. 

A precisão do método dos elementos finitos é testada com a utilização da solução do 

problema numérico BSS-6 (ANL-7416, 1977), que pode ser calculado por diferentes métodos: 

nodal, elementos finitos, diferenças finitas, etc. Na tabela 1 são apresentados os valores dos 

parâmetros físicos de cada região do reator (NAGAYA e KOBAYASHI, 1995). 
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Constantes Região 1 e 3 Região 2 

D1 (cm) 1.5 1.0 

D2 (cm) 0.5 0.5 

Σ𝑎1(𝑐𝑚
−1) 0.026 0.02 

Σ𝑎2(𝑐𝑚
−1) 0.18 0.08 

Σ1→2(𝑐𝑚
−1) 0.015 0.01 

𝑣Σ𝑓1(𝑐𝑚
−1) 0.01 0.005 

𝑣Σ𝑓2(𝑐𝑚
−1) 0.2 0.099 

𝜒1 1.0 1.0 

𝜒2 0.0 0.0 

𝑣1(𝑐𝑚 𝑠⁄ ) 1.0 x 107 1.0 x 107 

𝑣2(𝑐𝑚 𝑠⁄ ) 3.0 x 105 3.0 x 105 

Constantes dos Nêutrons Atrasados 

Grupos 𝜷𝒊̅̅ ̅ 𝝀𝒊(𝒔𝒆𝒄
−𝟏) 

1 0.00025 0.0124 

2 0.00164 0.0305 

3 0.00147 0.1110 

4 0.00296 0.3010 

5 0.00086 1.1400 

6 0.00032 3.0100 

Tabela 1: Constantes de grupo para 1-D ANL-BSS-6 (ANL-7416, 1977). 

 

4.1.1. Comparação com a solução estacionária. 

 

Para efeito de comparação, utiliza-se as soluções obtidas pelos métodos de diferenças 

finitas (LIMA, 2005) e o valor de referência do fator de criticalidade (ANL-7416,1977). Nestes 

métodos as variáveis dependentes são as fontes de fissão em cada nó ou a derivação do núcleo 

(NAGAYA e KOBAYASHI, 1995), e para resolver a equação de difusão de nêutrons é utilizado 
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o método direto (OTT e MENELY,1969). Os resultados numéricos dos fatores de criticalidade 

do reator obtidos na literatura e no programa MEF são apresentados na tabela 2. 

Para o método dos elementos finitos foram utilizados 6, 24, 48, 96 e 192 elementos 

finitos e para o caso do método das diferenças finitas foram utilizados 6, 24, 48, 96, 192 pontos. 

Deve-se lembrar que o número de nós para o elemento finito unidimensional quadrático é de 

2n+1 onde n é o número de elementos. 

 

Método de Diferenças 

Finitas (Lima, 2005) 

Método de Elementos Finitos 

(Elementos finitos quadráticos) 

Benchmark (referência) Fator de 

criticalidade (ANL-7416,1977) 

0.936125  

(6 Pontos) 

0.9000870  

(6 Elementos Finitos) 

0.9015507 

0.903943  

(24 Pontos) 

0.9015320  

(24 Elementos Finitos) 

0.902285  

(48 Pontos) 

0.9015870  

(48 Elementos Finitos) 

0.901772  

(96 Pontos) 

0.9015960  

(96 Elementos Finitos) 

0.901540  

(192 Pontos) 

0.9015960  

(192 Elementos finitos) 

Tabela 2: Comparação do fator de criticalidade do reator keff. 

 

Analisando os resultados obtidos na tabela 2, o programa MEF apresenta uma boa 

precisão mesmo com baixo número de elementos finitos quadráticos e a convergência do fator 

de criticalidade se situa no valor de 0.9015960. Para o cálculo dos fluxos de nêutrons desse 

problema faz-se necessário inicialmente realizar uma comparação do fluxo de nêutrons 

calculados pelo método dos elementos finitos (MEF) e pelo método das diferenças finitas 

(MDF) com o intuito de escolher uma malha de elementos finitos que reduza as divergências 

entre os dois métodos, para os fluxos de nêutrons. Apresenta-se na figura 4, o fluxo de nêutrons 

térmicos obtidos pelo método dos elementos finitos e pelo método das diferenças finitas. 

Comparando-se os resultados obtidos pelo MEF e pelo MDF, verifica-se que uma discretização 

acima de 40 elementos finitos, no caso do MEF, permite se obter uma boa representação dessas 

variáveis em comparação com o MDF. Para a discretização do núcleo do reator será escolhida 

uma malha composta por 80 elementos finitos. 
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Figura 4: Comparação do fluxo de nêutrons térmicos para o tempo t=0.0 s calculados usando 

o MEF (10, 20, 40, 80 e 120 elementos finitos) e o MDF. 

 

Na figura 4 e na figura 7, são apresentados respectivamente os fluxos rápido e térmico 

de nêutrons, calculados pelo programa MEF usando oitenta elementos finitos quadráticos em 

uma dimensão (cento e sessenta e um nós) e são comparados aos fluxos rápido e térmico obtidos 

pelo método de diferenças finitas (LIMA, 2005), ambos no caso estático. A tolerância utilizada 

no programa de elementos finitos para o cálculo estacionário foi de 10-10 e 10-7 para o método 

de diferenças finitas (LIMA,2005). 
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Figura 5: Comparação do fluxo de nêutrons rápido estacionário entre MEF e MDF. 

 

 

Figura 6: Comparação do fluxo de nêutrons térmico estacionário entre MEF e MDF. 
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4.1.2. Comparação com a solução dependente do tempo 

 

4.1.2.1. Exemplo numérico BSS-6-A1 

 

No problema BSS-6-A1, a seção de choque de absorção do grupo 2, na primeira região, 

é linearmente maior 3% em um segundo. Para o cálculo dos fluxos de nêutrons desse problema 

faz-se necessário inicialmente realizar uma comparação da concentração dos precursores 

calculados pelo método dos elementos finitos (MEF) e pelo método das diferenças finitas 

(MDF), no caso estacionário, com o intuito de escolher uma malha de elementos finitos que 

melhor represente a função das concentrações dos precursores. A comparação da solução dos 

fluxos de nêutrons entre os dois métodos para já foi realizada anteriormente também para a 

análise estacionária. 

 

 

Figura 7: Comparação da concentração do precursor l=1 para o tempo t=0.0 s calculados  

usando o MEF (10, 20, 40, 80 e 120 elementos finitos) e o MDF (240 pontos). 

 

Apresenta-se na figura 7 a concentração dos precursores obtidos pelo método dos 

elementos finitos e pelo método das diferenças finitas. Comparando-se os resultados obtidos 
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pelo MEF e pelo MDF, verifica-se novamente que uma discretização maior que 40 elementos 

finitos, no caso do MEF, também se obtém uma boa representação para essa variável. É 

importante ressaltar que a colocação de um nó na linha de centro (CL) do núcleo do reator 

permite obter uma melhor simetria dos resultados como é esperado no cálculo do núcleo de um 

reator simétrico. Com base nessa comparação de resultados feita anteriormente para o caso 

estacionário, utiliza-se no cálculo das variações temporais das concentrações de precursores e 

dos fluxos de nêutrons uma discretização com 80 elementos finitos quadráticos. 

Na figura8 apresenta-se uma comparação dos resultados obtidos, no caso estacionário, 

para as concentrações dos precursores i=1, 2, 3, 4, 5 e 6 entre o MEF utilizando 80 elementos 

finitos e o MDF utilizando 240 pontos. 

 

 

Figura 8: Comparação da concentração dos nêutrons precursores (i=1, 2, 3, 4, 5 e 6) para  

o tempo t=0.0 s calculados usando o MEF (80elementos finitos) e o MDF (240 pontos). 

 

Na figura 9 é apresenta-se a evolução temporal do fluxo de nêutrons para o grupo rápido 

obtidos pelo programa MEF com os obtidos por MDF para os tempos t=0.0, 0.5, 1.0 e 2.0s.  
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Figura 9: Comparação da evolução temporal dos fluxos de nêutrons rápidos obtidos 

 pelo MEF (80elementos finitos) e MDF (240 pontos). 

 

 

Figura 10: Comparação da evolução temporal do fluxo de nêutrons térmicos  

obtidos pelo MEF (80elementos finitos) e pelo MDF (240 pontos). 
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Na figura 10 acima, apresenta-se uma comparação da evolução temporal dos fluxos de 

nêutrons do grupo térmico, obtida pelo MEF e pelo MDF para os tempos t=0.0, 0.5, 1.0 e 2.0s. 

Foi utilizada uma tolerância de 10-6 para os fluxos de nêutrons e os seis grupos de nêutrons 

precursores para o caso do MEF e de 10-7 para o caso do MDF com um passo de tempo de ∆t 

= 0.01 s para ambos.  

Na figura 11 apresenta uma comparação da concentração dos precursores do grupo 1 

avaliados nos tempos t=0.0s e t=2.0s para o MEF e o MDF. 

 

 

Figura 11: Comparação da concentração dos precursores do grupo l=1 avaliados no  

tempo t=0.0s e t=2.0s para o MEF (80elementos finitos) e o MDF (240 pontos). 

 

Na figura 12 apresenta-se uma comparação entre os resultados obtidos para o fluxo de 

nêutrons do grupo térmico utilizando o MDF, com pontos equidistantes, e o MEF com uma 

discretização de 104, 120, 318 e 564 elementos finitos com tamanhos variados e com 

concentração nas regiões onde o fluxo térmico sofre grandes variações, isto é, nas regiões em 

torno das coordenadas x=40 e 200 cm. 

