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RESUMO

Este trabalho visa resolver numericamente as equagfes da cinética espacial unidimensional
para dois grupos de energia e seis grupos de néutrons precursores e dependéncia temporal
dos parametros nucleares. Para resolver as equacdes da cinética espacial, aplica-se na
discretizacdo espacial o método dos elementos finitos e na discretizacdo temporal, 0 método
direto implicito de Euler. As concentra¢fes de precursores sdo obtidas analiticamente,
usando técnicas de integracdo. Uma vez estabelecida a solucdo das equagdes da cinética
espacial, aplica-se essa solucéo a casos de referéncias para a validacdo da metodologia. Para
0 problema da difusdo dinamico e dependente do tempo € utilizado um modelo de reator tipo
placa unidimensional com dois transientes: o primeiro com um aumento linear de 3% em 1
segundo na sec¢do de choque de absorcéo e o0 segundo com uma diminuicao linear de 1% em
1 segundo na sec¢do de choque de absorcdo. As solugdes numéricas desses problemas foram
obtidas utilizando o modulo CINE desenvolvido no programa MEF, utilizando elementos
finitos unidimensionais quadraticos. Essas solugdes foram comparadas com as solugdes
apresentadas na literatura, utilizando o método de diferenca finita. Com isso, foi possivel

verificar a capacidade e a precisdo do método dos elementos finitos.

Palavras-chave: Cinética espacial, difusdo de néutrons, método dos elementos finitos,

néutrons precursores.
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ABSTRACT

This research has the objective of solving numerically the spatial kinetic equations in one-
dimension for two energy groups and six groups of precursors neutrons and time dependence
of nuclear parameters. To solve the spatial kinetic equations, was applied the spatial
discretization the finite element method and the time discretization the direct method with
implicit Euler scheme. The precursor concentrations are obtained analytically using
integration techniques. Once the solution of the equations of spatial kinetics, apply this
solution to cases of references to validate the methodology. For the problem of dynamic,
time-dependent diffusion is used a reactor type slab-dimensional with two transients: the first
with a linear increase of 3% in 1 second in the cross section of absorption and the second
with a linear decrease of 1 % in 1 second in the cross section of absorption. The numerical
solutions of these problems were obtained using the CINE module developed in MEF
program using finite element one-dimensional quadratic. These solutions were compared
with the solutions presented in the literature, using the finite difference method. Thus, it was
possible to verify the capacity and accuracy of the finite element method.

Keywords: finite element method, spatial kinetic, delayed neutron precursors, diffusion

problem.
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1. INTRODUCAO

Um dos problemas centrais no desenvolvimento de um reator nuclear é o célculo do
tamanho e da composicéo do sistema, necessarios para manter o reator critico, ou seja, com a
poténcia constante. Nos reatores nucleares, os mecanismos de produgdo de néutrons séo
provenientes dos processos de fissdo de nuclear, espalhamento de néutrons para energia de
interesse, bem como, néutrons gerados por fontes externas. Ja, os mecanismos de perdas de
néutrons estao relacionados a captura de néutrons, espalhamento para energias diferentes da de
interesse e fuga de néutrons pelas regides de contorno. (DUDERSTADT e HAMILTON,1976).
Portanto, o estudo da populagéo neutrénica em reatores € de grande interesse.

Este problema é tratado pela Teoria de Transporte de Néutrons utilizando a equacéo
integro-diferencial de Boltzmann (LEWIS e MILLER, 1984). Ela estuda a mudanca dos
néutrons pelo meio material, e tem a sua distribuicdo no espaco, energia, direcdo e tempo.
Portanto, é necessario um profundo conhecimento das caracteristicas, propriedades e limitacdes
associadas a se¢des de choque. (DUDERSTADT, 1979).

A equacdo fundamental que descreve o transporte de néutrons é uma variante linear da
equacdo de Boltzmann, facilmente deduzida a partir do principio da conservacgao do nimero de
néutrons em um elemento de volume, de maneira semelhante a outros problemas classicos como
transporte de massa, condugéo de calor, etc.

Entretanto, a equacdo de transporte de néutrons é de dificil solucdo em vista da
complexidade das suas func@es e dos numeros de variaveis que definem o problema, tais como
espaco, dependéncia angular, energia dos néutrons e tempo (r, Q, E, t). Na utilizacdo desta
equacdo no estudo, segundo (MAIA, 1979), o comportamento da populacdo de néutrons no
interior do ndcleo do reator nuclear, por exemplo, é impossivel fazer uma formulacédo
matematica explicita e fiel, devido a diversos fatores tais como: elementos constituintes, arranjo
geométrico, perfil, dentre outros.

Tais fatores implicam em um alto grau de heterogeneidade. A energia dos néutrons varia
desde alguns MeV quando sdo emitidos durante a fissao até a ordem de fragdo de eV, quando
entram em equilibrio térmico com o meio. O grande numero de isétopos com propriedades
distintas que variam sua concentra¢do no tempo e no espaco, variacdo das secdes de choque
com a energia, espalhamento anisotropico e outros fatores (MAIA, 1979).

Desta maneira, encontrar solucfes para a equacgao de transporte de néutrons, somente é
possivel quando o sistema for simplificado ou idealizado, de tal maneira que se obtenha uma

formulacdo matematica explicita. As simplificacdes e idealizacdes dos sistemas séo feitas de



acordo com os interesses, com as solugdes a serem objetivadas. Sendo assim, sob certas
condigdes, pode-se considerar que as propriedades do sistema, em um determinado intervalo de
tempo nao se alteram (MAIA,1979).

Entretanto, para calcular as condi¢fes necessarias para atingir a criticalidade, utiliza-se
a Teoria da Difuséo de Néutrons (DUDERSTADT e HAMILTON, 1976). Nesse caso, a teoria
da difusdo de néutrons recai em um problema de autovalor e de fonte fixa associado a equagéo
de transporte de néutrons. A teoria da difusdo é uma aproximacao para o termo de fuga de
néutrons.

Dentre os métodos utilizados pela Teoria de Transporte de Néutrons para tratar o
problema da dependéncia angular do fluxo de néutrons, podemos destacar, o tratamento da
variavel angular pelo Método de Harmonicos Esféricos, também conhecido como aproximacéo
PN.

O método Pn foi desenvolvido detalhadamente por (MARK, 1957), que consiste,

basicamente, na expansdo de todos as funcbes angulares em termos de harménicos esféricos.

Quanto a dependéncia energética da Equacédo de Transporte de Néutrons, dois métodos
podem ser utilizados (DUDERSTADT, 1979 e MAIA, 1979):

a) Divide-se o intervalo de energia de interesse em um ndmero finito de subintervalos,
denominados grupos de energia. Os parametros nucleares sao obtidos de tal forma que as
taxas de reacdes sao conservadas. A teoria que trata deste modelo é a Teoria de Multigrupo;

b) Considera-se a energia como uma variavel continua e expande-se 0s termos dependentes
em polindmios que tem o0 mesmo intervalo de definicdo, ou seja, de zero a infinito, como

sdo o0s casos dos Polindmios de Laguerre, Tchebycheff, etc.

Quando esses dois métodos sdo aplicados a equacdo de transporte de néutrons, as
variaveis da energia sdo discretizadas.

Quanto ao fato do espalhamento exibir o carater de ser anisotrépico, € necessario
expandir a dependéncia angular das se¢des de choque em Polinbmios de Legendre. Assim,
truncando a série no termo correspondente a ordem zero, tem-se 0 modelo de espalhamento
isotropico e truncando o termo de ordem um, tem-se 0 modelo de espalhamento linearmente
anisotrépico.

Os primeiros métodos de aplicacéo a ser desenvolvido foram baseados em uma verséo

simplificada da teoria de transporte; conhecida como teoria da difusdo de néutrons



(LAMARSH, 1966). Esta versdo simplifica o célculo da variagdo espacial da distribuicdo
neutrénica, ignorando a sua dependéncia angular. Porém, com estas simplificagdes, a teoria ndo
oferece bons resultados para pontos situados proximos as fontes e fronteiras fisicas, nao
podendo ser aplicada em pequenos sistemas, como células, nos quais os calculos precisos séo
fundamentais.

Com a utilizacdo das solu¢bes numéricas geradas por aproximacgdes e métodos
numéricos de discretizacdo, a equacdo de transporte de néutrons tem as suas variaveis
independentes, angulares e energéticas simplificadas, possibilitando assim, desenvolver um
sistema de equacdes lineares e as suas solu¢bes numéricas requerem uma discretizacdo nas
variaveis do espaco e do tempo (MAIA, 1979).

As equacdes da cinética espacial, na formulacdo de grupo de energia tém sido aceitas
pela maioria dos pesquisadores em Fisica de Reatores, como a melhor aproximacao para a
simulacdo do comportamento dos néutrons em um reator nuclear. Varios métodos tém sido
desenvolvidos por muitos pesquisados para encontrar uma solugao numérica para as equacoes
da cinética espacial, ja que ndo se tem conhecimento de uma solugédo analitica completa dessas
equacOes (PETERSEN, 2011).

Os principais métodos desenvolvidos para resolver as equagdes da cinética espacial de
néutrons (STACEY, 1969) e (SUTTON e AVILES, 1996) os Métodos Diretos (metodos que
apresentam dependéncia espacial) e os Métodos Indiretos (métodos que definem a priori a
dependéncia das variaveis no tempo). Entretanto, nesse trabalho, os métodos indiretos ndo sdo
abordados.

Para obter a discretizagcdo espacial da equacdo da concentracdo dos precursores e a
equacdo de difusdo de néutrons dependente do tempo, sdo utilizados principalmente 0 método
das diferencas finitas (MDF) ou o método dos elementos finitos (MEF) (SUTTON e
AVILES,1996).

O interesse de se comparar 0s resultados obtidos entre 0 método das diferencas finitas e
0 método dos elementos finitos a reatores heterogéneos motivou diversas publicacGes de
trabalhos abordando os problemas e as vantagens de cada método. Entre as principais
conclusbes pode-se citar que o método dos elementos finitos, em muitos casos, permite a
obtenc&o de resultados com numeros menores de equacgdes e consequentemente com um tempo
menor de processamento.

Este trabalho visa resolver numericamente as equagfes da cinética espacial a uma
dimensdo com dependéncia temporal dos parametros nucleares e utilizando dois grupos de

energia e seis grupos de néutrons precursores.



Para resolver as equagOes da cinética espacial a uma dimenséo, aplica-se 0 método dos
elementos finitos na discretizacdo espacial. Na resolugdo temporal do problema de difuséo
dindmica é utilizado o método direto implicito de Euler. A solucdo para a concentracdo de
precursores € obtida por uma integracéo analitica.

A validacdo da metodologia empregada na solucao das equacgdes da cinética espacial €
estabelecida pela comparacdo de resultados obtidos nesse trabalho com os obtidos pela
literatura. Nos testes utilizamos um modelo de reator tipo placa, a uma dimenséo e com dois
transientes. O primeiro denominado BSS-6-Al sofre um aumento de 3% em um segundo na
sua secdo de choque de absorcéo e o segundo denominado BSS-6-A2 sofre uma reducgéo de 1%
também em um segundo na sua se¢do de choque de absorcdo. As solu¢Bes numéricas obtidas
pelo mddulo CINE do programa MEF sdo comparadas as soluc6es de referéncia. Com isso, foi
possivel verificar a capacidade e a precisdo do método dos elementos finitos. A seguir, sera
feita uma breve descricdo do contetdo de cada capitulo.

O segundo capitulo descreve a resolucdo da equacdo de transporte na forma integro
diferencial e apresenta derivacGes dependente do tempo e da energia. Aplicando varios
métodos de aproximac6es, dentre eles, a aproximacdo da difusdo, obtém-se a solucdo da
equacdo da difusdo de néutrons dependente do tempo e da equagdo da concentragdo dos
precursores. Discutiremos também o formalismo multigrupo das equagbes da difusdo
neutrénica, considerando as equacdes das concentracdes dos precursores.

No terceiro capitulo, abordam-se as solu¢Ges numéricas da equacdo da cinética espacial
para dois grupos de energia e seis grupos da concentracdo dos néutrons precursores, discretizada
espacialmente pelo método dos elementos finitos. Pela integracdo analitica da equacdo da
concentracdo de precursores, pela utilizagdo do método de Galerkin para a funcéo teste (w) e
pela interpolacdo das variaveis do problema por fungdes definidas em subdominios, obtém-se
a solucdo das equacdes da cinética espacial, na forma matricial, onde foi utilizado o método
direto implicito de Euler, na variagdo temporal. Para resolver o sistema de equacdes foi utilizado
0 método iterativo Successive Over-Relaxation (SOR). Para o tempo inicial (t=0), sdo
assumidos os valores dos fluxos obtidos no regime estacionario.