Verifica-se existir uma variação máxima em torno de 10% entre as soluções do MEF 

com tamanho de elementos variáveis e do MDF com pontos equidistantes para o caso do fluxo 

térmico. 
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Figura 12: Comparação do fluxo de nêutrons térmicos entre o MEF, com  

elementos de tamanho variado, e o MDF. 

 

4.1.2.2. Exemplo numérico BSS-6-A2 

 

Este exemplo é similar ao exemplo anterior com mudanças apenas na seção de choque 

de absorção do grupo 2. Nesse caso, a seção de choque de absorção na região 1 diminui 

linearmente de 1% em um segundo. 

Os resultados obtidos pelo programa MEF fazem uso da solução direta das equações da 

cinética espacial. Eles são comparados às soluções calculadas e apresentadas por vários 

referenciais teóricos utilizando diferentes métodos tais como o método nodal, o método das 

diferenças finitas, ...etc. 

Mantém-se neste exemplo a mesma discretização utilizada anteriormente de 80 

elementos finitos quadráticos unidimensionais com o mesmo comprimento para todos os 

elementos. Para este exemplo, os fluxos de nêutrons calculados pelo programa MEF, para os 

grupos rápidos e térmicos, são apresentados nas figura 13 e figura 14, respectivamente, e 

comparados com os resultados do MDF nos tempos t = 0.0, 0.5, 1 e 2s. A tolerância utilizada 

no MEF foi de 10-6 e no MDF (LIMA, 2005) de 10-7 ambos com um passo de tempo ∆t=0.01s. 

Podemos observar que os resultados obtidos pelo MEF são qualitativamente similares aos 
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obtidos pelo MDF mas, com uma solução apresentando um certo amortecimento nos valores 

do fluxo, característica similar ao notado no exemplo anterior. 

 

 

Figura 13: Comparação da evolução temporal do fluxo de nêutrons rápidos obtidos  

pelo MEF (80 elementos finitos) e pelo MDF (240 pontos) para o modelo bss-6-a2. 

 

 

Figura 14: Comparação da evolução temporal do fluxo de nêutrons térmicos obtidos pelo  

MEF (80 elementos finitos) e pelo MDF (240 pontos) para o modelo bss-6-a2.
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5. CONCLUSÕES 

 

A solução das equações da cinética espacial unidimensional com seis grupos de nêutrons 

precursores e dois grupos de energia foi obtida nesse trabalho, utilizando-se uma aproximação 

espacial do domínio e das variáveis pelo método de elementos finitos e uma aproximação 

temporal pelo método direto de Euler implícito. A equação diferencial da concentração dos 

precursores é resolvida por integração analítica.  

Para a solução do problema não linear da equação de difusão de nêutrons no espaço-

tempo, apresentada pela equação (3.54), foi criado um módulo denominado CINE no programa 

MEF utilizando a linguagem de programação Fortran. Para uma aproximação espacial da 

geometria [𝒙]𝑙
𝑒, do fluxo de nêutrons 𝐮𝑙

𝑒 e 𝐮̇𝑙
𝑒 para dois grupos de energia e das concentrações 

dos nêutrons precursores 𝐶𝑡
𝑒  para os seis grupos recorreu-se ao método dos elementos finitos 

utilizando um elemento finito unidimensional quadrático definido num sub-domínio Ω𝑒 com 

coordenadas de referência local. A passagem das coordenadas locais para as globais é feita 

mediante uma transformação jacobiana do sistema local (𝜂, 𝜁 𝑒 𝜉) para o global (𝑥, 𝑦 𝑒 𝑧). Para 

a solução da equação integral da cinética espacial, utiliza-se o método de Galerkin com uma 

função peso 𝐰𝑙
𝑒 do mesmo tipo que a utilizada para o fluxo de nêutrons 𝐮𝑙

𝑒. A solução temporal 

pelo método direto faz uso do método Euler Implícito. Com a utilização das soluções 

estacionária (equação de difusão de nêutrons definida como um problema de autovalor) os 

valores de Φ𝑡 e C𝑡 são obtidos e substituídos na equação (3.51) o que permitirá o 

desenvolvimento dos cálculos das evoluções temporais das variáveis: Φ𝑡+Δ𝑡 e C𝑡+Δ𝑡. 

A solução analítica da equação (3.51), após a aproximação da concentração dos nêutrons 

precursores por elementos finitos, é disposta em forma matricial com a finalidade de ser 

utilizada com os algoritmos interativos apresentados nas equações (3.67) e (3.68) em função do 

tempo. Contudo, a concentração dos nêutrons precursores no tempo inicial t=0 são definidos 

pela solução estacionária da equação da concentração de nêutrons precursores. 

Como saída de resultados, o programa MEF fornece os comportamentos dos fluxos 

térmico e rápido, a concentração dos precursores estacionários, a concentrações dos precursores 

no tempo e o fator de multiplicação. 

No caso estacionário, a tabela 2 apresenta uma comparação dos resultados numéricos 

obtidos pelo método dos elementos finitos (MEF), pelo método de diferenças finitas (LIMA, 

2005) e por uma referência numérica internacional (ANL-7416, 1977) para o caso BSS-6-A. O 

fator de criticalidade do reator obtido pelo programa MEF apresenta uma boa precisão mesmo 
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com número baixo de elementos quadráticos com os outros referenciais numéricos. Portanto, 

pode-se verificar também que o programa MEF nesse problema de teste estacionário, utilizado 

para avaliar o desempenho do módulo CINE do programa MEF, fornece um comportamento 

qualitativo correto também para o fluxo de nêutrons rápidos e térmicos são apresentados pelas 

figuras 5 e 6, respectivamente. A tolerância utilizada para os autovalores (fator de criticalidade) 

e autovetores (fluxos de nêutrons) no programa MEF (elementos finitos) foi de 1x10-10 

enquanto que a tolerância apresentada pelo referencial numérico em diferenças finitas (LIMA, 

2005) foi de 1x10-7. 

No caso dependente do tempo, em que se tratou do problema BSS-6-A1, as variações 

temporais do fluxo de nêutrons para o grupo de energia rápido e térmico e para a concentração 

de precursores, utilizando uma aproximação de 80 elementos finitos unidimensionais 

quadráticos, apresentaram para ambos os métodos a mesma convergência no tempo com um 

desvio no fluxo de nêutrons, do tipo amortecimento, nos tempos t = 0.5, 1.0 e 2.0 segundos. 

Algumas melhorias devem ser aplicadas ao MEF no intuito de aproximar a solução obtida por 

esse programa a solução obtida por diferenças finitas. O desvio em relação a distribuição do 

fluxo inicial é predominante na região 1 onde a variação da seção de choque de absorção é 

aplicada. O tempo de convergência para o processamento dessas soluções é praticamente o 

mesmo. 

No segundo caso dependente do tempo definido pelo modelo BSS-6-A2 a seção de 

choque de absorção da região 1 do grupo dois de energia diminui linearmente em 1% em um 

segundo, os fluxos de nêutrons calculados pelo programa MEF para os grupos rápidos e 

térmicos apresentaram um desvio relativamente grande, predominantemente na região 1, onde 

a variação da seção de choque de absorção é aplicada. Nesse caso, também foram utilizados 80 

elementos finitos unidimensionais quadráticos, uma tolerância de 10-6 e um passo de tempo de 

∆t=0.01 segundos. Podemos afirmar que, apesar do método direto desenvolvido no módulo 

CINE do programa MEF convergir no caso I e II o comportamento quantitativo dos fluxos de 

nêutrons no tempo, tanto no caso I como no caso II, precisa ser estudado mais criteriosamente 

para averiguar o que estaria produzindo um amortecimento crescente da solução com o tempo.
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APÊNDICE A. DIFUSÃO ESTACIONÁRIA DE NÊUTRONS 

 

A.1. O PROBLEMA DE DIFUSÃO ESTACIONÁRIA DE NÊUTRONS 

 

A.1.1. Para um grupo de energia 

 

A equação da difusão para um grupo de energia, definida como um problema de 

autovalor é dada por: 

 

 −𝑫∇2𝜙(𝑥, 𝑡) + Σ𝑎𝜙(𝑥, 𝑡) =
1

𝑘𝑒𝑓𝑓
𝑣Σ𝑓 𝜙(𝑥, 𝑡) (A.1) 

 

A.1.2. Para dois grupos de energia 

 

A equação da difusão estacionária pode ser obtida por meio da equação (2.24), 

eliminando a variação do fluxo de nêutrons no tempo. 