No quarto capitulo, sdo apresentados os resultados dos dois exemplos numéricos que
abordam o problema da difusdo unidimensional, nos regimes estacionario e transiente, e sao
estabelecidas comparacdes entre resultados obtidos, tanto na distribuicdo espacial do fluxo de
néutrons quanto no fator de multiplicagdo efetivo de néutrons, com os resultados obtidos na
literatura utilizando o método das diferengas finitas. Para os dois modelos de reatores tipo placa,
0 BSS-6-Al e 0 BSS-6-A2 foram utilizados no modulo CINE do programa MEF para



discretizagdes com elementos finitos unidimensionais quadraticos com um ndmero variado de
elementos no intuito de aferir a precisdo do método.

No quinto capitulo, apresentam-se as conclusdes e as perspectivas para os trabalhos
futuros. No apéndice A, mostra-se o problema da difus&o estacionaria de néutrons. No apéndice
B, apresentam-se as formas matriciais das equa¢des da solucdo analitica. No apéndice C sédo

apresentadas as descrigdes e as defini¢des do programa MEF.



2. EQUACAO DA DIFUSAO DE NEUTRONS DEPENDENTE DO TEMPO
2.1. EQUACAO DE TRANSPORTE DE NEUTRONS DEPENDENTE DO TEMPO

O comportamento dos néutrons no reator nuclear é adequadamente descrito pela
equacéo de transporte de néutrons dependente do tempo para fluxo angular com o balanco das
particulas no espago de fases (r, Q, E,t) (SUTTON e AVILES, 1996):

——lp 7 ﬂ E t
V(E)at ( SR )
——ﬂ.UIlJ(],ﬂ,E,t)—Zt(T,E,t)w(LQ:E»t)

+ [dQ'[dE'S,(r,Q - QE - E,)Y(r, Q" E', t)

%o(E) -
+(1-p) - JdE'"vE (r,E', 0) [ dQ'Y(r, @', E',b)
I
+ Z A Xﬁ) (T, )

i=1

As concentracdes de precursores satisfazem a equacéo:

0
aci(r, t) = —Aici(r, ) + Bif dEVE;(r,E, ) [ dQyY(r, Q,E, 1), i =1,..,1. (22)

sendo,

X.(r, E, t): secdo de choque macroscopica total;

Y(r,Q, E, t): fluxo angular do néutron;

3 (rQ - QFE - E )Y Q,Et): secio de choque macroscopica de
transferéncia, que descreve a probabilidade que uma particula com uma energia
inicial E’ e dire¢do ()’ sofra uma colisdo em r no tempo t, resultando em mudanga
de direcgdo e energia;

1203 (r,E', t): secao de choque macroscopica de fissdo, assumida como isotrépica;
Xo(E): distribuicio de energia dos néutrons de fissido (espectro), assumida

isotropica;



xi(E): espectro para cada / da familia de precursores 7 (espectro de néutrons
atrasados);

c;(r,t): i-ésimo termo da concentragido dos néutrons precursores;

A;(r, t): i-ésimo termo da constante de decaimento;

Bi: i-ésimo termo da fracdao dos néutrons atrasados;

v (E): nimero médio de néutrons liberados por fissdo induzidas por néutrons com
energia E;

(1 — B): fragao de fissdo de néutrons prontos;

Q = v/v: dire¢do do movimento do néutron.

As solugbes numéricas das equacbes de transporte dependente do tempo e de
precursores para 0s problemas das cinéticas de reatores de interesse pratico sdo dificeis de
obtencdo, entdo, aplica-se os métodos de aproximacao. Neste tdpico, € abordado o método de
aproximacéo da equacao de transporte de néutrons dependente do tempo e equacdo da difusao
dependente do tempo. As derivacdes da equacao da difusdo a partir da equacdo de transporte
de néutrons sdo descritas em detalhes em (HENRY, 1972 e 1975) e (DUDERSTADT e
HAMILTON, 1976).

Segundo (SUTTON e AVILES, 1996), sdo definidos o fluxo escalar e a corrente liquida

como zero e 0s momentos angular, respectivamente, do fluxo angular:

¢=[dope] = [doQy (2.3)
Integrando as equacdes (2.1) sobre a variavel angular, tem-se:

1 0

vt EY

=-V.JrEt) —3.(r E,t)p(rE,t)
+ [ dE'Ss(r,E' - E,)p(r,E’, t) (2.4)
+ (1= Bxo(E) dE"vEs(r,E', ) (r,E', ¥)

£ AuE)e(r, o)

As equac0es dos precursores podem ser escritas em termos do fluxo escalar:



0
aci(r, t) = —Aici(r,6) + Bif dEVE;(r,E, )p(r,E,0),i = 1,..., L. (2.5)

As equac0es (2.4) e (2.5) séo exatas e para resolvé-las assume-se o fluxo angular como
linearmente anisotropico em relagdo a varidvel angular, resultando numa equagdo conhecida

como aproximacao Pn com fraca dependéncia angular como abordado por (CASE e ZWEIFEL,

1967) ou (HENRY, 1972):

Y, QEt) = ! ¢(r,E, t) +3Q.J(r,E,t)] (2.6)

yrl

Multiplicando a equagéo (2.1) por Q e integrando na varidvel angular obtém-se:

1 0
W%K’“E, t) + VjﬂﬂllJ(r,E,ﬂ,t)dﬂ+Zt(r,E,t)] (r,E,t) o7
fa

= f Ygq1(r,E' > E,t)J(r,E',t) dE’
0

o . 1 @ : .
O termo de fissao é nulo pois assume-se que o termo: ——J(r, E, t), seja muito menor

V(E) ot
que as taxas de reacéo.
Usando a aproximagéo Py para resolver a integral,
vfm(l (r,t,E) + 3 Q tE)dQ—V(l tE)
47T¢ r! ) 4‘7'[ ](r; ) ) - 3¢(ri ) ) (27b)

O grupo de equacdes (2.4) e (2.7a) sdo referentes as equacdes P1 dependente do tempo.
Eliminando as varidveis da energia continua em favor da formulacdo do grupo de energia,
conforme pode ser visto em (HENRY, 1975) ou (DUDERSTADT e HAMILTON, 1976), as
formas multigrupo das equacdes (2.4) e (2.5) sdo deduzidas segundo (SUTTON e AVILES,

1996) da seguinte forma:



10 _ g
ﬁa‘pg(r; t) - _V']g(r; t) - 2:‘r (r' t)¢g(r! t)
G
+ z 29r )+ (A -Bxd z vl (r, )¢9 (r,t) 2.8)
g'=1 g'=1 '
I
+ /'li)(igci (r,t),g=1,..,G,
2
5 G
aci(r, t) = —Aici(r, t) + ﬁi z UZ]‘cgl (r, t)gl)g'(r, t),l: =1,..,1, (29)

9'=1
Ignorando a complicacdo do grupo da velocidade V9 da equacdo (2.8) que deveria ter

as suas fungdes na posicdo r e no tempo t. E introduzido um grupo de secdo de choque de

g

transporte X;,.,

quando é definido na forma integral:

Eg_1
] dE[Z.(rE,0)J(r,E,t) — [ dE' 25, (1, E' > E, )] (1, E', )] (2.10)

Eg
Logo, a equacado (2.10) pode ser igualada por:
=P, O]9, 0) (2.11)

Segundo (SUTTON e AVILES, 1996) em (HENRY, 1972) sdo apresentados discursdes
de aproximacdes inerentes a esta substituicdo. Fazendo a anula¢do do termo envolvido na
derivacdo do tempo do fluxo da corrente na equacdo (2.7). Isto é geralmente uma excelente
aproximacdo para pratica de problemas de cinéticas de reatores (WEINBERG e WIGNER,
1958). A forma do grupo da equacéo (2.7), depois de todas essas aproximacgoes, pode ser escrita

como.
Z99(r,6) + 55, ) (1) = 0 (2.12)

Para definir o coeficiente da difusdo do grupo g D9 = 1/(3%. ), pode se reescrever a

equacéo (2.12), obtendo assim, a Lei de Fick:
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J9(r,t) = =DI(r, t)VeI(r,t) (2.13)

Fazendo as juncdes das equacOes (2.8) e (2.13) ela apresentara a forma da equacéo P
da equacéo da difusdo dependente do tempo. Substituindo a equacédo (2.13) na equacdo (2.8)

vem:

10

737t P9(r,t) =V.DI(r,t)VepI(r,t) — 2 (r, t)p9(r, t)

G

+ D @+ A-Pxg ) v @Y D) o

a'#g g'=1

1
+ Zli)(igci (r,t),g=1,..,G.
i=1

Esta € a equacdo da difusdo de néutrons multigrupo dependente do tempo que acoplada
com a equacdo (2.9) para concentracdo de precursores, constituem as equacdes da cinética
espacial. Apesar das aproximacdes usadas nas derivacdes destas equacdes, sera assumido que
elas descrevem adequadamente o comportamento da dependéncia do tempo para o fluxo de

néutrons nos reatores nucleares.

2.2.  EQUACOES DE DIFUSAO DE NEUTRONS MULTIGRUPO DEPENDENTE DO
TEMPO

2.2.1. Cinética de reatores nucleares

Para um reator nuclear operar em um nivel constante, a taxa de producdo via fissdo de
néutrons devera ser balanceada pela perda via absor¢do ou fuga de néutrons. Neste caso a
poténcia permanece constante, que € a condi¢do de operacdo de um reator nuclear. Essa
condicdo é conhecida como o estado critico de um reator. Algum desvio dessa condi¢do de
balanco resultard em wuma dependéncia temporal da populacdo de néutrons e,
consequentemente, uma variacao temporal da poténcia do reator. Ao estudo do comportamento
de um reator cuja densidade ou fluxo variam com o tempo, chama-se de cinética de reator
(DUDERSTADT e HAMILTON, 1976).
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Deve-se reconhecer que as mudangas no comportamento da populagdo neutronica,
muitas vezes, ndo estdo sob o controle do operador do reator. Em alguns casos, isso dependera
da composicédo do nucleo, que dependera também de outras variaveis que ndo estdo diretamente
acessiveis ao controle, tais como a temperatura do combustivel ou refrigerante. Entretanto,
essas variaveis dependem, por sua vez, do nivel de poténcia do reator e, consequentemente, do
fluxo de néutrons (PETERSEN, 2011). O estudo dessas causas intrinsecas do comportamento
da populacédo de néutrons é chamado de Dindmica de Reator Nuclear. (STACEY, 1969). Neste
trabalho, da — se énfase a cinética de reator nuclear, mais especificamente as varia¢des do fluxo
de néutrons em funcdo do tempo, ou seja, 0 comportamento transiente do fluxo de néutrons
devido a mudancas nos parametros nucleares (secdo de choque de absorcéo) para pequenos

intervalos de tempo.

2.2.2. A importancia dos néutrons atrasados nas equacdes da cinética

Segundo (PETERSEN, 2011), a fissdo da origem a fragmentos que sao elementos com
menor nimero de massa do que o nucleo original. Alguns desses fragmentos sédo instaveis e nos
processos de decaimento eles emitem néutrons. Tais néutrons que sdo emitidos ap0s 0 processo
da fissdo sdo chamados de néutrons atrasados e 0s nucleos que 0s emitem sdo chamados de
precursores de néutrons atrasados

Os néutrons atrasados ndo tém as mesmas propriedades que o0s néutrons prontos
produzidos diretamente da fissdo. A energia média dos néutrons prontos € muito maior do que
a energia média dos néutrons atrasados (STACEY, 1974). O fato dos néutrons atrasados serem
gerados com energias mais baixas tem dois impactos significantes na maneira que eles
procedem no ciclo de vida do néutron. Primeiramente, os néutrons atrasados tém uma
probabilidade muito menor de causar fissdes rapidas do que 0s néutrons prontos, devido ao fato
de que sua energia média esta abaixo do minimo requerido para a ocorréncia de fissdo em
reatores rapidos. Em segundo lugar, os néutrons atrasados tém uma probabilidade menor de
fuga do ndcleo, porque eles sdo gerados com energias mais baixas e, por isso, viajam distancias
mais curtas do que os néutrons rapidos (PETERSEN, 2011).

Para obter o balanceamento dos néutrons em um reator nuclear, as equagdes multigrupo
da cinética espacial para g grupos de energia e | néutrons precursores atrasados (HENRY, 1975)
e (DUDERSTADT e HAMILTON, 1976), séo:
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1 8¢9

_ — g g
TR (r,t) =V.DI(r,t)VepI(r,t)
G
—2999(r,t) + Z £9°9 49 (r, 1)
g'=1
9z (2.15)
G 1
(U= Bep)x§ ) vl 990 + ) Lixf G0
g'=1 i=1

+s9 g=1,..,G

Sabe-se que a variacdo temporal da concentracdo dos precursores é dada pela producao
do precursor pela fissdo e pela perda causada pelo decaimento.

Os néutrons produzidos pelo grupo i, podem ser contabilizados da seguinte forma:
multiplicando a taxa de producédo de néutrons na fisséo pela fracdo de néutrons atrasados.

A equacdo de balanco que representa a variacdo temporal da concentracdo de

precursores é dada por:

ac; (r,t)

G
— ﬁiz VI (r, OPI(r,6) = AC(r,O) i =1,..,1 (2.16)

g=1

onde:

¢9(r,t): fluxo de néutrons do grupo g na posicio r e tempo t.