 

 −𝛻.𝑫𝛻𝒖(𝑥) + 𝑯𝒖(𝑥) = 𝒔         (A.2) 

 

onde D é a matriz diagonal dos coeficientes de difusão: 

 

 𝑫 = 𝑑𝑖𝑎𝑔[𝐷1, … . , 𝐷𝐺][𝐺𝑥𝐺]
𝑇  (A.3) 

 

e onde  𝑯 é a matriz composta das matrizes das seções de choque de remoção 𝑯𝑹, das seções 

de choque de espalhamento 𝑯𝒔 e das seções de choque de fissão dos nêutrons 𝑯𝒇: 

 

 𝑯 = 𝑯𝑹 −𝑯𝒔 −𝑯𝒇 (A.4) 

 

Para dois grupos de energia, o rápido (1) e o térmico (2), D apresenta a seguinte forma 

matricial: 

 

 𝑫̅ = [𝐷
1 0
0 𝐷2

]
(𝟐𝒙𝟐)

 (A.5) 
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e a matriz H a forma; 

 

 𝑯𝑹 = [
Σ𝑅
1 0

0 Σ𝑅
2]
(𝟐𝒙𝟐)

 (A.6) 

 

 𝑯𝒔 = [
0 Σ𝑠

2→1

Σ𝑠
1→2 0

]
(𝟐𝒙𝟐)

 (A.7) 

 

 𝑯𝒇 = [
𝜒0
1𝑣Σ𝑓

1 𝜒0
1𝑣Σ𝑓

2

𝜒0
2𝑣Σ𝑓

1 𝜒0
2𝑣Σ𝑓

2]

(2𝑥2)

 (A.8) 

 

O vetor do fluxo de nêutrons u, nesse caso,  é representado por: 

 

  𝒖 = {𝜙1, … . , 𝜙𝐺}𝑇 = {Φ}[𝐺𝑥1] = {
𝜙1
𝜙2
}
(2𝑥1)

 (A.9) 

 

Deve-se ser considerado no caso de dois grupos de energia, que essencialmente todos 

nêutrons de fissão nascem no grupo rápido. Portanto, os espectros de fissão são dados por 

(DUDERSTADT,1976): 

 

 𝜒1 = ∫ 𝜒(𝐸)𝑑𝐸 = 1
𝐸0

𝐸1

 (A.10) 

 

 𝜒2 = ∫ 𝜒(𝐸)𝑑𝐸 = 0
𝐸1

𝐸2

 (A.11) 

 

A fonte de fissão somente aparece no grupo pronto da equação: 

 

 𝒔𝑓
1 = 𝑣1Σ𝑓

1𝜙1 + 𝑣2Σ𝑓
2𝜙2  (Pronto) (A.12) 

 

 𝒔𝑓
2 = 0  (Térmico) (A.13) 
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Então, a seção de choque de remoção para o grupo térmico é somente: 

 

 Σ𝑅
2 = Σ𝑎

2 − Σ𝑠
2→1 = Σ𝑎

2 (A.14) 

 

Considerando a aplicação da teoria da difusão para dois grupos de energia para reatores 

crítico, pode-se então assumir que as derivadas no tempo e o termo da fonte externa são iguais 

a zero. Desta forma, a equação da difusão para dois grupos de energia, definida como um 

problema de autovalor é: 

 

 −∇.𝐷1∇𝜙1 + Σ𝑅
1𝜙1 =

1

𝜆
(𝑣Σ𝑓

1𝜙1 + 𝑣Σ𝑓
2𝜙2) (A.15) 

 

 −∇.𝐷2∇𝜙2 + Σ𝑎
2𝜙2 = Σ𝑠

1→2𝜙1 (A.16) 
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A.2. FORMULAÇÃO INTEGRAL DA EQUAÇÃO DA DIFUSÃO ESTACIONÁRIA 

 

A.2.1. Formulação integral para dois grupos de energia  

 

Para se obter a formulação fraca da equação da difusão estacionária, utilizam-se as 

equações (3.17) e (3.18) na forma integral para dois grupos de energia definida no domínio Ω. 

Utilizando a formulação de Galerkin, iguala-se a função peso w com o fluxo de nêutrons u na 

equação (3.11). As equações da difusão estacionária tomam a seguinte forma: 

 

 −∫ 𝜙1∇. 𝐷1∇𝜙1

Ω

𝑑Ω +∫ 𝜙1

Ω

[Σ𝑅
1𝜙1 −

1

𝜆
(𝑣Σ𝑓

1𝜙1 + 𝑣Σ𝑓
2𝜙2)] 𝑑Ω = 0 (A.17) 

 

 −∫ 𝜙2∇. 𝐷2∇𝜙2

Ω

𝑑Ω +∫ 𝜙2

Ω

[Σ𝑎
2𝜙2 − Σ𝑠

1→2𝜙1]𝑑Ω = 0 (A.18) 

 

Reescrevendo-as, tem-se: 

 

 ∫ (−𝜙1

Ω

. ∇𝐷1∇𝜙1 + 𝜙1Σ𝑅
1𝜙1)𝑑Ω = ∫

1

𝜆Ω

𝜙1[(𝑣Σ𝑓
1𝜙1 + 𝑣Σ𝑓

2𝜙2)]𝑑Ω (A.19) 

 

 ∫ (−𝜙2

Ω

. ∇𝐷2∇𝜙2 + 𝜙2Σ𝑅
2𝜙2)𝑑Ω = ∫ 𝜙2[(Σ𝑠

1→2𝜙1)]
Ω

𝑑Ω (A.20) 

 

A.3. SOLUÇÃO ESTACIONÁRIA DA EQUAÇÃO DA DIFUSÃO DE NÊUTRONS  

 

A.3.1. Aproximações das equações da difusão por elementos finitos  

 

A geometria e os fluxos de nêutrons são aproximados por elementos finitos definidos 

num subdomínio Ω𝑒: 

 

 𝑥 =∑(𝑥)𝑒
𝑛𝑒

𝑖=1

 (A.21) 
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 (𝜙𝑔)𝑒 = ∑([𝜙]𝑖
𝑔
)
𝑒

𝑛𝑛𝑒𝑙

𝑖=1

 (A.22) 

 

no qual ne é o número de elementos finitos resultante da discretização do domínio. A 

justaposição dos elementos finitos define uma aproximação para todo o domínio: 

Para cada subdomínio, as funções de aproximação são definidas pela interpolação da 

geometria (equação A.23) e do fluxo de nêutrons (equação A.24) da seguinte forma: 

 

 𝑥𝑒 = ∑ 𝑁𝑖(𝑥𝑖)
𝑒

𝑛𝑛𝑒𝑙

𝑖=1

 (A.23) 

 

 (𝜙𝑔)𝑒 = ∑ 𝑁𝑖([𝜙]𝑖
𝑔
)
𝑒

𝑛𝑛𝑒𝑙

𝑖=1

 (A.24) 

 

 (∇𝜙𝑔)𝑒 =

{
 
 

 
 𝜕(∑ 𝑁𝑖[𝜙]𝑖

𝑔
)𝑒𝑛𝑛𝑒𝑙

𝑖=1

𝜕𝑥
𝜕(∑ 𝑁𝑖[𝜙]𝑖

𝑔
)𝑒𝑛𝑛𝑒𝑙

𝑖=1

𝜕𝑦 }
 
 

 
 

 (A.25) 

 

onde 𝑁𝑖 é a função de interpolação definida para o nó i e elemento e e, nnel é número de nós 

por elemento. 

 

A.3.2. Aproximação para duas dimensões 

 

Na utilização de um sistema de coordenadas cartesianas em 2D e elementos finitos 

triangulares lineares, a geometria aproximada pode ser obtida pelas seguintes expressões: 

 𝑥𝑒 = {𝑁1, 𝑁2, 𝑁3} {

𝑥1
𝑥2
𝑥3
}

𝑒

 (A.26) 

 

 𝑦𝑒 = {𝑁1, 𝑁2, 𝑁3} {

𝑦1
𝑦2
𝑦3
}

𝑒

 (A.27) 

 

E para fluxo de nêutrons: 
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 (𝜙𝑔)𝑒 = {𝑁1 𝑁2 𝑁3} {

𝜙1
𝑔

𝜙2
𝑔

𝜙3
𝑔

}

𝑒

    (A.28) 

 

O gradiente do fluxo de nêutrons da equação (A.29), é dado por: 

 

 
(∇𝜙𝑔)𝑒 =

{
 
 

 
 𝜕(∑ 𝑁𝑖[𝜙]𝑖

𝑔
)𝑒𝑛𝑛𝑒𝑙

𝑖=1

𝜕𝑥
𝜕(∑ 𝑁𝑖[𝜙]𝑖

𝑔
)𝑒𝑛𝑛𝑒𝑙

𝑖=1

𝜕𝑦 }
 
 

 
 

= (∇ [
𝑁1,𝑥 𝑁2,𝑥 𝑁3,𝑥
𝑁1,𝑦 𝑁2,𝑦 𝑁3,𝑦

] {

𝜙1
𝑔

𝜙2
𝑔

𝜙3
𝑔

})

𝑒

= [∇𝑁]𝑒{Φ𝑔}𝑒 

(A.29) 

 

Aplicando a equação (A.29) nas equações da difusão (A.19) e (A.20), obtém-se os 

seguintes sistemas de equações: 

 

  

∑(

𝑛𝑒

𝑖=1

∫ ([∇𝑁]𝑒

Ω𝑒
. 𝐷1[∇𝑁]𝑒 + {𝑁}𝑒Σ𝑡

1{𝑁}𝑒){Φ1}𝑒𝑑Ω𝑒)

=∑(∫
1

𝜆
{𝑁}𝑒{Φ1}𝑒

Ω𝑒
(𝑣Σ𝑓

1{𝑁}𝑒{Φ1}𝑒
𝑛𝑒

𝑖=1

− 𝑣Σ𝑓
2{𝑁}𝑒{Φ2}𝑒)𝑑Ω𝑒)    

(A.30) 

 

 

∑(

𝑛𝑒

𝑖=1

∫ [[∇𝑁]𝑒 . 𝐷2[∇𝑁]𝑒 + {𝑁}𝑒Σ𝑎
2{𝑁}𝑒]

Ω𝑒
{Φ2}𝑒𝑑Ω𝑒)

=∑(

𝑛𝑒

𝑖=1

∫ {Φ2}𝑒{𝑁}𝑒Σ𝑠
1→2

Ω

 {𝑁}𝑒 {Φ1}𝑒𝑑Ω𝑒 ) 

(A.31) 

 

Pode-se definir as matrizes K e M como sendo: 

 

 [𝑲1]𝑒 = [𝑫1]𝑒 + [𝑯𝒂
1]𝑒 + [𝑯𝑠

1]𝑒 (A.32) 

 