C;(r,t): concentracdo de precursores de néutrons no grupo i, na

posicao r e tempo t.

V9:velocidade do néutrons do grupo g.

DY (r, t): coeficiente de difusdo do grupo g, na posi¢io r e tempo t

%7 (r,t): secdo de choque de remogio do grupo g, na posicio r e tempo t.
Z';q,_)g (7, t): secdo de choque de espalhamentos do grupo g'para o grupo g, na
posicao r e tempo t.

Zf: secdo de choque macroscépica total do grupo g.

vZ}g: se¢do de choque macroscépica de fissao do grupo g, multiplicado pelo

numero médio de néutrons emitidos na fissdo nao depende de (T, t).

29:secdo de choque macroscépica de absorcio do grupo g.
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2 se¢do de choque macroscépica de captura do grupo g.

2979 secdo de choque macroscépica de espalhamento do grupo g para g'.
Bery: fracdo efetiva total de néutrons atrasados.

ng : espectro de néutrons prontos do grupo g.

)(lfg : espectro de néutrons atrasados do grupo g.

v:ndmero de fissdo de néutrons.

A;: constante de decaimento do grupo i de precursores.

Bi : fracao de néutrons atrasados do grupo i.

s9: fonte externa de néutrons do grupo g.

(1 — Besr): fracdo de fissdo de néutrons emitidas como néutrons prontos.

Usando as equacdes da cinética espacial, podemos estabilizar os mecanismos de
producdo e perda de néutrons através do calculo da poténcia do reator. Assim de que a poténcia
permanece constante, a quantidade de néutrons gerados é igual a quantidade de néutrons
absorvidos. O desequilibrio da populacdo de néutrons pode resultar no desligamento do reator,
caso mais néutrons sejam absorvidos do que gerados. Caso contrario, pode resultar em um
aumento de poténcia que comprometera a estrutura e funcionamento do reator (PETERSEN,
2011).

E as relacdes das secdes de choque sdo definidas (DUDERSTADT,1976) como:

G
59 =39 + Z £9'79 2.17)
g'=1
Ty =37+37 (2.18)
G
Iy =3J+ Z %y (2.19)
g'=1
gr+1

As secbes de choque de remogdo (Z7) caracterizam a probabilidade que o néutron tem
de ser removido do grupo g por absorc¢do e¢/ou espalhamento para o grupo g’.
No caso de dois grupos de energia, considera-se nulo o espalhamento com ganho de

energia. Portanto, para a secdo de choque de remocéo do grupo térmico resulta:
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22 =32 4+321 =52 (2.20)
Escrevendo as equacdes da cinética de multigrupo com a utilizacdo da variavel u(xt),
teremos um campo vetorial q(x,y)=(qx,0y), € dado pelo produto do coeficiente de difuséo D pelo
gradiente da funcao do fluxo de néutrons u(x,t)

q = —DVu, (2.21)

Sendo Q(x,y) a fonte ou sumidouro da quantidade envolvida. O balango dos fluxos de

néutrons resulta:
V.q = Q(x,y), (2.22)
Substituindo a equacdo (2.21) na equacdo (2.22), obtém-se a equacao de Poisson
V.(DVu) + Q = 0. (2.23)
Que deve ser satisfeita em todo dominio.
Aplicando a equacéo de Poisson (equacdo 2.23) na equacao (2.15) teremos o0s sistemas

de equacOes da cinética de multigrupo representado por um sistema parabdlico segundo
(GROSSMAN e HENNART,2007) da seguinte maneira:

du
= ~V-DVu+Qu=0. (2.24)

Onde:

u(x, t): vetor coluna constituido pelas variaveis representando o fluxo de néutrons e a

concentracdo dos precursores:

u= {¢1 ey ¢G,C1, ey CI}T = {qb C}[(G+I)x(G+I)] (2-25)

D: matriz diagonal dos coeficientes de difuséo:
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D = diag[v,D; , ..., v6Dg, 0, ...00 ¢4 x40 (2.26)

E Q: bloco matriz:

H T

¢= [B A] [(G+Dx(G+D)] (2.27)

No qual:

H: matriz de absorcao, espalhamento e se¢des de choque de fisséo

H=+4vy3g 850 — (1= 68,5 05207 — (1= Berp)vgxgvi!  [GxG] (2.28)

6gg, =1,seg=¢g

Onde {Sgg, =0,seg+g

I' e B séo as matrizes dos néutrons precursores
I=vx 4 [GxI] (2.29)
B = vz} [IxG] (2.30)
A: matriz diagonal de decaimento
A = —diag[Ay, ..., 4]T [IxI] (2.31)
S: vetor coluna do grupo da fonte externa
s = [v151, -,V S; 0, ...,O][T(GH)] =0 (2.32)
As condigdes de contorno:

V.(DVu)+ Q=0 emQ (2.33)
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u(r)=0em T, (2.34)
ou(x)
o =0 em I, (2.35)

Para porgéo T;,: fluxo zero ou condi¢Bes de Dirichlet de contorno T' = Q — Q.

E para I;: CondigGes Newmann ou de corrente zero.

Onde:I'=T,Ul,el, NI, =@enéanormal paral,.

Figura 1: A normal externa ao contorno I' (RIBEIRO, 2004).

Conforme a descri¢do apresentada no anexo A, o método utilizado na obtencdo da
solucdo analitica das equacOes da cinética espacial € o método dos elementos finitos (MEF),
bem como os principais motivos de sua implementacdo sdo (GROSSMAN e HENNART,
2007):

a) A formulacdo do problema da condicdo do contorno é chamada de “fraca” ou forma
variacional, que pode ser obtido diretamente da equacdo original ou de alguma forma
equivalente;

b) A discretizacdo dada pelo dominio aproximado Q¢, que € a unido da partes geometricamente
simples ou elementos, por exemplos, retangulares e triangulares em problemas com duas
dimensdes;

c) A formulagdo e solucdo do problema algébrico linear resultante da expansdo dos

coeficientes pela aplicagéo do passo, utiliza a formulagéo fraca do passo. Na aproximacao
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discreta, os coeficientes resultantes pela aproximacdo de Galerkin no espaco do passo

satisfaz um sistema de equac@es diferenciais ordinarias.

Resumidamente, a aplicacdo do método dos elementos finitos, consiste em diferentes
métodos numéricos que aproximam a solucéo de problemas de valor de fronteira descritos tanto
por equacgdes diferenciais ordinarias quanto por equacGes diferenciais parciais através da
subdivisdo da geometria do problema em elementos menores, chamados de elementos finitos,
nos quais a aproximacdo da solucdo exata pode ser obtida por interpolacdo de uma solucédo

aproximada.
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3. SOLUCAO DAS EQUACOES DA CINETICA ESPACIAL PELO METODO DOS
ELEMENTOS FINITOS

3.1. FORMULAGAO FRACA DA EQUACAO DA CINETICA ESPACIAL.

Para obter a formulacg&o fraca da equacao da cinética espacial, utiliza-se a equacao (2.24)
definida no dominio Q juntamente com as condi¢des de contorno definidas em I' pelas equacdes
(2.34) e (2.35).

A obtencéo da formulacdo fraca é realizada multiplicando-se a equagéo (2.24) por uma

fungéo peso w e integrando sobre todo dominio Q.
w = {w;(x), wy(x), ..., w,(x)}, (3.1)
onde wy, (x)é uma fun¢ao continua definida no dominio Q.

Deste modo a equacéo (2.24) na forma integral pode ser escrita por:

J (‘;—': —V.DVu + Qu) .wdQ = 0. (3:2)
QO

Aplicando-se a derivacao por partes explicitada abaixo:

f (V.DVu).wszf V. (DVu.w)dQ—f DVu.Vwd/l, (3.3)
Q Q 0

Onde, o primeiro termo do lado da esquerda da igualdade na equacédo (3.3) pode ser

transformado em uma condicdo de contorno:

f V.(DVuw)dQ:f DwVu.ndr. (3.4
Q r

Substituindo a equacéo (3.4) em (3.3), tem-se:
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J. (V.DVu).wszf Dqu.ndF—f DVu.Vwd1. (3.5)
Q r 0

Substituindo a equacao (3.5) na equacao (3.2), obtém-se:

ou
—wdﬂ—(f Dqu.ndF—f
o Ot r 0

DVu. de.()) + f Qu.wdQ=0. (3.6)
Q
Utilizando as condicGes de contorno definidas nas equacfes (2.34) e (2.35) que
equivalem a dizer que o fluxo é nulo no contorno T, e que a corrente é nula na dire¢cdo normal

ao contorno I:

f DwVu.ndrl" = 0. (3.7)
r

Logo, a equacao (3.2) pode ser reescrita na forma:

9
f (—u + DYWLV + Qu) wdQ = 0 (3.8)
, \at

3.2.  APROXIMACOES DAS EQUACOES DA CINETICA ESPACIAL PELO METODO
DOS ELEMENTOS FINITOS.

A geracdo de solucgdes aproximadas para a equagdo (2.24) € obtida pela substituicdo de

u, por funcBes basicas definidas em um subdominio Q¢ tal que Q =), Q¢ Uma condicao
necessaria para a definicdo dessas funcbes basicas é que essas funcBes tenham as mesmas
propriedades de diferenciabilidade e continuidade da funcdo u, caso contrario podera haver
dificuldades em obter a solucdo da equacdo (CORREIA FILHO, 1981).

O método dos elementos finitos propicia a definicdo dessas fun¢des basicas com as quais
se pode aproximar tanto a geometria assim como todas as variaveis que definem o problema
em questdo: o fluxo de néutrons, concentracdo de precursores, etc. Portanto, pode-se, aproximar

a geometria pelo método dos elementos finitos da seguinte forma:
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¥ = ) NIxID); (39)

A utilizacdo do método de Galerkin, que preconiza a utilizagdo da mesma funcéo de

interpolacdo para a funcdo peso w e a funcéo do fluxo de néutron u, resulta:

uf = > Ni([ul); (310)
i=1

w = > N(Iwl); (310)
i=1

af = > N[l (312)
i=1

Onde uf é a componente | do vetor u; N; é a funcéo de interpolacéo associadaao né i e
elemento e. Ambos sdo definidos no subdominio Q¢. Supondo que esse subdominio é
representado por um elemento quadratico unidimensional com 3 nds (m=3), as coordenadas do

sistema podem ser representadas pelas seguintes formas matriciais:

N={N, N N} (3.13)

=

([xID):
xf = N4 ([x]D); (3.14)
([x]D)k

([ul?);
uf = N{ ([ul); (3.15)
([ulf)k

(wl7);
wi =N+ ([wl); (3.16)
(w1
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Onde i, j e k s&o o0s nos do elemento finito em questéo.

Agrupando todas as varidveis nodais na variavel un, isto é, o fluxo de néutrons e a

concentracdo dos néutrons atrasados, o vetor u pode ser representado por:
u = Nu, (3.17)

Onde a matriz N é constituida pelas fungdes de interpolagdo das variaveis do problema
e pode ser colocada na seguinte forma:

o ]
N = (3.18)

(G+Dx3(G+I)

Sendo que, N e N, apresentam as seguintes formas matriciais:

[NM{ N7Njo 0 0 .. 0 0 0 |
lo 0 0 N2NZN2.. 0 0 o |

NC = | v | (3.19)
0 00O0O0 O .. NENS NgJGX(3XG)
N{ N3Nio 0 0 .. 0 0 o]
0 0 0 N2NZN2... 0 0 0

N' = Lo I (3.20)
0 00 00O .. N/ NJN; -

O gradiente do vetor das variaveis u pode ser aproximado pela relacéo:
Vu = VN'u, (3.20a)

Onde o gradiente das funcdes de interpolacdo VN! é definido por:
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-Nll.x NZl,x N31,x 0 0 0 0
Ni, N}, N, 0 0 O SN
0 0 0 N Nj N3,

VN'={o o o N Nj N

o o o O

(3.21)

G G G
Niy N3y N3y

G G G
Ny Ny N3y )

Gx(3xG)
O vetor u,, tem como componentes as variaveis nodais do problema:
w, ={¢1 ¢; &3 ¢f o7 ¢F .. #5 C G €3 .. Cilaesn (322
E pode ser representado na forma sintética:

u, = {® Claxesn (3.23)
Substituindo as aproximac6es definidas nas equacdes (3.17) e (3.20a) na equacéo (3.8),

a qual representa a equacdo da formulagdo integral do problema de difusdo neutrénica
dependente do tempo, obtém-se uma forma aproximada desse problema:

ne

z (NTNit,, + VNT. DVNu,, + NTQNuw,)) . wdQe€ = 0 (3.24)
Qe
=1

e
Colocando-se a equacao (3.24) em sua forma matricial, resulta:

Au+(D+Qu=0 (3.25)

Ou ainda:

R b0 S ) [ B B

Onde os termos das matrizes tém as seguintes representacdes:
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AS = Q@NG.NGdQe (3.27)
Al = erN’.N’dQe (3.28)
D¢ = erVNG.I_)VNGdQe (3.29)
H= Qesz. HANSd Qe (3.30)
r= QeNG.f‘N’dQe (3.31)
B= erN’.l_?NGdQe (3.32)
A= Q61\/’.7\1\/%196 (3.33)
s6 = JQeNG.EdQe =0 (3.34)

Essas matrizes, sdo ditas matrizes elementares por serem definidas no subdominio
Q¢, sdo integradas numericamente pelo método de Gauss. Os simbolos G representam 0s grupos

de energia dos néutrons prontos e | 0s grupos da concentracdo dos precursores

3.3. DISCRETIZACAO TEMPORAL DAS EQUACOES DA CINETICA ESPACIAL

3.3.1. Método direto utilizando 0 método de Euler implicito

Demonstra-se que o esquema implicito do método de Euler é incondicionalmente

estavel com respeito a discretizacdo temporal (NAKAMURA, 1977). Isto consequentemente
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permite utilizar passos de tempo (At) maiores na solucdo do problema. Contudo, a escolha do
intervalo de tempo (At) depende também da magnitude das mudangas impostas nos parametros.
Essas mudancas podem ser introduzidas na solucéo da equacgéo. A evolucdo das propriedades,
definidas pelo termo a esquerda da equacdo (3.35), no decorrer tempo requer um calculo
iterativo em cada intervalo de tempo. E possivel notar que o esquema implicito é mais complexo
de ser utilizado que o esquema explicito, pois o primeiro requer a inversao do sistema de

matrizes em cada intervalo de tempo (At).

Ju
T Uepne = f(Uespe t + AL) (3.35)
u —u
g = — (3.36)

Substituindo as equacdes (3.35) e (3.36) na equacdo da cinética espacial apresentada na

forma matricial pela equacéo (3.25):

Augype + (D + Qupyp =0 (3.37)
u —u
A=+ (D + Quppye = 0 (3.38)

Portanto, o sistema de equacdes, levando em consideracdo a composicdo do vetor u

pode ser apresentada na seguinte maneira:

A¢ A¢
<A_t +D% + H) Dpypr = A_tcbt —ICeine (3.39)
Al Al
At +A ) Crine = At C; +BDyin; (3.40)

O fluxo inicial obtido pelo problema estacionario é representado pela seguinte equacao:

(D¢ + H)®y 40 =0 (3.41)
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Este problema apresentado na equacao (3.41) pode ainda ser colocado na forma de um
problema de célculo de autovalores e autovetores definido abaixo:

(DS+H, — H)® = AH;® (3.42)

O autovalor A é uma constante que mantém a igualdade entre os mecanismos de
producdo e perda de néutrons no reator.

Com as condicGes iniciais obtidas pela solucdo da equacéo (3.42) e com as equagdes
(3.39) e (3.40) e possivel calcular a evolucdo de @, 5, (fluxo de néutrons transiente) e
C;.as(concentracdo dos precursores dos néutrons atrasados). De uma forma simplificada, essas

equacOes podem ser colocadas na seguinte forma:

KC®p 5 = F© (3.43)
M!C,ip, = R (3.44)
onde:
AG
K¢=—+D°+H (3.45)
At
AG
F6 = 7P ~TCopa (3.46)
AI
M =—+A (3.47)
At
Al _
R' = 1 Ce+BOup (3.48)

Colocando em evidéncia a concentracao dos néutrons atrasado €., ha equacao (3.40)

resulta;
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AI 1 AI
Cevar = (E + A> AL C:+ Bq)t+Atl (3.49)

E substituindo a equacdo (3.49) na equacdo (3.39), obtém-se a seguinte equacao:

AG AI 1 AI 1o AG
—+ D¢ +H+T(—+A| B|® =—T({—+A|] —Ci+— 3.50
ac O AR (At * > Lot <At * ) et ar®e (330

Onde C; e &, podem ser obtidos pela solugdo estacionéria da equacdo da difusdo de

néutrons.
3.3.2. Solucédo analitica da equacdo da concentragdo dos precursores

As constantes de tempo associadas aos grupos energéticos do fluxo de néutrons,
segundo (SUTTON e AVILES, 1996) sdo muito pequenas e inversamente proporcionais a
velocidade do grupo de néutrons (1/ V9), enquanto que as constantes de tempo associadas as
concentracdes dos néutrons precursores tendem a ser muito maiores e diretamente proporcional
as constantes de decaimento associadas a cada grupo de precursores de néutrons atrasados (Ai).
Esta observacdo conduziu a se adotar uma suposicao simplificada e frequentemente utilizada
nos codigos da teoria da difusdo espaco — tempo que reduz o tamanho do sistema linear a ser
resolvido sem afetar a preciséo da solucédo

A simplificacdo é alcancada por meio da utilizacdo da integracdo analitica das equacfes
de precursores de néutrons atrasados dependente do tempo. Assumindo uma variacao linear da
fonte de fissdo em cada passo de tempo discretizado. Realizando essa integracdo analitica, a
solucdo da equacéo (2.16) €, segundo (SUTTON e AVILES, 1996) dada por:

Ci(r,t + At) = e 4ALC,(r,t)
G

i '1 _ e—liAt ,
phflze e—liml Z vz¢ (r, )¢9 (r,0)

Al AAt —~ (3.51)
ﬁl’ '1 _ e—liAt G
7t g’ g’
o 1] Z vEL (1, t + AP (1, t + At)
| p
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Esta expressdo da solucdo analitica da concentracdo dos precursores, segundo
(SUTTON e AVILES, 1996), pode ser substituida em varios esquemas de integracdo numerica
que tem as variaveis C;(r,t + At) desconhecidas, reduzindo o sistema de equagdes a um em
que as variaveis a serem calculadas nos novos passos de tempo (t + At) serdo apenas as
relativas aos fluxos de néutrons. Entdo, um sistema com N pontos de malha espacial, G grupos
de néutrons e | grupos de precursores de néutrons atrasados totalizando N x (G + I) variaveis
pode ser reduzido significantemente a um sistema com N X G variaveis desconhecidas. Uma
vez que o novo fluxos de néutrons foi determinado para o tempo (t + At), usando o esquema
de solucgdo analitica da equacdo (3.51), os precursores podem ser eficientemente atualizados.
Este método tem sido implementado com sucesso em varios codigos de transientes neutrénicos,
dentre eles, o programa MEF desse trabalho (DHATT e TOUZOT, 1981)

Usando as matrizes definidas no Apéndice B a solugdo numérica do sistema é
apresentada da seguinte forma:

AG

AG
<E + DG + H - r‘Pt+At> th-I—At - _FTtCt + <E - FPt> q)t (352)

No qual, @, . é a solugdo da equacdo da difuséo no instante t + At, @, é a solugéo da
equacdo da difusdo no instante anterior, G 0 nimero de grupos de energia dos néutrons.
Usando dois grupos de energia e colocando a equacdo (3.52) em sua forma matricial

resulta:

Al
|[_t + D'+ H} - Hf1 - Flptlmt _F1P1:2+At - Hf2 -I{q)%+At}
A2 @7
2P}, + HI™? A TDP+Ha- FZP?+MJ
(3.53)
[A_l —ripl  —rip? | 1
_|ac ‘ Col®
2n1 A 2p2 ®; r
_1" Pt A_t — F Pt

3.3.2.1. Sistema de equagdes para a solu¢do numérica.

Assim, o sistema de equacdes (3.53) que representa a difusdo dependente do tempo pode

ser apresentada em uma forma simplificada:
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Ty le] Peiac| _ [En Elz] {CD%} Rl]
= + C 3.54
To1 Tool (DF, 4, Ez1  Ezl (@2 R, e (3:54)

na qual as componentes das matrizes e vetores sdo dados por:

Ty = ’2—1 + D'+ Hi — H} —T'PLp, (3.55)
Typ = TP} p — Hf (3.56)
Tyy = —T?Pfpe + H? (3.57)
AZ
T2 = 57+ D? + H2? —T2P2, 5, (3.58)
Al
Ei, = <E —~ r1Pg> (3.59)
E,, = —T'p? (3.60)
E,, = —I2p} (3.61)
AZ
Eyp = <A—t —~ FZPE> (3.62)
R, = -T'T, (3.63)
R, = —T2T, (3.64)

. ~ -/ - g:l g=2
Para resolver o sistema de equagOes acoplados nas variaveis @ ,, e P; 4,
desmembram-se as componentes referentes aos grupos de energia dos néutrons. As seguintes

equacOes surgem:
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Ty1 @i = By @F 4 By ®F — Ty @Fp + R G, (3.65)

T22¢?+At = EZZCDL% + E21CD% - T21¢%+At + R,C; (3.66)

Devido ao grande tamanho do sistema de equacdo (3.54) e ao acoplamento dos
componentes do fluxo de néutrons referentes aos grupos energéticos um método iterativo é
recomendado para se obter a sua solucéo desse sistema de equacdes (VERDU etal, 1995). Deve
ser notado que as sub-matrizes T11, T1o, T21, T2, E11, E12, E21 € E22 S0 simétricas e em particular
T11 e T2 séo diagonais dominantes e positivas, enquanto que a matriz T definida pelas sub-
matrizes Tij ndo apresenta essas propriedades. Portanto, reescrevendo o sistema de equacdes na
forma apresentada em (3.65) e (3.66), ele pode ser eficientemente resolvido por um método de
solucdo de sistemas de equacdes lineares tais como 0 método de Gauss ou método do gradiente
conjugado conjuntamente com um método iterativo aplicado as equacfes (3.65) e 3.66). Os
métodos iterativos usuais apresentam problemas de convergéncia se usados diretamente no

sistema de equag0es (3.54).

3.3.2.2. Metodo SOR

Os métodos interativos sdo aplicados em codigos da teoria da difusdo transiente para
resolver o sistema de equacgdes para 0s novos estados variaveis. Entre eles pode-se destacar o
método “Successive Over- Relaxation” (SOR). Este método popular, por ser preciso e eficiente,
propicia técnicas de aceleracdo de convergéncia (VARGA, 1962).

O Algoritmo utilizado segue 0s seguintes passos:

1. Utilizar os fluxos de neutrons ®1_, e ®Z, da solugdo estacionaria para se obter o novo

fluxo de néutrons do grupo 1 &7, », a partir da equacio definida em (3.65):

T11[¢%+At]i = Ellcbt:fL + ElZCD% - T12 [¢?+At]i—1 + Rlct (367)

2. Obter uma solucéao estimada para o fluxo de néutrons do grupo 1 a partir de (3.65) e resolver

a equacdo (3.66) para se obter uma estimativa do fluxo de néutrons do grupo 2 definido por

2 .
d:)t+Aif'
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Too[®Fiacli = E2a®F + Eoy @ — Toq [PLyacdi + RoCy (3.68)

3. O processo interativo sera finalizado quando o critério de convergéncia definido abaixo for

atingido, ou seja:

|[q)tg+At]i| - |[q)tg+At i_1| <
[ofad|

(3.69)

Onde g define o grupo de energia do fluxo de néutrons e € é a tolerancia requerida para

a convergeéncia.

4. A aceleracdo do processo iterativo pode ser obtida usando um método SOR, dado por:
T11[®%+At]i+1 = Ellq)% + EIZCDg - T12 [(‘)[q)?+At]i + (1 - (1)) [q)g]i—l] (370)
T22[®§+At]i+1 = EZZCDg + EZICD% - TZl[w[q)%+At]i+1 + (1 - (1)) [q):l]:]l] (371)

Para i=1, o0 esquema ficara com o seguinte aspecto:
Ti1[Pliacli=2 = E11®f + E1p@F — Tip[w[PFali=1 + (1 — @) [@F] =] (3.72)
T2 ®Fiaclimz = E2a®F + Epy®F — Toq[0[Pfyac)i=2 + (1 — 0)[PF]i=4]  (B.73)

Onde, w é o fator de relaxamento e é tipicamente escolhido como 1.5, [®},a.]i=0 €
[@2, 5;];=1 S30 0s termos das equagles (3.72) e (3.73) conhecidos no processo interativo
anterior i=0 e i=1. O termo [®2Z, ,];=, da equagio (3.73) é conhecido depois de se resolver a

equacdo (3.68). O processo € concluido quando as seguintes condicdes sdo satisfeitas:

(|C

— [@¢,].|| < tot (3.74)

t+At
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4. RESULTADOS NUMERICOS

O objetivo deste capitulo é apresentar os resultados numéricos obtidos para o fluxo de
néutrons utilizando o método dos elementos finitos e compara-los com os resultados numéricos
do fluxo de néutrons obtidos pelo método de diferencas finitas, em uma dimensao, presentes
nas literaturas.

Assume-se como condicdo inicial, que a distribuicao do fluxo de néutrons no reator sera
dada pela solucédo da equacdo da difusdo, em estado estacionario e definida como problema de
autovalor. Desta forma, podemos determinar as concentragdes iniciais de néutrons precursores
usando o fluxo de néutrons do problema de autovalor, para serem utilizados nos calculos de

transientes usando as equacdes da cinética espacial.

4.1. EXEMPLOS NUMERICOS UNIDIMENSIONAIS

O primeiro e o segundo problema de teste sdo os reatores tipo placa BSS-6 —Al e BSS-
6 - A2 (ANL-7416, 1977), com uma dimensdo. Os resultados numéricos obtidos com o0 método
dos elementos finitos séo comparados com os resultados encontrados na literatura (diferencas
finitas).