 [𝑲2]𝑒 = [𝑫2]𝑒 + [𝑯𝑎
2]𝑒 (A.33) 
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 [𝑴1]𝑒 = [𝑯𝑓
1]
𝑒
+ [𝑯𝑓

2]
𝑒
 (A.34) 

 

Se discretizar o fluxo de nêutrons em dois grupos de energias (G=2) produz os seguintes 

sistemas de equações: 

 

 (𝑫1 +𝑯𝑎
1+𝑯𝑠

1) = Λ(𝑯𝑓
1 +𝑯𝑓

2)Φ1 (A.35) 

 

 (𝑫2 +𝑯𝑎
2)Φ2 = 𝑯𝑠

1→2Φ1 (A.36) 

 

No qual, os componentes da matriz H são definidos nas equações (A.32) e (A.33): 

 

 𝑯𝑎 = −𝑣𝑔′Σ𝑎
𝑔′
𝛿𝑔𝑔′ (A.37) 

 

 𝑯𝑠 = (1 − 𝛿𝑔𝑔′)𝑣𝑔Σ𝑠
𝑔′→𝑔

 (A.38) 

 

 𝑯𝑓 = (1 − 𝛽)𝑣𝑔𝜒0
𝑔
(𝑣Σ𝑓 )

𝑔′ (A.39) 

 

Com as aplicações das equações (A.33) e (A.34) nas equações (A.30) e (A.31) elas 

podem ser reescritas como: 

 

 ∑[𝑲1]𝑒{Φ1}𝑒
𝑛𝑒

𝑒=1

=
1

λ
∑[𝑴1]𝑒{Φ1}𝑒
𝑛𝑒

𝑒=1

 (A.40) 

 

 ∑[𝑲2]𝑒{Φ2}𝑒 =∑[𝑯𝑠
1→2]𝑒{Φ1}𝑒

𝑛𝑒

𝑒=1

𝑛𝑒

𝑒=1

 (A.41) 

 

Sendo que: 

 [𝑲1]𝑒 = ∫ ([∇𝑁]𝑒 . 𝐷1[∇𝑁]𝑒 + {𝑁}𝑒Σ1{𝑁}𝑒)𝑑Ω𝑒

Ω𝑒
 (A.42) 

 

 [𝑴1]𝑒 = ∫ {𝑁}𝑒

Ω𝑒
(𝑣Σ𝑓

1{𝑁}𝑒 − 𝑣Σ𝑓
2{𝑁}𝑒)𝑑Ω𝑒 (A.43) 
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 [𝑲2]𝑒∫ ([∇𝑁]𝑒 . 𝐷2[∇𝑁]𝑒 + {𝑁}𝑒Σ2{𝑁}𝑒)𝑑Ω𝑒

Ω𝑒
 (A.44) 

 

 [𝑯𝑠
1→2]𝑒 = ∫ {𝑁}𝑒

Ω𝑒
Σ𝑠
1→2{𝑁}𝑒𝑑Ω𝑒 (A.45) 
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APÊNDICE B. DEFINIÇÕES DAS MATRIZES DA DIFUSÃO DE NÊUTRONS 

DINÂMICO 

 

 

 

 

(B.1) 

 

  (B.2) 

 

𝐻𝑎 : matriz de absorção de nêutrons 

 

 

 

(B.3) 

 

𝐻𝑠
𝑑: matriz de espalhamento down de nêutrons 

 

 

 

(B.4) 

 

𝐻𝑠
𝑢: matriz de espalhamento up de nêutrons 

 

 

 

(B.5) 

 

𝐻𝑓: matriz de fissão de nêutons 
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(B.6) 

 

Supondo para somente dois grupos de energia, as matrizes têm as seguintes forma: 

𝐻𝑎 : matriz de absorção de nêutrons 

: 

 

(B.7) 

 

𝐻𝑠
𝑑: matriz de espalhamento down de nêutrons 

 

 

 

(B.8) 

 

𝐻𝑠
𝑢: matriz de espalhamento up de nêutrons 

 

 

 

(B.9) 

 

Hf: matriz da fissão de nêutrons 

 

 

 

(B.10) 

 

Onde: 

 

  (B.11) 

 

  (B.12) 
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(B.13) 

 

A equação (3.51) pode ser escrita na seguinte forma matricial: 

 

  (B.14) 

 

Definindo nnel como o número de nós por elemento, isto é possível os graus de liberdade 

de cada grupo de energia: 

 

 

 

(B.15) 

 

 

 

(B.16) 

 

Deste modo a matriz Tt pode ser escrita por: 
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(B.17) 

 

  (B.18) 

 

Definindo as variáveis fi e hi como: 

 

 

 

(B.19) 

 

 

 

(B.20) 

 

As matrizes Pt e Pt+∆t pode ser expressas nas formas: 

 

 
 

(B.21) 

 

 
 

(B.22) 

 

Onde: 
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(B.23) 

 

 

 

(B.24) 

 

Usando os dois grupos de energia para nêutrons prontos ambas as matrizes têm as 

seguintes formas: 

 

 
 

(B.25) 

 

 
 

(B.26) 

 

E o fluxo de nêutrons atrasados tem a seguinte forma: 

 

 
 

 

(B.27) 
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APÊNDICE C. DESCRIÇÃO DO PROGRAMA MEF 

 

Este tópico descreve o programa MEF (Método de Elementos Finitos), os seus aspectos 

gerais tal como as suas aplicabilidades, os métodos numéricos nele empregados e as suas sub-

rotinas. 

Em seguida mostra-se os fluxogramas (esquema iterativo da solução do problema 

dinâmico linear usando passo a passo, organização geral do programa MEF e estrutura geral do 

bloco CINE) e uma descrição sucinta de cada sub-rotina do programa MEF (bloco CINE), 

detendo-se com maiores detalhes nas sub-rotinas cuja função é o desenvolvimento dos cálculos 

e da execução da solução do problema. 

Para finalizar são apresentados os dados de entrada (variáveis lidas) no programa MEF. 

As informações apresentadas neste apêndice têm como referência básica (DHATT e 

TOUZOT,1981). 

 

C.1. ASPECTOS GERAIS DO MEF 

 

O programa MEF é um programa em linguagem FORTRAN que utiliza elementos 

finitos triangulares e/ ou quadrático nas soluções de problemas com uma, duas ou em três 

dimensões, com sistemas lineares ou não lineares da equação de difusão de nêutrons, a dois 

grupos de energia em regime estacionário e não estacionário. 

Para obter a solução analítica do sistema com problema não linear da equação de difusão 

de nêutrons do espaço- tempo, apresentada pela equação (3.51), aplica-se, resumidamente, o 

método dos elementos finitos quadráticos gerando elementos e definidos no subdomínio Ω𝑒 e 

com coordenadas de referência das transformações jacobiana (𝜂, 𝜁 𝑒 𝜉), discretiza o fluxo de 

nêutrons para dois grupos de energia, aplica-se o método de interpolação de Galerkin 

(aproximações na geometria [𝒙]𝑙
𝑒, função peso 𝐰𝑙

𝑒 e fluxo de nêutrons 𝐮𝑙
𝑒 e 𝐮̇𝑙

𝑒), Método Direto 

e o Método Euler Implícito. Com a utilização das aproximações de soluções estacionária de 

nêutrons prontos (equação de difusão) os valores de e C𝑡 Φ𝑡 são obtidos e substituídos na 

equação (3.51), isso permitirá o desenvolvimento dos cálculos das evoluções temporais das 

variáveis: Φ𝑡+Δ𝑡 e C𝑡+Δ𝑡. 

Para desenvolver a solução da equação (3.51), que apresenta um sistema de equação não 

linear, são obtidas as formas matricial desta equação com a finalidade de montar blocos 

(matrizes) compostos pelas substituições das notações dos elementos das matrizes, equação 

(3.51) por algoritmos interativos apresentados pelas equações (3.67 e 3.68) para a realização 
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dos cálculos em função do tempo, sendo que os cálculos e a solução para o tempo inicial são 

definidos pela solução estacionária da equação de difusão. 

Como saída de resultados do programa MEF, tem-se: resoluções das matrizes, os 

comportamentos dos fluxos térmico e rápido em cada nó da malha, concentração de precursores 

estacionário, concentrações de precursores temporal e o fator de criticalidade. 

 

 

Fluxograma C.1: Esquema das soluções do problema dinâmica linear iterativo (equação de  

difusão de nêutrons espaço-tempo) usando a solução passo a passo. 
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C.1.1. Organizações do cálculo das matrizes elementares para integração numérica 

 

Para uma maioria dos elementos, deve recorrer a uma integração numérica, para calcular 

as matrizes dos vetores elementares. As etapas dos cálculos correspondentes são as seguintes: 

 

a) Operações comuns a todos os elementos do mesmo modo tipo (tendo os mesmos elementos 

de referência): 

 Cálculo das coordenadas 𝜉 e da função peso w correspondente aos pontos de 

integração; 

 Cálculo das funções 𝑁, 𝑁̅ e a sua derivada em 𝜉 aos pontos de integração (para 

os elementos isoparamétricos 𝑁 ≡ 𝑁̅). 

b) Operação necessária para calcular a matriz [𝑲𝐺] de cada elemento: 

 Inicializar [𝑲𝐺] igual a zero; 

 Para cada ponto de integração 𝜉; 

 Calcular a matriz jacobiana [J] a partir das derivadas em 𝜉 das funções 𝑁̅ e 

coordenadas dos nós do elemento e o seu inverso e determinante 

 Calcular as derivadas das funções N em x a partir das derivadas em 𝜉; 

 Construção das matrizes [𝑫] 𝑒 [∇𝑵]; 

 Acumular em [𝑲𝐺] o produto: ∇𝑁𝑇 . 𝑫∇𝑵𝑑𝑒𝑡[𝐉]𝑖
𝑒𝑤𝑖

𝑒. 

c) Operação necessárias para calcular a matriz [𝑴𝐼]: 

 Inicializar [𝑴𝐼] igual a zero; 

 Por cada ponto de integração 𝜉; 

 Calcular a matriz Jacobiana e o seu determinante; 

 Acumular em [𝑴𝐼] o produto: {N}<N> 𝑑𝑒𝑡[𝐉]𝑖
𝑒𝑤𝑖

𝑒. 

d) Operações necessárias para calcular os vetores solicitados [𝑭𝐺] correspondente a 𝑓𝑣 

constante. 