A utilizacdo da equacdo (3.54) permite a simulacdo numérica da equacao da cinética
espacial e comparacdes dos resultados numéricos nas seguintes propriedades: concentracdo dos
precursores (estatico e temporal), fator criticalidade kert € fluxo de néutrons, nos exemplos
numéricos BSS-6-Al e BSS-6-A2 (ANL-7416, 1977).

O problema teste na fase inicial do programa MEF é um reator tipo placa de uma
dimensdo (NAGAYA e KOBAYASHI, 1995), com trés regides. As regides extremas 1 e 3 sdo
compostas por um combustivel com as mesmas propriedades fisicas e a regido 2, central,
composta por um combustivel com propriedades diferentes das regies 1 e 3. Como condicdo
de contorno, aplica-se a condicdo de fluxo nulo nas extremidades do nucleo do reator como

mostrado na figura 2.
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Regido | Regido 2 Regido
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Figura 2: Geometria do reator tipo placa com uma dimensdo BSS — 6 (ANL-7416, 1977).

v [ B35 6 A Fuel 1
. x W Ess_6_A_Fuel 2.

GiD

Figura 3: Discretizacdo do reator tipo placa

Na figura 2 mostra-se a geometria do reator e na figura 3 mostra-se a discretizacdo do
nacleo do reator utilizando vinte quatro elementos finitos unidimensionais quadraticos com o
mesmo comprimento para todos os elementos. Para testar a convergéncia do método outras
discretizacaoes sdo utilizadas tais como 6, 48, 96, 104 e 192 elementos finitos.

O principal motivo da escolha deste modelo de reator como problema teste, é devido as
suas caracteristicas serem simplificadas em relacdo aos reatores reais, podendo assim, utilizar
as equacdes da cinética espacial e um amplo aporte tedrico, que permite a verificacdo da
precisdo do método dos elementos finitos.

A precisdo do método dos elementos finitos é testada com a utilizacdo da solugdo do
problema numérico BSS-6 (ANL-7416, 1977), que pode ser calculado por diferentes métodos:
nodal, elementos finitos, diferencas finitas, etc. Na tabela 1 sdo apresentados os valores dos
parametros fisicos de cada regido do reator (NAGAYA e KOBAYASHI, 1995).
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Constantes Regidole3 Regiéo 2
D1 (cm) 1.5 1.0
D2 (cm) 0.5 0.5

g (cm™) 0.026 0.02

Tao(em™b) 0.18 0.08

Tio,(cm™) 0.015 0.01

vZp(em™h) 0.01 0.005

vEp,(em™h) 0.2 0.099

P 1.0 1.0
X2 0.0 0.0
v,(cm/s) 1.0 x 107 1.0 x 107
v,(cm/s) 3.0x10° 3.0x10°
Constantes dos Néutrons Atrasados
Grupos B. Ai(sec™)
1 0.00025 0.0124
2 0.00164 0.0305
3 0.00147 0.1110
4 0.00296 0.3010
5 0.00086 1.1400
6 0.00032 3.0100

Tabela 1: Constantes de grupo para 1-D ANL-BSS-6 (ANL-7416, 1977).

4.1.1. Comparacdo com a solucéo estacionaria.

Para efeito de comparacao, utiliza-se as solucfes obtidas pelos métodos de diferengas
finitas (LIMA, 2005) e o valor de referéncia do fator de criticalidade (ANL-7416,1977). Nestes
métodos as varidveis dependentes séo as fontes de fissdo em cada no6 ou a derivagao do nucleo
(NAGAYA e KOBAYASHI, 1995), e para resolver a equacédo de difusdo de néutrons é utilizado
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0 método direto (OTT e MENELY,1969). Os resultados numéricos dos fatores de criticalidade
do reator obtidos na literatura e no programa MEF sdo apresentados na tabela 2.

Para o método dos elementos finitos foram utilizados 6, 24, 48, 96 e 192 elementos
finitos e para o caso do método das diferencas finitas foram utilizados 6, 24, 48, 96, 192 pontos.

Deve-se lembrar que 0 nimero de nos para o elemento finito unidimensional quadratico é de

2n+1 onde n é o numero de elementos.

Benchmark (referéncia) Fator de
criticalidade (ANL-7416,1977)

Método de Diferencas | Método de Elementos Finitos
Finitas (Lima, 2005) | (Elementos finitos quadraticos)
0.936125 0.9000870
(6 Pontos) (6 Elementos Finitos)
0.903943 0.9015320
(24 Pontos) (24 Elementos Finitos)
0.902285 0.9015870
(48 Pontos) (48 Elementos Finitos)
0.901772 0.9015960
(96 Pontos) (96 Elementos Finitos)
0.901540 0.9015960
(192 Pontos) (192 Elementos finitos)

0.9015507

Tabela 2: Comparacéo do fator de criticalidade do reator keff.

Analisando os resultados obtidos na tabela 2, o programa MEF apresenta uma boa
precisdo mesmo com baixo nimero de elementos finitos quadréaticos e a convergéncia do fator
de criticalidade se situa no valor de 0.9015960. Para o célculo dos fluxos de néutrons desse
problema faz-se necessario inicialmente realizar uma comparacdo do fluxo de néutrons
calculados pelo método dos elementos finitos (MEF) e pelo método das diferencas finitas
(MDF) com o intuito de escolher uma malha de elementos finitos que reduza as divergéncias
entre os dois métodos, para os fluxos de néutrons. Apresenta-se na figura 4, o fluxo de néutrons
térmicos obtidos pelo método dos elementos finitos e pelo método das diferencgas finitas.
Comparando-se os resultados obtidos pelo MEF e pelo MDF, verifica-se que uma discretizacao
acima de 40 elementos finitos, no caso do MEF, permite se obter uma boa representacéo dessas
variaveis em comparagdo com o MDF. Para a discretizagdo do nucleo do reator seré escolhida

uma malha composta por 80 elementos finitos.
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Figura 4: Comparacéo do fluxo de néutrons térmicos para o tempo t=0.0 s calculados usando
o MEF (10, 20, 40, 80 e 120 elementos finitos) e o MDF.

Na figura 4 e na figura 7, sdo apresentados respectivamente os fluxos rapido e térmico
de néutrons, calculados pelo programa MEF usando oitenta elementos finitos quadraticos em
uma dimens&o (cento e sessenta e um nads) e sao comparados aos fluxos rapido e térmico obtidos
pelo método de diferengas finitas (LIMA, 2005), ambos no caso estatico. A tolerancia utilizada

no programa de elementos finitos para o célculo estacionario foi de 10*° e 107 para 0 método

de diferencas finitas (LIMA,2005).



12 1 | L 1 1 1 L 1 L | L

o MDF-t=0.0[s]
MEF - t=0.0 [s]

Fluxo dos Néutrons Rapidos

T T T
0 40 80 120 160 200 240

Distancia no Nucleo do Reator (CL=120 [cm])

Figura 5: Comparacéo do fluxo de néutrons rapido estacionario entre MEF e MDF.

1125 L | L | L | L | 1 |
o MDF-t=0.0[s]
i MEF - t=0.0 [s]
1,00
n
(@]
L 1
=
—
12 0,754
(72}
=
e ~
3
D 0,501
()
© .
(@)
x
3 025-
L
0,00 T T T T T T T T T T T
0 40 80 120 160 200 24

Distancia no Nucleo do Reator (CL=120 [cm])

Figura 6: Comparacéo do fluxo de néutrons térmico estacionario entre MEF e MDF.



4.1.2. Comparacgdo com a solucéo dependente do tempo

4.1.2.1. Exemplo numérico BSS-6-Al
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No problema BSS-6-Al, a se¢éo de choque de absor¢éo do grupo 2, na primeira regiao,

é linearmente maior 3% em um segundo. Para o calculo dos fluxos de néutrons desse problema

faz-se necessario inicialmente realizar uma comparacdo da concentracdo dos precursores

calculados pelo método dos elementos finitos (MEF) e pelo método das diferencas finitas

(MDF), no caso estacionario, com o intuito de escolher uma malha de elementos finitos que

melhor represente a funcdo das concentracfes dos precursores. A comparacdo da solucdo dos

fluxos de néutrons entre os dois métodos para ja foi realizada anteriormente também para a

analise estacionaria.
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Figura 7: Comparacdo da concentracdo do precursor I=1 para o tempo t=0.0 s calculados
usando o MEF (10, 20, 40, 80 e 120 elementos finitos) e 0 MDF (240 pontos).

Apresenta-se na figura 7 a concentracdo dos precursores obtidos pelo método dos

elementos finitos e pelo método das diferencas finitas. Comparando-se os resultados obtidos
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pelo MEF e pelo MDF, verifica-se novamente que uma discretizacdo maior que 40 elementos
finitos, no caso do MEF, também se obtém uma boa representacdo para essa variavel. E
importante ressaltar que a colocacdo de um no na linha de centro (CL) do ndcleo do reator
permite obter uma melhor simetria dos resultados como é esperado no calculo do nucleo de um
reator simétrico. Com base nessa comparacao de resultados feita anteriormente para o caso
estacionario, utiliza-se no célculo das variagdes temporais das concentragcdes de precursores e
dos fluxos de néutrons uma discretizacdo com 80 elementos finitos quadraticos.

Na figura8 apresenta-se uma comparacgdo dos resultados obtidos, no caso estacionario,
para as concentragdes dos precursores i=1, 2, 3, 4, 5 e 6 entre 0 MEF utilizando 80 elementos
finitos e 0 MDF utilizando 240 pontos.
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Figura 8: Comparagdo da concentracdo dos néutrons precursores (i=1, 2, 3, 4, 5 e 6) para
o tempo t=0.0 s calculados usando o0 MEF (80elementos finitos) e 0 MDF (240 pontos).

Na figura 9 é apresenta-se a evolucdo temporal do fluxo de néutrons para o grupo rapido
obtidos pelo programa MEF com os obtidos por MDF para os tempos t=0.0, 0.5, 1.0 e 2.0s.
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Figura 10: Comparagdo da evolucédo temporal do fluxo de néutrons térmicos

obtidos pelo MEF (80elementos finitos) e pelo MDF (240 pontos).
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Na figura 10 acima, apresenta-se uma comparacao da evolugéo temporal dos fluxos de
néutrons do grupo térmico, obtida pelo MEF e pelo MDF para os tempos t=0.0, 0.5, 1.0 e 2.0s.
Foi utilizada uma tolerancia de 10 para os fluxos de néutrons e os seis grupos de néutrons
precursores para 0 caso do MEF e de 10 para o caso do MDF com um passo de tempo de At
= 0.01 s para ambos.

Na figura 11 apresenta uma comparagdo da concentragdo dos precursores do grupo 1
avaliados nos tempos t=0.0s e t=2.0s para 0 MEF e 0 MDF.
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Figura 11: Comparacéo da concentracao dos precursores do grupo I=1 avaliados no
tempo t=0.0s e t=2.0s para 0 MEF (80elementos finitos) e 0 MDF (240 pontos).

Na figura 12 apresenta-se uma comparagao entre os resultados obtidos para o fluxo de
néutrons do grupo térmico utilizando o MDF, com pontos equidistantes, e 0 MEF com uma
discretizacdo de 104, 120, 318 e 564 elementos finitos com tamanhos variados e com
concentragdo nas regides onde o fluxo térmico sofre grandes variages, isto é, nas regifes em

torno das coordenadas x=40 e 200 cm.

Verifica-se existir uma variagdo méxima em torno de 10% entre as solu¢bes do MEF
com tamanho de elementos variaveis e do MDF com pontos equidistantes para o caso do fluxo

térmico.
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Figura 12: Comparagdo do fluxo de néutrons térmicos entre 0 MEF, com
elementos de tamanho variado, e o MDF.

4.1.2.2. Exemplo numérico BSS-6-A2

Este exemplo € similar ao exemplo anterior com mudancas apenas na se¢do de choque
de absorcdo do grupo 2. Nesse caso, a se¢do de choque de absorcdo na regido 1 diminui
linearmente de 1% em um segundo.

Os resultados obtidos pelo programa MEF fazem uso da solucéo direta das equacdes da
cinética espacial. Eles sdo comparados as solugdes calculadas e apresentadas por varios
referenciais tedricos utilizando diferentes métodos tais como o método nodal, 0 método das
diferencas finitas, ...etc.

Mantém-se neste exemplo a mesma discretizacdo utilizada anteriormente de 80
elementos finitos quadraticos unidimensionais com o mesmo comprimento para todos os
elementos. Para este exemplo, os fluxos de néutrons calculados pelo programa MEF, para os
grupos rapidos e térmicos, sdo apresentados nas figura 13 e figura 14, respectivamente, e
comparados com os resultados do MDF nos tempos t = 0.0, 0.5, 1 e 2s. A tolerancia utilizada
no MEF foi de 10 e no MDF (LIMA, 2005) de 10" ambos com um passo de tempo At=0.01s.

Podemos observar que os resultados obtidos pelo MEF sdo qualitativamente similares aos



42

obtidos pelo MDF mas, com uma solucgéo apresentando um certo amortecimento nos valores

do fluxo, caracteristica similar ao notado no exemplo anterior.
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Figura 13: Comparacéo da evolugdo temporal do fluxo de néutrons rapidos obtidos
pelo MEF (80 elementos finitos) e pelo MDF (240 pontos) para o modelo bss-6-a2.
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Figura 14: Comparagdo da evolucdo temporal do fluxo de néutrons térmicos obtidos pelo
MEF (80 elementos finitos) e pelo MDF (240 pontos) para o modelo bss-6-a2.
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5. CONCLUSOES

A solucéo das equaces da cinética espacial unidimensional com seis grupos de néutrons
precursores e dois grupos de energia foi obtida nesse trabalho, utilizando-se uma aproximacao
espacial do dominio e das varidveis pelo método de elementos finitos e uma aproximacao
temporal pelo método direto de Euler implicito. A equagdo diferencial da concentragdo dos
precursores € resolvida por integracdo analitica.

Para a solucdo do problema néo linear da equacdo de difusdo de néutrons no espaco-
tempo, apresentada pela equacgéo (3.54), foi criado um mddulo denominado CINE no programa
MEF utilizando a linguagem de programagdo Fortran. Para uma aproximacdo espacial da
geometria [x]7, do fluxo de néutrons uf e i para dois grupos de energia e das concentragdes

dos néutrons precursores C7  para 0S Seis grupos recorreu-se ao método dos elementos finitos

utilizando um elemento finito unidimensional quadratico definido num sub-dominio Q¢ com
coordenadas de referéncia local. A passagem das coordenadas locais para as globais é feita
mediante uma transformacé&o jacobiana do sistema local (n, e &) para o global (x,y e z). Para
a solucdo da equacdo integral da cinética espacial, utiliza-se 0 método de Galerkin com uma
funcédo peso w; do mesmo tipo que a utilizada para o fluxo de néutrons u;. A solucéo temporal
pelo método direto faz uso do meétodo Euler Implicito. Com a utilizacdo das solucbes
estaciondria (equacao de difusdo de néutrons definida como um problema de autovalor) os
valores de &, e C, sdo obtidos e substituidos na equacdo (3.51) o que permitird o
desenvolvimento dos célculos das evolucgdes temporais das variaveis: @, a; € Ceiar-

A solucéo analitica da equacdo (3.51), ap6s a aproximacao da concentracdo dos néutrons
precursores por elementos finitos, é disposta em forma matricial com a finalidade de ser
utilizada com os algoritmos interativos apresentados nas equacdes (3.67) e (3.68) em funcéao do
tempo. Contudo, a concentracdo dos néutrons precursores no tempo inicial t=0 sdo definidos
pela solucdo estacionaria da equacdo da concentracdo de néutrons precursores.

Como saida de resultados, o programa MEF fornece os comportamentos dos fluxos
térmico e rapido, a concentracdo dos precursores estacionarios, a concentra¢des dos precursores
no tempo e o fator de multiplicagéo.

No caso estacionario, a tabela 2 apresenta uma comparacgédo dos resultados numericos
obtidos pelo método dos elementos finitos (MEF), pelo método de diferencas finitas (LIMA,
2005) e por uma referéncia numeérica internacional (ANL-7416, 1977) para o caso BSS-6-A. O

fator de criticalidade do reator obtido pelo programa MEF apresenta uma boa precisdo mesmo
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com numero baixo de elementos quadraticos com os outros referenciais numéricos. Portanto,
pode-se verificar também que o programa MEF nesse problema de teste estacionario, utilizado
para avaliar o desempenho do modulo CINE do programa MEF, fornece um comportamento
qualitativo correto também para o fluxo de néutrons rapidos e térmicos sdo apresentados pelas
figuras 5 e 6, respectivamente. A tolerancia utilizada para os autovalores (fator de criticalidade)
e autovetores (fluxos de néutrons) no programa MEF (elementos finitos) foi de 1x107*°
enguanto que a tolerancia apresentada pelo referencial numerico em diferencas finitas (LIMA,
2005) foi de 1x107.

No caso dependente do tempo, em que se tratou do problema BSS-6-Al, as variagdes
temporais do fluxo de néutrons para o grupo de energia rapido e térmico e para a concentracdo
de precursores, utilizando uma aproximacdo de 80 elementos finitos unidimensionais
quadraticos, apresentaram para ambos 0s métodos a mesma convergéncia no tempo com um
desvio no fluxo de néutrons, do tipo amortecimento, nos tempos t = 0.5, 1.0 e 2.0 segundos.
Algumas melhorias devem ser aplicadas ao MEF no intuito de aproximar a solugédo obtida por
esse programa a solucdo obtida por diferencas finitas. O desvio em relacéo a distribuicdo do
fluxo inicial é predominante na regido 1 onde a variacdo da sec¢do de choque de absorgao é
aplicada. O tempo de convergéncia para 0 processamento dessas solugdes é praticamente o
mesmo.

No segundo caso dependente do tempo definido pelo modelo BSS-6-A2 a secdo de
choque de absorcdo da regido 1 do grupo dois de energia diminui linearmente em 1% em um
segundo, os fluxos de néutrons calculados pelo programa MEF para os grupos rapidos e
térmicos apresentaram um desvio relativamente grande, predominantemente na regido 1, onde
a variacdo da secdo de choque de absorcao é aplicada. Nesse caso, também foram utilizados 80
elementos finitos unidimensionais quadraticos, uma tolerancia de 10 e um passo de tempo de
At=0.01 segundos. Podemos afirmar que, apesar do método direto desenvolvido no mddulo
CINE do programa MEF convergir no caso | e Il o comportamento quantitativo dos fluxos de
néutrons no tempo, tanto no caso | como no caso |1, precisa ser estudado mais criteriosamente

para averiguar o que estaria produzindo um amortecimento crescente da solugéo com o tempo.
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APENDICE A. DIFUSAO ESTACIONARIA DE NEUTRONS

A.l. OPROBLEMA DE DIFUSAO ESTACIONARIA DE NEUTRONS

A.1.1. Paraum grupo de energia

A equacdo da difusdo para um grupo de energia, definida como um problema de

autovalor é dada por:

—DV2p(x,t) + 2,0 (x,t) =

. vEr ¢(x,t) (A1)
eff

A.1.2. Paradois grupos de energia

A equacdo da difusdo estaciondria pode ser obtida por meio da equacdo (2.24),

eliminando a variacdo do fluxo de néutrons no tempo.
—V.DVu(x) + Hu(x) = s (A.2)
onde D ¢é a matriz diagonal dos coeficientes de difusdo:

D = diag[D*, ...., D]{srq (A.3)

e onde H é a matriz composta das matrizes das se¢Bes de choque de remocao Hp, das secbes

de choque de espalhamento H, e das se¢Ges de choque de fissdo dos néutrons Hy:
H=Hp—H;—Hy (A4)

Para dois grupos de energia, o rapido (1) e o térmico (2), D apresenta a seguinte forma

matricial:

D= [%1 DOZ](ZxZ) (A-3)
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e a matriz H a forma;

0
He=| g 22] (A-6)
R7(2x2)
0 22—>1
H, = [ a2 (A7)
25 0 (2x2)
_ XoVES )(3172]3] Af)
fF=|,2,v1 2..y2 .
)(ovZf )(ovZf (2x2)
O vetor do fluxo de néutrons u, nesse caso, € representado por:
— 1 G\T _— _ ¢1
u={¢p" ..., 0} ={®}gx = ) (A.9)
27 (2x1)

Deve-se ser considerado no caso de dois grupos de energia, que essencialmente todos
néutrons de fissdo nascem no grupo rapido. Portanto, os espectros de fissdo sdo dados por
(DUDERSTADT,1976):

Ep

xt =f y(E)dE =1 (A.10)
Ep

X = f X(E)dE =0 (A.11)

A fonte de fissdo somente aparece no grupo pronto da equacao:
sf = v'Eip + v22ip? (Pronto) (A.12)

sf = 0 (Térmico) (A.13)
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Entdo, a secdo de choque de remocao para o grupo térmico é somente:
Y2=32_3y2°1 =32 (A.14)

Considerando a aplicacdo da teoria da difusdo para dois grupos de energia para reatores
critico, pode-se entdo assumir que as derivadas no tempo e o termo da fonte externa sdo iguais
a zero. Desta forma, a equacdo da difusdo para dois grupos de energia, definida como um
problema de autovalor é:

1
—V.DWo!l +3hop! = 3 (vZigt + vEie?) (A.15)

—V.D2V? + I2¢% = T172¢1 (A.16)
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A.2. FORMULACAO INTEGRAL DA EQUACAO DA DIFUSAO ESTACIONARIA
A.2.1. Formulacéo integral para dois grupos de energia

Para se obter a formulagdo fraca da equacdo da difusdo estaciondria, utilizam-se as
equacdes (3.17) e (3.18) na forma integral para dois grupos de energia definida no dominio Q.
Utilizando a formulacao de Galerkin, iguala-se a funcdo peso w com o fluxo de néutrons u na

equacdo (3.11). As equac0es da difusdo estacionaria tomam a seguinte forma:

- fﬂ $'V.D'Ve dQ + fﬂ P* [z}qul —%(vZ}qbl + vz}¢>2)] dQ =0 (A.17)

—j $2V.D2Vp? dQ +] P2 [Z24% — Z172¢1]dQ = 0 (A.18)
Q Q

Reescrevendo-as, tem-se:

f (—¢'. VD'V + ¢p'Zrp!)dQ = f %¢1[(vz}¢1 +viig?)|da  (A19)
Q Q

| o7.v07997 + g2239700 = | g71@en]d0 (A.20)
Q Q

A.3. SOLUCAO ESTACIONARIA DA EQUACAO DA DIFUSAO DE NEUTRONS
A.3.1. Aproximac0es das equactes da difusdo por elementos finitos

A geometria e os fluxos de néutrons sdo aproximados por elementos finitos definidos

num subdominio Q¢:

x = Z(x)e (A.21)
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nnel

@9 = > (1917)° (A22)

no qual ne é o nimero de elementos finitos resultante da discretizacdo do dominio. A
justaposicéo dos elementos finitos define uma aproximacao para todo o dominio:
Para cada subdominio, as funcdes de aproximacao sdao definidas pela interpolacdo da

geometria (equacdo A.23) e do fluxo de néutrons (equacao A.24) da seguinte forma:

nnel

X0 = ) M) (A23)

nnel

@9 = > Ni(1917)° (A24)

i=1

J{ A N, [¢]7)¢)
e _ dx L
T2 ocumet mig1?)e |
\ dy )

(A.25)

onde N; € a funcdo de interpolacdo definida para o né i e elemento e e, nnel é niUmero de nos

por elemento.

A.3.2. Aproximacao para duas dimensfes

Na utilizacdo de um sistema de coordenadas cartesianas em 2D e elementos finitos

triangulares lineares, a geometria aproximada pode ser obtida pelas seguintes expressoes:

X1\¢

xe = {Nll Nz, N3}{x2} (A26)
X3
Y1)¢

ye = {N1;N2,N3} }’2} (A.27)
Y3

E para fluxo de néutrons:
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g e
(@9 ={N; N, Nﬁ{d)f} (A.28)
¢3

O gradiente do fluxo de néutrons da equacao (A.29), é dado por

(ZnnelN [d)]g)e\l ¢g e
¥ N1,x N3 x N3,x] q;q
}I ¢zg (A.29)

(0
|
(Vgp9)e = ga(znnelN )e Nl‘y N3, Ns,
—
= [VN]*{®9}*

Aplicando a equacdo (A.29) nas equacOes da difusdo (A.19) e (A.20), obtém-se os

seguintes sistemas de equacg0es:

Z (). avvIe DN + nes N (@) dae)
i=1
(A.30)
Z( 2V @) (BN (01
i=1
— vEZ{N}*{D?}°)dQe)
Z J [VN]e. D2[VN]® + {N}eZ2{N}°] {d?}2dQ°)
= ne (A.31)
J {CDZ}e{N}ezl—)Z {N}e {Cbl}edﬂe)
Pode-se definir as matrizes K e M como sendo:
[K']® = [D']° + [Hg]°® + [H;]® (A.32)
(A.33)

[K?]° = [D?]° + [H3]°
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[M']e = [H}]" + [HE] (A.34)

Se discretizar o fluxo de néutrons em dois grupos de energias (G=2) produz os seguintes

sistemas de equacdes:
(D' + H+H3) = A(Hf + H})®? (A.35)
(D? 4+ H2)®? = HI 2! (A.36)

No qual, os componentes da matriz H sdo definidos nas equacdes (A.32) e (A.33):

H, = —v,27'64, (A.37)
Hy=(1-6,,)v,2" (A.38)
Hy = (1 - B)vyxg (vEs )Y (A.39)

Com as aplicacdes das equacdes (A.33) e (A.34) nas equacbes (A.30) e (A.31) elas

podem ser reescritas como:

ne ne

1
D K@Y =5 ) M1 (A40)
Y@y = ) [HEe (@1 (A41)
Sendo que:
[K']° = | (IONJ°.D'[VN]° + (N}°E}(N})d (A42)
ne

(M]e = fﬂe (N (VEHNY® — vE2{N}°)dQe (A43)