 Inicializar [𝑭𝐺] igual a zero; 

 Para cada ponto de integração 𝜉; 

 Calcular a matriz Jacobiana e o seu determinante; 
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 Acumular em {f}1o produto: {N}𝑓𝑣 𝑑𝑒𝑡[𝐉]𝑖
𝑒𝑤𝑖

𝑒. 

e) Operações necessárias para calcular o resíduo [𝑹𝐼] a partir da solução {𝒖𝑛}: 

 Inicializar o resíduo [𝑹𝐼] para [𝑭𝐺] calcula no item (d); 

 Por cada ponto de integração 𝜉; 

 Construção das matrizes [𝑫], [∇𝑵] 𝑒 [J] como na sub-seção (b) acima; 

 Acumular em [𝑹𝐼] o produto: ∇𝑁𝑇 . 𝑫∇𝑵𝒖𝑛𝑑𝑒𝑡[𝐉]𝑖
𝑒𝑤𝑖

𝑒. 

f) Operações necessárias para calcular os gradientes {∂u} com pontos de integração a partir 

da solução {𝒖𝑛}: 

 Para cada ponto de integração 𝜉; 

 Construção da matriz [∇𝑵]; comum dans la sous-sections (b) ci-dessus; 

 Calcular e imprimir o gradiente: {∂u}=[∇𝑵]{𝒖𝑛}. 

 

C.2. DESCRIÇÃO GERAL DO PROGRAMA MEF 

 

Para a solução do sistema de equações (3.51), utiliza-se o programa MEF escrito em 

Fortran, para solucionar os problemas de equações de difusão de nêutrons utilizando o método 

dos elementos finitos. 

 

C.2.1. Possibilidades geral do MEF  

 

O programa em geral, usando MEF tem que ser cabível (DHATT e TOUZOT,1981): 

 Resolver uma variedade de problemas em diferentes domínios: linear e não linear, 

fluídos, problemas harmônicos, etc.; 

 Lidar com grandes problemas envolvendo um número grande de nós e elementos; 

 

C.2.2. Variedades dos problemas 

 

                                                 

1 O comportamento de um sistema continuo está descrito pelas equações com derivadas 

parciais: 𝔏(𝑢) + 𝑓𝑣 = 0 e 𝒞(𝑢) = 𝑓𝑠 

𝑓𝑣 e 𝑓𝑠 são das funções conhecidas das solicitações; 𝔏 e 𝒞: são os operadores diferenciais 

caracterizado do sistema. 
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Conforme o problema estudado, o número e a natureza das variáveis nodais variam, 

assim como as expressões das matrizes e os vetores elementares. Para um determinado 

problema, usa-se vários tipos de elementos de formas diferentes (por exemplos: triangulares e 

quadriláteros) e de diferentes precisões (por exemplo: triangular para 3 ou 6 nós). Enfim em um 

considerado domínio de aplicação é desejável tratar os problemas para uma, duas ou três 

dimensões, lineares ou não lineares, estacionário ou não estacionário. 

Este programa apresenta soluções para os seguintes problemas (DHATT e TOUZOT,1981): 

1. Problemas: 1D, 2D e 3D; 

2. Diferentes graus de liberdade em cada nó; 

3. Fácil inclusão de elementos na biblioteca; 

4. Matrizes simétricas ou não simétrica; 

5. Problemas lineares e não lineares; 

6. Problemas estacionários e não estacionário; 

7. Problemas de autovalores. 

 

C.2.3. Tamanhos dos problemas 

 

Muitos problemas necessitam de um importante número de elementos, de nós, por 

consequência, de graus de liberdade. O número total desconhecido pode variar a partir de 

algumas centenas (problemas pequenos) e a partir de dezenas de milhares (problemas 

excepcionais). O tamanho do problema depende dos seguintes fatores (DHATT e 

TOUZOT,1981): 

 O número de dimensões; 

 O número de variáveis desconhecida em cada ponto, por exemplo: componentes de 

velocidade u, v e w; 

 A complexidade da geometria do domínio estudado; 

 O número de elementos necessários para representar a solução juntamente com uma 

precisão satisfatória. 

 

a) Descrição do Problema: 

A descrição do problema inclui a preparação das tabelas de coordenadas (VCORG) e 

do conectivo (KCONEC), a definição das propriedades físicas, das solicitações e condições dos 

limites e as suas descrições pode se tornar grande e errada. 
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Um programa geral deve ter ferramentas de apoio para a preparação e verificação de 

dados, em particular os sub- programas de geração automática e de plotagem de malhas. Estas 

ferramentas são constituídas de interfaces de pré-processamento independente do programa 

geral o que inclui, às vezes, a preparação dos vetores solicitados. 

b) Armazenamento das Tabelas: 

O tamanho do problema é importante, por isso várias tabelas de trabalho não podem ser 

armazenadas na memória central do computador, então o programa deve criar as tabelas em um 

arquivo de disco (memória secundária) e trazer na memória principal uma parte de cada tabela 

para um instante determinado. A organização das tabelas pode-se tornar muito complexa e 

envolver tecnologia computacional sofisticada.  

O armazenamento das tabelas, constitui a fase da estruturação dos dados do programa 

dos elementos finitos. É difícil de construir um programa que seja eficaz tanto para pequenos 

problemas quanto para problemas maiores: a programação torna-se muito complexa. 

 

c) Volume dos Cálculos: 

Para um problema de grande tamanho, o tempo de cálculo necessário para obter a solução 

torna-se muito importante, em particular para os problemas não lineares e não estacionários. O 

preço destes cálculos constitui em uma limitação econômica da utilização dos métodos dos 

elementos finitos. O programa apresenta muita eficácia nos cálculos da: construção da matriz, 

montagem da resolução, etc. Além disso, é necessário realizar cuidadosamente todas as seleções 

que influencia no tempo do cálculo, que são: 

 Tipo de elemento e forma da malha; 

 Método de integração numérica; 

 Método de resolução do sistema de equação, em particular para o sistema não 

lineares; 

 Método de integração para problemas não estacionário; 

 Método de cálculo dos autovalores. 

 

d) Exploração dos Resultados: 

Os programas fornecem os resultados sob uma forma de listas muito difíceis de explorar. 

Um programa geral deve ter ferramentas que possam a partir da representação selecionar os 

resultados. 
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Estas ferramentas podem construir a partir do pós- processamento independente do 

programa geral dos elementos finitos e deve ser adaptável as necessidades especificas de cada 

usuário. 

 

C.2.4. Modularidade 

 

Um programa geral que apresenta as características descritas no tópico C.2.3 é 

inevitavelmente muito complexo. No entanto, é desejável que: 

 Sua lógica seja de fácil compreensão; 

 Seja facilmente modificável; 

 Muitas pessoas podem colaborar para o seu desenvolvimento sem ter que saber 

perfeitamente todo programa; 

 Pode-se especializar ou otimizar o programa para um determinado tipo de aplicação 

de dados, simplesmente substituindo alguns sub- programas; 

Para alcançar estes objetivos, é necessário estruturar o programa modularmente. Para 

isso, constrói-se uma biblioteca a partir de sub- programa que efetuam as operações seguintes, 

características dos métodos dos elementos finitos (DHATT e TOUZOT,1981): 

a) Organização do Dados: 

 Criação das tabelas de coordenadas e conectividades; 

 Criação das tabelas contendo a partir dos parâmetros comuns ligados aos elementos 

ou aos nós (propriedades elementares e propriedades nodais); 

 Criação das tabelas de definição das condições de contorno. 

 

b) Operações Correspondentes a Cada Elemento: 

 Determinação das coordenadas e da função peso dos pontos de integração; 

 Cálculo das funções de interpolação e de suas derivadas; 

 Cálculo das matrizes Jacobiana, seus inversos e seus determinantes; 

 Construção de cada matrizes e vetores elementares: [𝑲𝐺], {𝑭𝐺}, [𝑴𝐼], [𝑹𝐼], 𝑒𝑡𝑐. 

 

c) Operação de Montagem: 

 Montagem de um vetor ou de uma matriz elementar [𝑘] e {𝑓} em um vetor ou em 

uma matriz global [𝑲𝐺] 𝑒{𝑭𝐺}. 
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d) Resolução: 

 Decomposição da resolução de um sistema de equações lineares. 

 

e) Impressão dos Resultados: 

 Impressão das variáveis nodais e dos diversos resultados adicionais: gradientes, 

reações, etc. 

 

Em Estes sub- programa são utilizados em todos programa de elementos finitos. No 

entanto, a sequência destes sub- programas depende se o problema estudado é linear ou não, 

estacionário ou não. A lógica de um programa capaz de resolver todos estes problemas é muito 

complexa.  