[K?]°

([VN]e.D?[VN]¢ + {N}E2{N}¢)dQ®
Qe

[HI2)° = | (W)e si2vpeans
e
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(A.44)

(A.45)
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APENDICE B. DEFINICOES DAS MATRIZES DA DIFUSAO DE NEUTRONS

DINAMICO

Do 0
_ 0 D? 0 0
D=119 0 ... 0

0 0 0 D%

H=H,+H!+H"+H;

H, : matriz de absorcdo de néutrons

H 0 0 0
0 H2 0 0
Ha=119 0o . o0
0 0 0 H®

(G=G)
HZ: matriz de espalhamento down de néutrons

0 0 .. 0
e — —H!7? 0 .. 0

5

_HIZC _E>C 0

H¢: matriz de espalhamento up de néutrons

0 —H¥»' .. —HY
o]0 0 . —HS52
o 0 .. 0

{GxG)

H: matriz de fissdo de néutons

(GxE)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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G
(@G

o SRS o
XEHJ' XuGHf XEH;'

Supondo para somente dois grupos de energia, as matrizes tém as seguintes forma:
H, : matriz de absorcdo de néutrons

0 H

(A

H! 0 B.7
H, = [ . ] (B.7)
(2x2)
HE: matriz de espalhamento down de néutrons

0 0
H? = [ 19 ] B.8
—H! 0 2 (B.8)

H¥: matriz de espalhamento up de néutrons

u 0 _Hgﬁ'l

Hs: matriz da fissdo de néutrons

1 1 172
XDH XDH ]
H; = { { B.10
/ [X%Hf X%HJ (92) ( )
Onde:
[Ho]"™ = —v4.57 6. (B.11)

[H-?]gg, =(1- 5§§-}“QE§HQ (B.12)
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[H_i"]gg: = (1 - _-SEIIJ'L'QVET"I (B.13)
A equacéo (3.51) pode ser escrita na seguinte forma matricial:
Tf+ﬂ.t - [TL]ECE + EPL]E(I’E + [PE+&t]E‘bf+ﬂ.z (B.14)

Definindo nnel como o nimero de nds por elemento, isto é possivel os graus de liberdade

de cada grupo de energia:

{®,}° =< > (B.15)

. Prnel S onnel <G

{C =4 C,

e

(B.16)

. nnel  J (nnelxi;1)

Deste modo a matriz Tt pode Ser escrita por:



44, 0 0 0 0 0 07
0 ¢« 0 0 0 0 0
00t 0 0 0 0O
T*=|0 0 0 & 0 0 O
a 0 0 0 0 0
0o 0 0 0 0 t_; 0
L 00 0 0 0 0 tf d {nnel«Innel=<T)
f'? — t__:—.-l\.iﬂ.-!

Definindo as variaveis fi e hi como:

1 — E—l;‘ﬂnL

. ,Si —A; At
=3 [ NAE O © }

B [1— E—J-.;-.ﬂ.z
he= 2|22
N [ Nt }

As matrizes Pt e Piac pode ser expressas nas formas:

e g=1 g=2 g=0
[Pf] — [ Pt Pﬂ Pi' ]{{nnele]x(ﬂneixﬂ']]

[Pt+ﬁz]c — [ PQ‘:]- P"g:2 se PQZG

t+At t+At 1+t ]I:l:ﬂﬂeixfjx{nnclxﬂjj

Onde:
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(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)



[ fiwZ4 0 0
0 f]_ L"E? 0
0 0 fiwsd
forZ% 0 0
0 fg IJEQ 0
dle _ f
[Pc] 0 0 fowXs

frivsi 0 0
0 fi ij’- 0
0 0 frvEd

[ hvE§ O 0
0 RhwEZ§ 0

0 0 hwil
hovSh 0 0

p 0 har ¥4 0
a _ 2V ey
[PH{“] 0 0 hngﬂ-

hvSh 0 0
0" hwES 0
0 0" hwxs

L Jd {nnelxInnel)

d (nnelx I mnel)
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(B.23)

(B.24)

Usando os dois grupos de energia para néutrons prontos ambas as matrizes tém as

seguintes formas:

_ =1 =0
[PL]E _ [ P? P? ]{{nneixf}x{?melxij]

e g=1 g=2
[P"+-":"I] — [ PH-ﬂI PH-ﬁL ]{{nneix!}x[ﬂﬂeixﬂjj

E o fluxo de néutrons atrasados tem a seguinte forma:

frac= [T°CE+ [ PET PEE

t+ At +4At

2 ¢ Ho=!
$o=2

[P§=1 P2 ]E‘{ (I’:g:lc }ﬂ

N

-+t

(B.25)

(B.26)

(B.27)
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APENDICE C. DESCRICAO DO PROGRAMA MEF

Este topico descreve o programa MEF (Método de Elementos Finitos), os seus aspectos
gerais tal como as suas aplicabilidades, os métodos numeéricos nele empregados e as suas sub-
rotinas.

Em seguida mostra-se os fluxogramas (esquema iterativo da solucdo do problema
dindmico linear usando passo a passo, organizacao geral do programa MEF e estrutura geral do
bloco CINE) e uma descricdo sucinta de cada sub-rotina do programa MEF (bloco CINE),
detendo-se com maiores detalhes nas sub-rotinas cuja funcdo é o desenvolvimento dos céalculos
e da execucdo da solucdo do problema.

Para finalizar sdo apresentados os dados de entrada (variaveis lidas) no programa MEF.

As informacdes apresentadas neste apéndice tém como referéncia basica (DHATT e
TOUZOT,1981).

C.1. ASPECTOS GERAIS DO MEF

O programa MEF é um programa em linguagem FORTRAN que utiliza elementos
finitos triangulares e/ ou quadratico nas solu¢des de problemas com uma, duas ou em trés
dimensGes, com sistemas lineares ou ndo lineares da equacao de difusdo de néutrons, a dois
grupos de energia em regime estacionario e nao estacionario.

Para obter a solucdo analitica do sistema com problema néo linear da equacao de difuséo
de néutrons do espaco- tempo, apresentada pela equacédo (3.51), aplica-se, resumidamente, 0
método dos elementos finitos quadraticos gerando elementos e definidos no subdominio Q¢ e
com coordenadas de referéncia das transformacdes jacobiana (n, { e &), discretiza o fluxo de
néutrons para dois grupos de energia, aplica-se o método de interpolacdo de Galerkin
(aproximacOes na geometria [x]7, funcdo peso wy e fluxo de néutrons u; e uy), Método Direto
e 0 Método Euler Implicito. Com a utilizacdo das aproximacdes de solugdes estacionaria de
néutrons prontos (equacdo de difusdo) os valores de e C, &, sdo obtidos e substituidos na
equacdo (3.51), isso permitird o desenvolvimento dos calculos das evolugdes temporais das
variaveis: @, a; € Ceqpt-

Para desenvolver a solucdo da equacdo (3.51), que apresenta um sistema de equagao nao
linear, séo obtidas as formas matricial desta equagédo com a finalidade de montar blocos
(matrizes) compostos pelas substituicdes das notacdes dos elementos das matrizes, equacao

(3.51) por algoritmos interativos apresentados pelas equacgdes (3.67 e 3.68) para a realizacéo
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dos calculos em funcéo do tempo, sendo que os célculos e a solugcdo para o tempo inicial sao
definidos pela solucéo estacionaria da equacgéo de difuséo.

Como saida de resultados do programa MEF, tem-se: resolucdes das matrizes, 0s
comportamentos dos fluxos térmico e rapido em cada n6 da malha, concentracdo de precursores

estacionario, concentracfes de precursores temporal e o fator de criticalidade.

QHQ.EEJ&,IJ,EEJEJIEIEF}

'

Solucdo Estacionaria: Equacdo da Difusdo de Néufron
[0F + H]&(r 2 ) = s°

'

i » Passonit=¢,

|

Solucdo Dindmica:

KE:I:'H-M:FE
Onde:
. AY . _
K“:E+D'7+H+FPHM

_ A% _
F°=TT.C, + (EH"PJ)@-, + "

Denzidade dos néutrons atrasados:
Coppe =T, C, + By + Py,

¥
Densidade redefinida: €, =, _,,

I

Fluxo redefinido: &, = +,_,,

I

- Passon+l.t=¢, + At

Fluxograma C.1: Esquema das solucGes do problema dinamica linear iterativo (equagéo de

difusdo de néutrons espago-tempo) usando a solucéo passo a passo.
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C.1.1. Organizac6es do célculo das matrizes elementares para integracdo numeérica

Para uma maioria dos elementos, deve recorrer a uma integracdo numeérica, para calcular

as matrizes dos vetores elementares. As etapas dos céalculos correspondentes sdo as seguintes:

a) Operacdes comuns a todos os elementos do mesmo modo tipo (tendo 0s mesmos elementos

de referéncia):
e Calculo das coordenadas ¢ e da funcdo peso w correspondente aos pontos de
integracéo;
e Calculo das funcdes N, N e a sua derivada em & aos pontos de integragdo (para
os elementos isoparamétricos N = N).
b) Operacéo necessaria para calcular a matriz [K¢] de cada elemento:
e Inicializar [K€] igual a zero;
e Para cada ponto de integracdo ¢;
e Calcular a matriz jacobiana [J] a partir das derivadas em & das fungbes N e
coordenadas dos nos do elemento e o seu inverso e determinante
e Calcular as derivadas das funcdes N em x a partir das derivadas em ¢;
e Construcdo das matrizes [D] e [VN];
e Acumular em [K¢] o produto: VNT. DVNdet[J]Swf.
c) Operacdo necessarias para calcular a matriz [M']:

Inicializar [M'] igual a zero;

Por cada ponto de integracado ¢;

Calcular a matriz Jacobiana e o seu determinante;

Acumular em [M] o produto: {N}<N> det[J]¢wf.
d) OperacBes necessarias para calcular os vetores solicitados [F¢] correspondente a f,
constante.
e Inicializar [F¢] igual a zero;
e Para cada ponto de integracao ¢;

e Calcular a matriz Jacobiana e o seu determinante;
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e Acumular em {f}10 produto: {N}f, det[J]fw;.
e) OperacOes necessarias para calcular o residuo [R'] a partir da solucdo {u,,}:
e Inicializar o residuo [R'] para [F¢] calcula no item (d);
e Por cada ponto de integracéo ¢;
e Construcdo das matrizes [D], [VN] e [J] como na sub-sec¢do (b) acima;
e Acumular em [R] o produto: VNT. DVNu,det[J]wf.
f) Operagdes necessarias para calcular os gradientes {Ou} com pontos de integragéo a partir
da solugéo {u,}:
e Para cada ponto de integracdo ¢;
e Construcdo da matriz [VN]; comum dans la sous-sections (b) ci-dessus;

e Calcular e imprimir o gradiente: {ou}=[VN]{u,,}.

C.2. DESCRICAO GERAL DO PROGRAMA MEF

Para a solucdo do sistema de equacbes (3.51), utiliza-se o programa MEF escrito em
Fortran, para solucionar os problemas de equacdes de difusdo de néutrons utilizando o método

dos elementos finitos.

C.2.1. Possibilidades geral do MEF

O programa em geral, usando MEF tem que ser cabivel (DHATT e TOUZOT,1981):
e Resolver uma variedade de problemas em diferentes dominios: linear e ndo linear,
fluidos, problemas harménicos, etc.;

e Lidar com grandes problemas envolvendo um numero grande de nés e elementos;

C.2.2. Variedades dos problemas

1 O comportamento de um sistema continuo esta descrito pelas equacées com derivadas
parciais: 2(u) + f, =0eC(u) = f;

f» e fs sdo das funcdes conhecidas das solicitacdes; £ e C: séo os operadores diferenciais
caracterizado do sistema.
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Conforme o problema estudado, o nimero e a natureza das varidveis nodais variam,

assim como as expressdes das matrizes e os vetores elementares. Para um determinado

problema, usa-se varios tipos de elementos de formas diferentes (por exemplos: triangulares e

quadrilateros) e de diferentes precisdes (por exemplo: triangular para 3 ou 6 n6s). Enfim em um

considerado dominio de aplicacdo é desejavel tratar os problemas para uma, duas ou trés

dimensoes, lineares ou ndo lineares, estacionario ou ndo estacionario.

Este programa apresenta solucdes para os seguintes problemas (DHATT e TOUZOT,1981):

N g s~ wDh e

Problemas: 1D, 2D e 3D;

Diferentes graus de liberdade em cada no;
Fécil inclusdo de elementos na biblioteca;
Matrizes simétricas ou ndo simétrica;
Problemas lineares e ndo lineares;
Problemas estacionarios e ndo estacionario;

Problemas de autovalores.