O programa é organizado em forma de bloco funcionais que podem ser utilizados em 

ordem sequencial que se deseja. Um bloco pode executar uma simples operação (criar a tabela 

de conectividade), ou ao contrário executar várias operações (organizar todos os dados, 

construir [𝑲𝐺], {𝑭𝐺}, resolver o sistema de equações e imprimir os resultados). Quando os 

blocos funcionais são simples, eles podem ser sequenciados de maneira mais flexível, em 

contrapartida, os usuários devem dominar a lógica do seu sequenciamento. 

 

C.2.5. Etapas características do programa MEF 

 

Todos os programas baseados no método dos elementos finitos (MEF) são incluídos os 

blocos funcionais com as seguintes características (DHATT e TOUZOT,1981): 

 

1. Leitura, Verificação, Organização dos Dados 

Ler e Imprimir: 

 As coordenadas dos nós; 

 As conectividades dos elementos; 

 Os parâmetros físicos; 

 As solicitações; 

 As condições de contorno. 

 

2. Construção da Matriz e do Vetor Global [𝑲𝐺] e {𝑭𝐺} 

Para cada elemento: 
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 Extrair as informações ligado a este elemento; 

 Construir a matriz e os vetores elementares [𝑘]  e {𝑓}; 

 Montar [𝑘]  e {𝑓} em [𝑲𝐺] 𝑒{𝑭𝐺}. 

 

3. Resolução do Sistema de Equações 𝑲𝐺Φ𝑡+Δ𝑡 = 𝑭
𝐺  

 Modificar [𝑲𝐺] 𝑒{𝑭𝐺} por considerações as condições de contorno; 

 Triangularizar [𝑲𝐺] ; 

 Calcular a solução Φ𝑡+Δ𝑡. 

 

4. Impressão dos Resultados; 

 Calcular as variáveis adicionais (gradientes, reações, restrições, etc.); 

 Imprimir os resultados. 

 

C.2.6. Descrições dos blocos do MEF – organização geral 

 

O programa principal sequencia as execuções dos blocos funcionais sob o controle dos 

usuários, chamando os sub- programas correspondentes à cada bloco: 

 

 

Fluxograma C.2: Organização geral. 

 

C.2.7. Organização dos dados 
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C.2.7.1. Blocos de leitura dos dados e blocos de execução: 

 

O Método do Elementos Finitos (MEF) inclui os blocos funcionais especializados em 

leitura, a verificação e organização dos dados. Por exemplo (DHATT e TOUZOT,1981): 

 O bloco ‘COOR’ lê as coordenadas dos nós e os nomes dos graus de liberdade de 

cada nó. Depois das verificações, ele cria as tabelas VCORG (coordenadas dos nós) 

e KDLNC (nome de graus de liberdade de cada nó, acumulativo); 

 O bloco ‘COND’ lê as condições de contorno cria as tabelas KNEQ (número de 

equação de cada grau de liberdade) e VDIMP (valores de cada grau de liberdade 

imposta); 

 O bloco ‘ELEM’ lê as conectividades e outras características dos elementos, pois 

ele cria uma ficha contendo todas estas informações. Cada gravação desta ficha 

constitui a descrição completa de um elemento.  

 

Outros blocos funcionais do MEF são blocos de execução das operações dos elementos 

finitos. Eles são usados pelas tabelas dos blocos de leitura dos dados. Por exemplo (DHATT e 

TOUZOT,1981): 

 O bloco LINM monta e resolve o sistema de equações correspondente a um 

problema linear, a matriz global [K] residente na memória central; 

 O bloco LIND é semelhante ao bloco LINM, mas a matriz global [K] reside na 

memória externa; 

 O bloco NLIN monta e resolve o sistema de equações correspondente a um problema 

não linear. 
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Fluxograma C.3: Estrutura geral do bloco CINE. 

 

No fluxograma C.2 demostra que a organização geral do programa é constituída por 

duas partes: seção de controle (determinação da função do bloco a ser executado) e da seção 

execução (chamar os subprogramas correspondentes a função dos blocos e executar cálculos). 

A seção de execução do programa MEF após chamar várias sub-rotinas como: BLCINE, 

EXCINE, ASCINE, etc. retorna para o começo da seção de controle para obter a função do 

bloco que será determinado para o bloco de execução. 

 

C.2.8. Funções e descrições dos sub-rotinas do bloco CINE 

 



72 

As sub-rotinas para a solução da equação de difusão, como pode ser observado no 

fluxograma C.3, são: BLCINE, EXCINE e ASCINE. 

O sistema de coordenadas adotado para aplicação da malha de elementos finitos 

triangulares é o sistema de coordenadas de referência das transformações Jacobiana. Para se 

diminuir a dimensão da coluna da matriz solução do problema deve-se sempre que possível 

enumerar os nós em ordem crescente da esquerda para direita e de baixo para cima 

(NAKAMURA,1977). 

O programa MEF solicita duas incógnitas em cada nó da malha: o fluxo de nêutrons 

rápidos e o fluxo de nêutrons térmicos. A condição de continuidade é imposta pelo programa e 

devem ser indicados os nós do contorno sob condições de Direchelet (fluxo e correntes zero) 

(CORREIA FILHO,1981). 

 

C.2.8.1. Blcine 

 

O Bloco BLCINE tem as seguintes características: 

 Soluciona problema dinâmico linear (equação de difusão de nêutron) usando a 

solução passo a passo; 

  Lê as coordenadas, nres para o cálculo de resíduos e o número de graus de liberdade 

dos nós;  

 Gera nós por interpolação linear; 

 Cria as tabelas: VKS, VKGI, VFG, VKE, VFE, VRES e VDLE; 

 Soluciona o sistema de equação usando o gradiente conjugado; 

 Utiliza o Power Method para obter a solução inicial pelo método de solução passo a 

passo. 

 Aloca espaço para as tabelas VKS, VKGI, VFG, VKE, VFE, VRES e VDLE. 

 

C.2.8.2. Excine 

 

O EXCINE é utilizado para montar os elementos das matrizes da difusão de nêutron e 

para resolver o sistema de equação linear usando o gradiente conjugado. Portanto, ela calcula e 

imprime: 

 A solução residual se nres=1 (PRRESD); 

 A solução (PRSOL); 
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 Os gradientes (ASGRAD_CG). 

Os ciclos do subprograma EXCINE são realizados em passos de carga ou em passo de 

tempo ou dentro do equilíbrio de cada passo de interação e imprime uma mensagem de erro. 

 

 

Fluxograma C 4: Bloco Excine. 

 

C.2.8.3. Ascine 

 

Tem a função de calcular as matrizes e os dados a serem utilizados. A convergência do 

processo de interação é de acordo com a escolha do método e da sub-rotina chamada. Para 

resolver o problema não estacionário, por exemplo, utiliza-se o METH 2, que executa exemplos 

com algoritmos de Euler implícito.  
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As execuções dos cálculos das matrizes são realizadas na sub-rotina elemento 22 (elem 

22), do programa MEF. A sub-rotina elemento 22 foi desenvolvida para resolver o problema da 

difusão de nêutron com uma, duas ou três dimensões e construir uma matriz ou um vetor 

elementar de acordo com o valor de icod, que tem as seguintes definições: 

 icod=1: Retorno dos parâmetros; 

 icod=2: Cálculo das funções de interpolação e dos coeficientes de integração 

numérica; 

 icod=3: Matrizes elementares H1 e H2 (vke), correspondentes ao termos de fuga, 

perda por absorção e remoção por espalhamento, para os grupos de nêutrons 1 e 2, 

respectivamente; 

 icod=4: Matrizes elementares S1 e S2, correspondente aos termos de produção de 

fissão total e fonte externa, para os grupos de nêutrons 1 e 2, respectivamente. 

 icod=5: Matrizes elementares A1 e A2, correspondendo aos termos do fluxo de 

nêutrons com variação no tempo, para os grupos de nêutrons 1 e 2, respectivamente 

e da matriz C membro de 𝐶 (
𝐷𝑇

𝑑𝑡
); 

 icod=6: Kc.T Contribuição do resíduo (vfe); 

 icod=7: Solicitação elementar (vfe); 

 icod=8: Cálculo e Impressão dos gradientes (derivada do fluxo); 

 icod=10: Cálculo da carga devido ao fluxo quente aplicado no elemento no lado i-j; 

 icod=11: Kh.u contribuição do resíduo (vfe); 

 icod=12: Cálculo da característica do comprimento do elemento; 

 icod=13: Cálculo da carga devido ao fluxo quente aplicado no elemento no lado i-j; 

 icod=31: Impressão dos pontos de Gauss no arquivo GIF; 

 icod=33:Cálculo da coordenada elementar para coordenada global; 

 icod=60: Realiza cálculo da potência no elemento em consideração. 

Para determinar as quantidades de variáveis que as matrizes são compostas, deve-se 

considerar a seguinte expressão: 

 

 ipg x nnel x (ndim+1) (5.1) 

 

 Número de pontos de integração (ipg); 

 Número de nós por elemento (nnel); 

 Dimensão do problema (ndim) 
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Fluxograma C 5: Bloco Ascine. 

 

Para realizar a montagem dos elementos das matrizes de nêutron são utilizadas as 

seguintes sub-rotinas: 

 

 WRELEMT: Lê as propriedades do elemento nos vetores elementos. 

 ASMG_SCAPE: Monta as matrizes de fuga de nêutron local (absorção, 

espalhamento e fissão), 

Matrizes [𝐻𝑎, 𝐻𝑠, 𝐻𝑓]. 
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Fluxograma C 6: Bloco ASMG_SCAPE. 

 

 RDELEM: Propriedades de leitura de elemento correspondente a escrita da sub-

rotina WRELEMENT. 

 ELEMLB: Chama primeiro a sub-rotina com elemento icod=2 (funções de 

interpolação e pontos de Gauss) e então com icod=3 (calcula as matrizes de nêutron 

do elemento). 

 MODFG: Modifica o segundo membro do vetor {f} levando em conta as condições 

de contorno não nula. 

 ASSEL: Montagem dos elementos do vetor carga {vfe} no vetor carga global {vfg}. 

 MULKU: Multiplica a matriz global por um vetor. 

 ASMG_SOURCE: Monta as matrizes de fuga e absorção de nêutron local, 

Matrizes[𝐹𝑎, 𝐹𝑠 , 𝐹𝑓] . 

 ASMG_SOURCE: Monta a matriz fonte, 

Matriz[𝑆] . 
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B 

Fluxograma C 7: Bloco ASMG_SOURCE. 

 

 DIFU_OBJ: Calcula o propósito da função. 

 RIGHTMEMBER_CG: Calcula o segundo membro do vetor da equação de difusão 

(levando em conta o decaimento). 

Para a solução da difusão estacionária do fluxo, extrapolação da solução e do cálculo da 

potência do reator e impressão da solução, são utilizadas as seguintes sub-rotinas: 

 POWER METH e GRADCONJ: Resolve o sistema de equação linear usando o 

gradiente conjugado. 
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Fluxograma C 8: Bloco POWER METHOD. 

 

 SECONDMEMBER: Ler as propriedades do elemento. 

 SOL: Resolve o sistema de equação linear com SCAL. 

 PRPVTS: Imprime o pivots da matriz global. 

 CHEBYSHEV: Calcula a extrapolação da solução baseada no polinômio de 

Chebyshev. 

 ASGRAD: Calcula e imprime a solução dos gradientes. 

 POWER: Calcula a normalização da potência do reator. 
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Faz a normalização, cálculo dos valores médios. Para efeito de normalização dos 

resultados pode ser adotado um dos critérios: 

a) Os fluxos térmico e rápido assumem valor unitário em um determinado nó da malha; 

b) Ou então para a potência do núcleo do reator igual a 1n/cm3. 

 ASGRAD_CG: Imprime o vetor resíduo {r}da solução problema: [K]{u}-

{f}={r}, equações. 

 PRSOL: Imprime a solução {u} (fluxo ϕ). 

 

Imprime os valores dos fluxos rápido e térmico por nó da malha. 

Para solução da difusão da Cinética: 

 ELEMLB: icod 1 (parâmetros iniciais do elemento) e icod 2 (calcula a função 

de interpolação) do elemento 22. 

 TKONE: 

 ELEMLB: icod 3 (calcula a matriz [K]) e icod 5 (calcula a matriz [M]) do 

elemento 22. 

 



80 

 

Fluxograma C 9: Bloco elemlb (icod=7). 
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Fluxograma C 10: Bloco elemlb (icod=7). 

 

 DELAYED NEUTRONS: 

 ASFE: Calcula a equação [𝐹] = 𝑎𝑑𝑝𝑎𝑠[𝐹] + [𝑀]{𝑢} + ∆𝑡𝑢̇ +
∆𝑡2

4
𝑢̈ 

 ASKE: Calcula a equação [𝐾] = [𝑀] +
∆𝑡2

4
[𝐾] 
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Fluxograma C 11: Bloco Ascine1. 
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Fluxograma C 12: Bloco ASMG_SCAPE_1. 
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Fluxograma C 13: Bloco ASMG_SOURCE_1. 
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Fluxograma C 14: Bloco POWER METHOD_1. 
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Fluxograma C 15: Bloco Ascine_1. 
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Fluxograma C 16: Bloco do cálculo das matrizes do lado direito da equação. 
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Fluxograma C 17: Bloco do cálculo das matrizes do lado direito da equação. 
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C.2.9. Dados de entrada do bloco CINE 

 

 m2: número lógico de arquivo de elemento (assumindo m2=1); 

 m3: número lógico de arquivo onde a matriz [K] e o vetor [F] são armazenado e 

usado para calcular o resíduo (assumindo m3=2). 

 

Para o cálculo do parâmetro resíduo e impressão do gradiente do fluxo, as variáveis lidas 

são: 

 

Variáveis Formato Descrição 

Nres I5 
Cálculo do problema 

residual: =1 

Nprgrad I5 
Impressão do gradiente da 

solução. 

Tabela 3: Variáveis de entrada para o cálculo do parâmetro resíduo e o gradiente do fluxo. 

 

Para o procedimento de normalização, as variáveis lidas são: 

 

Variáveis Formato Descrição 

nneutgr I5 Número de grupos de energia de nêutron 

nlm I5 

Para os tipos de fissão: 

=1: fissão somente com os nêutrons rápidos. 

=2:fissão com os nêutrons térmicos. 

inorm I5 

Para solução da normalização: 

= 0: em função unitária do núcleo da potência do reator. 

= m: em função dos fluxos rápido e térmico. 

iref I5 Região onde não tem fissão (refletor e anteparo). 

cnorm I5 Potência de normalização do núcleo do reator. 

Tabela 4: Variáveis de entrada para o procedimento de normalização. 

 

Para o cálculo do parâmetro crítico keff ,as variáveis lidas são: 
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Variáveis Formato Descrição 

niter I5 Máximo de número de interações no power method. 

eps_flux I5 Tolerância para o fluxo de nêutron convergir. 

eps_lambda I5 Tolerância para keff convergir. 

sgmb I5 

Para relação de domínio para uma rápida 

convergência dos polinômios de Chebshev: 

=0: calcular a estimativa da relação de domínio. 

>1: A convergência rápida não é requerida. 

<1: A estimativa da relação do domínio 

Tabela 5: Variáveis de entrada para o cálculo do parâmetro keff.. 

 

C.2.10. Dados de entrada do bloco COOR 

 

A função do bloco COOR é ler as coordenadas e o número de graus de liberdade dos 

nós, gerar nós por interpolação e criar as tabelas VCORG e KDLNC. 

As variáveis lidas são: 

 

Variáveis Formato Descrição 

nnt I5 Número máximo de nós. 

ndlnb I5 Número máximo de graus de liberdade por nó. 

ndim I5 Dimensões do problema ( um, dois ou três dimensões). 

fac (1) f10.0 Fator escalar na direção x 

fac(2) f10.0 Fator escalar na direção y 

fac(3) f10.0 Fator escalar na direção z 

in2 I5 Número do último nó gerado. 

X2 (1) f15.0 Coordenada X do nó. 

X2 (2) f15.0 Coordenada Y do nó. 

X2 (3) f15.0 Coordenada Z do nó. 

Incr I5 O incremento no número de nó usado na geração. 

Idln I5 
Número de graus de liberdade gerado no nó. Se 

eles são diferentes do número assumido (ndln). 

Tabela 6: Variáveis de entrada do bloco COOR. 
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Observações: 

 

1. O número dos graus de liberdade de cada nó tem que ser consistente com os elementos que 

são ligados neste nó; 

2. Se o número de graus de liberdade é diferente de um nó para outro na mesma linha de 

geração, então isto é possível para o uso dos graus de liberdade assumido e para modificar 

eles utilizam-se a ajuda do bloco DLPN (este bloco ler os números dos graus de liberdade 

e modifica a tabela KDLNC. Isto é necessário somente quando o número dos graus de 

liberdade muda de um nó para outro). 

 

C.2.11. Dados de entrada do bloco PRND 

 

A função do bloco PRND é ler as propriedades nodal e criar a tabela VPRNG. 

As variáveis lidas são: 

 

Variáveis Formato Descrição 

nprn I5 Número de propriedades por nó. 

vprng 8f10.0 Lista de propriedades para sucessivos nós (nó1, nó2, nó3). 

Tabela 7: Variáveis de entrada do bloco PRND. 

 

C.2.12. Dados de entrada do bloco PREL 

 

A função do bloco PREL é ler e imprimir as propriedades do elemento e criar a tabela 

VPREG que contém todos os grupos das propriedades do elemento. 

As variáveis lidas são, onde igpe=0: 

 

Variáveis Formato Descrição 

ngpe I5 Número dos grupos das propriedades do elemento. 

npree I5 Número das propriedades para cada grupo. 

Ig I5 Número de grupo. 

v1 7f10.0 Sucessivos valores de diferentes propriedades. 

Tabela 8: Variáveis de entrada do bloco PREL. 
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C.2.13. Dados de entrada do bloco ELEM 

 

A função do bloco ELEM é ler os elementos de conectividades e gerar o arquivo de elemento. 

 m2: número lógico de arquivo de elemento (assumindo m2=1). 

 

As variáveis lidas são: 

 

Variáveis Formato Descrição 

nelt I5 Número máximo de elementos. 

nnel I5 Número máximo de nós por elementos. 

ntpe I5 Tipo de elemento por falta. 

ngre I5 Número do grupo de elemento por falta. 

nsym I5 
=0: matriz [K] é simétrica. 

=1: matriz [K] não é simétrica. 

nident I5 
=0: todos as matrizes [K] são diferentes. 

=1: se todas matriz [K] são idêntica. 

Tabela 9: Variáveis de entrada do bloco ELEM. 

 

As variáveis lidas, onde iel<0, são: 

 

Variáveis Formato Descrição 

Iel I5 Número do primeiro elemento. 

igen I5 
Número dos elementos gerados por IEL incluindo o 

primeiro elemento. 

incr I5 Incremento do número de nó para geração automática. 

itpe I5 Número de tipo de elemento se for diferente de NTPE. 

igpe I5 Número do grupo de propriedade de elementos. 

igre I5 Número do grupo de elemento. 

knint0 10i5 

Define o tipo de integração: 

=0: integração normal, 

=1: integração reduzida. 

Tabela 10: Variáveis de entrada do bloco ELEM com iel<0. 
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Como exemplo de tipo de elemento, tem-se um elemento triangular linear para problema 

de difusão de nêutron em duas dimensões. 

 

 

Figura 15: Elemento triangular linear com coordenadas de referências da  

transformação do Jacobiano. 

 

C.2.14. Dados de entrada do bloco DYNS 

 

A função do bloco DYNS é resolver um problema não estacionário e não linear usando 

o método de Euler. 

 

As variáveis lidas são: 

 

Variáveis Formato Descrição 

npas I5 Número de passos de tempo igual. 

dpas f10.0 Passo de tempo f. 

Dfg f10.0 Incremento de carga por passo. 

Tabela 11: Variáveis de entrada do bloco DYNS. 

 

C.2.15. Descrição e listagem dos blocos funcionais do programa MEF 

 

C.2.15.1. Programa principal 
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Tabelas Definidas no Programa MEF 

Descrição do Problema Físico 

 

Tabela Dimensão 
Bloco que 

cria a tabela 
Especificações 

vcorg nnt x ndim COOR 

Coordenadas global de todos os nós: 

 Para 1 dimensão:〈{𝑥1}{𝑥2}{𝑥3}… 〉 

 Para 2 dimensão:〈{𝑥1𝑦1}{𝑥2𝑦2}… 〉 

 Para 3 dimensões:〈{𝑥1𝑦2𝑧3}{𝑥1𝑦2𝑧3}… 〉 

kdlnc nnt+1 COOR 

Número de graus de liberdade acumulado  

kdlnc(i+1) tem o número de nós de graus de 

liberdade 1,2,3,...,i-1,i 

kdlnc(nnt+1)=ndlt; kdlnc(1)=0 

kneq ndlt ELEM 

Número de equação de cada grau de liberdade 

j=kneq(i): 

 Para j>0: o grau de liberdade é 

desconhecido e corresponde a equação j 

na equação do sistema. 

 Para j<0: o grau de liberdade é conhecido 

e este valor é VDIMP(-J) 

vdimp nclt COND 
Valor de todos os graus de liberdade imposto 

pela condição de contorno 

vprng nnt x nprn PRND 

Lista dos grupos de propriedade nodal: 

〈
{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑛ó 1{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑛ó 2…

{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑛ó 𝑛𝑝𝑟𝑛
〉  

Lista dos grupos de propriedade elemento: 

〈
{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 1{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 2

…{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 𝑛𝑝𝑟𝑛

〉 

vpreg ngpe x npre PREL 

Lista dos grupos de propriedade elemento: 

〈
{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 1{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 2

…{𝑝1𝑝2…𝑝𝑛𝑝𝑟𝑛}𝑔𝑟𝑢𝑝𝑜 𝑛𝑝𝑟𝑛

〉 
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kld neq+1 ELEM 

Localização do começo de cada coluna da matriz 

global KG. 

KLD(NEQ+1)-1 é o número de termos do 

triângulo superior de KG sem os termos da 

diagonal. kld(1)=kld(2)=1. 

Matrizes e Vetores Global 

 

vkgs 
nkg=kld 

(neq+1)-1 
 

Termos do triângulo superior de matriz KG 

armazenado na linha da coluna descendente sem 

os termos da diagonal. 

vkgd neq  Termos da diagonal da matriz KG. 

vkgi nkg  

Termos do triângulo inferior de matriz KG 

armazenado na linha da coluna descendente sem 

os termos da diagonal. 

vfg neq  Vetor de solicitação (ou força) global. 

vdlg ndlt 
NLIN, 

TEMP 
Vetor global das variáveis nodais (solução). 

vres ndlt 
LINM, 

LIND 
Vetor resíduo e reação. 

vsg 
nlgr x nelt x 

nscomp 

LINM, 

GRAD, 

LIMI, 

SHAK 

Vetor linear elástico para toda estrutura e grupos 

de carga: 

〈
𝑣𝑠𝑒|𝑖𝑒=1

𝑖𝑙𝑔𝑟=1
; 𝑣𝑠𝑒|𝑖𝑒=2

𝑖𝑙𝑔𝑟=1
; … ;

𝑣𝑠𝑒|𝑖𝑒=𝑛𝑒𝑙𝑡
𝑖𝑙𝑔𝑟=1

; … 𝑣𝑠𝑒|𝑖𝑒=1
𝑖𝑙𝑔𝑟=2

; … ; 𝑣𝑠𝑒|𝑖𝑒=𝑛𝑒𝑙𝑡
𝑖𝑙𝑔𝑟=𝑛𝑙𝑔𝑟

〉 

vdisp 
(nlgr+1) x 

neq 

LINM, 

GRAD, 

LIMI, 

SHAK 

Vetor desacoplamento de cada grupo carga. 

vfgv 2 x neq 

LINM, 

GRAD, 

LIMI, 

SHAK 

Vetor carga para cada grupo carga. 

vfgs 4 x neq 
LINM, 

LIND 
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klocg ndle x nelt  
Vetor de todos elementos kloce localizado: 

〈𝑘𝑙𝑜𝑐𝑒|𝑖𝑒=1; 𝑘𝑙𝑜𝑐𝑒|𝑖𝑒=2; … ; 𝑘𝑙𝑜𝑐𝑒|𝑖𝑒=𝑛𝑒𝑙𝑡〉 

Descrição do Elemento 

 

kne nnel  
Número de nó do elemento (elemento 

conectividade). 

kloce ndle  

Localização do elemento obtido pela extração de 

KNEQ a informação correspondente do 

elemento dado. 

vcore nnel x ndim  Coordenadas do elemento extraído de VCORG. 

vprne nnel x nprn  
Lista da propriedade nodal dada pelo elemento 

extraído de VPRNG. 

vpree npre  
Lista de propriedade do elemento dado pelo 

elemento extraído de VPREG. 

Matrizes e Vetores Elementos 

 

vke 

Se 

nsym.eq.0: 

nke=ndle x 

(ndle+1)/2 

Se 

nsym.eq.1: 

nke= ndle x 

ndle 

 

Elemento armazenado na matriz por colunas 

descendentes do triângulo superior, somente 

para matriz simétrica. 

vme 
ndle x 

(ndle+1)/2 
 

 

Elemento da matriz massa, armazenado por 

colunas descendentes do triângulo superior. 

vfe ndle  Vetor de solicitação (ou força) do elemento. 

vdle ndle  
Valor do grau de liberdade dado ao elemento 

(vetor de solicitação do elemento). 
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vse 
nscomp x 

ipg 
 

Vetor linear elástico para o elemento: 

〈

𝜎𝑥𝜎𝑦𝜏𝑥𝑦𝜎𝜎
𝑒0000 𝑑𝑒𝑡𝐽|𝑖𝑝𝑔=1;

𝜎𝑥𝜎𝑦𝜏𝑥𝑦𝜎𝜎
𝑒0000 𝑑𝑒𝑡𝐽|𝑖𝑝𝑔=2; … ;

𝜎𝑥𝜎𝑦𝜏𝑥𝑦𝜎𝜎
𝑒0000 𝑑𝑒𝑡𝐽|𝑖𝑝𝑔=𝑛𝑝𝑔

〉 

Integração Numérica 

 

vkpg ipg x ndim  

Coordenadas dos pontos da integração numérica 

no elemento referido estruturado com em 

VCORG (Ksi de pontos de Gauss). 

vcpg ipg  
Pontos de integração numérica da função peso 

(coeficientes de pontos de Gauss). 

Armazenamento das funções (N)e Matix Jacobiana 

 

vni 
ipg x nnel x 

(ndim+1) 
 

Lista dos valores das funções de interpolação (N) 

e isto é derivado nas direções 𝜉, 𝜁 𝑒 𝜂 para todos 

os pontos de integração: 

Para 2 dimensões:  

〈
𝑁1𝑁2…

𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

…
𝜕𝑁1
𝜕𝜂

𝜕𝑁2
𝜕𝜂

… |𝑝𝑜𝑛𝑡𝑜 1;

|… |𝑝𝑜𝑛𝑡𝑜 2; …

〉 

vj,vj1 ndim x ndim  Matriz Jacobiana e a inversa. 

vnix nnel x ndim  

Lista dos valores das funções de interpolação (N) 

e isto é derivado nas direções x, y e z para cada 

ponto de integração: 

〈
𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥

… ;
𝜕𝑁1
𝜕𝑦

𝜕𝑁2
𝜕𝑦

… ;
𝜕𝑁1
𝜕𝑧

𝜕𝑁2
𝜕𝑧

… 〉 

Cálculo Automático das funções de interpolação (N) 

 

vksi inel x ndim  
𝜉𝑖 , 𝜁𝑖  𝑒 𝜂𝑖 São coordenadas dos nós de elemento 

de referência estruturado com em VCORG. 

kexp inel x ndim  
Exponentes das bases polinomial 

〈1 𝜉 𝜂 𝜉𝜂〉 → 𝐾𝐸𝑋𝑃 = 〈0 0; 1 0; 0 1; 1 1〉. 
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kder ndim  

Indica a definição da ordem da derivação da 

função de interpolação  

 Para 2 dimensões: 

𝜕2𝑁

𝜕𝜉𝜕𝜂
→ 𝐾𝐷𝐸𝑅 = 〈1 1〉 

 Para 3 dimensões: 

𝜕3𝑁

𝜕𝜉2𝜕𝜁
→ 𝐾𝐷𝐸𝑅 = 〈2 0  1〉 

vpn inel x inel  Matriz nodal PN ou inversa. 

vp inel  Valor do polinômio base no ponto dado. 

Tabela 12: Tabelas globais, locais e dos elementos do programa MEF (DHATT e TOUZOT,1981). 