C.2.3. Tamanhos dos problemas

Muitos problemas necessitam de um importante nimero de elementos, de ndés, por

consequéncia, de graus de liberdade. O nimero total desconhecido pode variar a partir de

algumas centenas (problemas pequenos) e a partir de dezenas de milhares (problemas

excepcionais). O tamanho do problema depende dos seguintes fatores (DHATT e
TOUZOT,1981):

O ndmero de dimensoes;

O numero de variaveis desconhecida em cada ponto, por exemplo: componentes de
velocidade u, v e w;

A complexidade da geometria do dominio estudado;

O numero de elementos necessarios para representar a solucdo juntamente com uma

precisdo satisfatoria.

a) Descri¢do do Problema:

A descricdo do problema inclui a preparacdo das tabelas de coordenadas (VCORG) e

do conectivo (KCONEC), a definicao das propriedades fisicas, das solicitagdes e condi¢des dos

limites e as suas descri¢es pode se tornar grande e errada.



66

Um programa geral deve ter ferramentas de apoio para a preparacao e verificagdo de
dados, em particular os sub- programas de geracao automatica e de plotagem de malhas. Estas
ferramentas sdo constituidas de interfaces de pré-processamento independente do programa
geral o que inclui, as vezes, a preparacdo dos vetores solicitados.

b) Armazenamento das Tabelas:

O tamanho do problema é importante, por isso varias tabelas de trabalho ndo podem ser
armazenadas na memoria central do computador, entdo o programa deve criar as tabelas em um
arquivo de disco (memoria secundaria) e trazer na memoria principal uma parte de cada tabela
para um instante determinado. A organizacdo das tabelas pode-se tornar muito complexa e
envolver tecnologia computacional sofisticada.

O armazenamento das tabelas, constitui a fase da estrutura¢do dos dados do programa
dos elementos finitos. E dificil de construir um programa que seja eficaz tanto para pequenos

problemas quanto para problemas maiores: a programacéo torna-se muito complexa.

c) Volume dos Calculos:

Para um problema de grande tamanho, o tempo de célculo necessario para obter a solugédo
torna-se muito importante, em particular para os problemas ndo lineares e ndo estacionarios. O
preco destes calculos constitui em uma limitagdo econémica da utilizacdo dos métodos dos
elementos finitos. O programa apresenta muita eficacia nos calculos da: construcao da matriz,
montagem da resolucao, etc. Além disso, € necessario realizar cuidadosamente todas as sele¢des
que influencia no tempo do célculo, que séo:

e Tipo de elemento e forma da malha;

e Meétodo de integracdo numérica;

e Método de resolucdo do sistema de equacdo, em particular para o sistema néo
lineares;

e Método de integracdo para problemas nao estacionario;

e Método de calculo dos autovalores.

d) Exploracdo dos Resultados:
Os programas fornecem os resultados sob uma forma de listas muito dificeis de explorar.
Um programa geral deve ter ferramentas que possam a partir da representacdo selecionar os

resultados.
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Estas ferramentas podem construir a partir do pds- processamento independente do

programa geral dos elementos finitos e deve ser adaptavel as necessidades especificas de cada

usuario.

C.2.4. Modularidade

Um programa geral que apresenta as caracteristicas descritas no topico C.2.3 €

inevitavelmente muito complexo. No entanto, é desejavel que:

Sua logica seja de facil compreenséo;

Seja facilmente modificavel,

Muitas pessoas podem colaborar para o seu desenvolvimento sem ter que saber
perfeitamente todo programa;

Pode-se especializar ou otimizar o programa para um determinado tipo de aplicacdo

de dados, simplesmente substituindo alguns sub- programas;

Para alcancar estes objetivos, € necessario estruturar o programa modularmente. Para

iss0, constrdi-se uma biblioteca a partir de sub- programa que efetuam as operacdes seguintes,
caracteristicas dos métodos dos elementos finitos (DHATT e TOUZOT,1981):

a) Organizacdo do Dados:

Criacéo das tabelas de coordenadas e conectividades;
Criacéo das tabelas contendo a partir dos parametros comuns ligados aos elementos
ou aos nos (propriedades elementares e propriedades nodais);

Criacéo das tabelas de definigdo das condi¢fes de contorno.

b) Operacbes Correspondentes a Cada Elemento:

Determinacdo das coordenadas e da funcao peso dos pontos de integracéo;
Calculo das funcdes de interpolacéo e de suas derivadas;
Caélculo das matrizes Jacobiana, seus inversos e seus determinantes;

Construcéo de cada matrizes e vetores elementares: [K¢], {F®}, [M'], [R'], etc.

c) Operacdo de Montagem:

Montagem de um vetor ou de uma matriz elementar [k] e {f} em um vetor ou em

uma matriz global [K¢] e{F¢}.
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d) Resolucéo:

e Decomposicao da resolucédo de um sistema de equacdes lineares.

e) Impressao dos Resultados:
e Impressdo das variaveis nodais e dos diversos resultados adicionais: gradientes,

reacgoes, etc.

Em Estes sub- programa séo utilizados em todos programa de elementos finitos. No
entanto, a sequéncia destes sub- programas depende se 0 problema estudado €é linear ou néo,
estacionario ou ndo. A I6gica de um programa capaz de resolver todos estes problemas € muito
complexa.

O programa € organizado em forma de bloco funcionais que podem ser utilizados em
ordem sequencial que se deseja. Um bloco pode executar uma simples operacgdo (criar a tabela
de conectividade), ou ao contrario executar varias operacdes (organizar todos os dados,
construir [K¢], {FC¢}, resolver o sistema de equacdes e imprimir os resultados). Quando os
blocos funcionais sdo simples, eles podem ser sequenciados de maneira mais flexivel, em

contrapartida, os usuarios devem dominar a logica do seu sequenciamento.

C.2.5. Etapas caracteristicas do programa MEF

Todos os programas baseados no método dos elementos finitos (MEF) sdo incluidos os

blocos funcionais com as seguintes caracteristicas (DHATT e TOUZOT,1981):

1. Leitura, Verificacdo, Organizacdo dos Dados
Ler e Imprimir:
e As coordenadas dos nos;
e As conectividades dos elementos;
e Os parametros fisicos;
e Assolicitagdes;

e As condicdes de contorno.

2. Construcdo da Matriz e do Vetor Global [K¢] e {F¢}

Para cada elemento:
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e Extrair as informacdes ligado a este elemento;
e Construir a matriz e os vetores elementares [k] e {f};
e Montar [k] e {f} em [K%] e{F°}.

3. Resolucdo do Sistema de Equacgoes K¢ ®,,, = F¢
e Modificar [K¢] e{F¢} por consideracdes as condicdes de contorno;
e Triangularizar [K%];

e Calcular asolugdo @, ;.

4. Impressao dos Resultados;
e Calcular as variaveis adicionais (gradientes, reaces, restricdes, etc.);

e Imprimir os resultados.

C.2.6. Descrigdes dos blocos do MEF — organizacéao geral

O programa principal sequencia as execucdes dos blocos funcionais sob o controle dos

usuarios, chamando os sub- programas correspondentes a cada bloco:

F 3 'll: s s
I o
Sessdo-de-Controle:y It o
Determinacao-do-bloco- B ﬂ
funcional-para-execuciox & o
I*..IIE e 5]
5 B
e T * BLCOOR=
Sessao-de-Execucao:y N >
Chama-os-subcontroles- ﬁ ALelalls
correspondentes-para-o- - - o
bloco-funcional o . -
L= = *  STOPm
*cz I I
4+

Fluxograma C.2: Organizagéo geral.

C.2.7. Organizagéo dos dados
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C.2.7.1. Blocos de leitura dos dados e blocos de execugéo:

O Método do Elementos Finitos (MEF) inclui os blocos funcionais especializados em

leitura, a verificacdo e organizacdo dos dados. Por exemplo (DHATT e TOUZOT,1981):

O bloco ‘COOR’ ¢ as coordenadas dos nds e os homes dos graus de liberdade de
cada n6. Depois das verificagdes, ele cria as tabelas VCORG (coordenadas dos nos)
e KDLNC (nome de graus de liberdade de cada n6, acumulativo);

O bloco ‘COND’ 1€ as condi¢des de contorno cria as tabelas KNEQ (nimero de
equacdo de cada grau de liberdade) e VDIMP (valores de cada grau de liberdade
imposta);

O bloco ‘ELEM’ 1€ as conectividades e outras caracteristicas dos elementos, pois
ele cria uma ficha contendo todas estas informacgdes. Cada gravacdo desta ficha

constitui a descricdo completa de um elemento.

Outros blocos funcionais do MEF s&o blocos de execucao das operacdes dos elementos

finitos. Eles sdo usados pelas tabelas dos blocos de leitura dos dados. Por exemplo (DHATT e
TOUZOT,1981):

O bloco LINM monta e resolve o sistema de equacdes correspondente a um
problema linear, a matriz global [K] residente na memaria central;

O bloco LIND ¢é semelhante ao bloco LINM, mas a matriz global [K] reside na
memoria externa;

O bloco NLIN monta e resolve o sistema de equacgdes correspondente a um problema

ndo linear.

MEF N
ry Bloco de alocaciio de
memdria para as varidveis
BLCINE b l utilizadas.
EXCINE Bloco de execugiio

F 3
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Pragrama Princpal ] CRnnies. ax matizes de diusdo alemenkares:

‘.'[ WRELEMT ]

o[ ASMG_SCAFE | Martzes: [, ][]y ]

»| ASMG_SCURCE | Rastzes: [Fy LIR]1R]
»| ASMG BOURCE | Pavizes: [5]
L3
[ ELCINE —— ESPACE |
x
[ EXCINE ]—h-[ ERRD ]
¥ Bclugks da Diusdc Estdtica: Os fuxos & cAlouln
[ ASCINE | , pofinicla do reator & saiuclo de Impressdo

» [ POWER_METH ]

s EECCNOMEMEZR |
——————| SOL
s CHEBYSHEV
———————| POWER

\ —————»{  ASGAD

A e | FRE0L

Solugio 43 DHus3o Clnematica

‘.'I ELEMLB | Ipod: 1 = 2 do sl=mzZ
:I TEOME |
‘.'I ELEI'-'ILEl |Fad; 3 = 5do =l=mzz

b [ DELAYED NELITH.E.‘-‘..INE-]

'-'I ASFE | [F] = zdpas]F] & [M]{a]} & dci - %ﬁ
GFE) W

Fluxograma C.3: Estrutura geral do bloco CINE.

L B T S S R T

No fluxograma C.2 demostra que a organizacdo geral do programa é constituida por
duas partes: secdo de controle (determinacdo da fungdo do bloco a ser executado) e da secédo
execucdo (chamar os subprogramas correspondentes a funcéo dos blocos e executar calculos).

A secdo de execucdo do programa MEF ap6s chamar vérias sub-rotinas como: BLCINE,
EXCINE, ASCINE, etc. retorna para o0 comeco da secdo de controle para obter a funcdo do

bloco que sera determinado para o bloco de execucao.

C.2.8. FuncGes e descrigdes dos sub-rotinas do bloco CINE
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As sub-rotinas para a solugdo da equacgéo de difusdo, como pode ser observado no
fluxograma C.3, sdo: BLCINE, EXCINE e ASCINE.

O sistema de coordenadas adotado para aplicacdo da malha de elementos finitos
triangulares € o sistema de coordenadas de referéncia das transformacdes Jacobiana. Para se
diminuir a dimensdo da coluna da matriz solugdo do problema deve-se sempre que possivel
enumerar 0os noés em ordem crescente da esquerda para direita e de baixo para cima
(NAKAMURA,1977).

O programa MEF solicita duas incognitas em cada n6 da malha: o fluxo de néutrons
rapidos e o fluxo de néutrons térmicos. A condicdo de continuidade é imposta pelo programa e
devem ser indicados os nés do contorno sob condi¢fes de Direchelet (fluxo e correntes zero)
(CORREIA FILHO,1981).

C.2.8.1. Blcine

O Bloco BLCINE tem as seguintes caracteristicas:

Soluciona problema dindmico linear (equacdo de difuséo de néutron) usando a

solucdo passo a passo;

Lé as coordenadas, nres para o célculo de residuos e o nimero de graus de liberdade

dos nés;

e Geranos por interpolacéo linear;

e Criaas tabelas: VKS, VKGI, VFG, VKE, VFE, VRES e VDLE;

e Soluciona o sistema de equacdo usando o gradiente conjugado;

e Utiliza o Power Method para obter a solucdo inicial pelo método de solugdo passo a
passo.

e Aloca espaco para as tabelas VKS, VKGI, VFG, VKE, VFE, VRES e VDLE.

C.2.8.2. Excine

O EXCINE é utilizado para montar os elementos das matrizes da difuséo de néutron e
para resolver o sistema de equacéo linear usando o gradiente conjugado. Portanto, ela calcula e
imprime:

e A solucdo residual se nres=1 (PRRESD);

e Asolucdo (PRSOL);



e Os gradientes (ASGRAD_CGQG).
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Os ciclos do subprograma EXCINE séo realizados em passos de carga ou em passo de

tempo ou dentro do equilibrio de cada passo de intera¢do e imprime uma mensagem de erro.

EXCINE >

POSGID 0

— loop npas

ASCINE _1

'

PRTSOL

e

POSGID_0O

h J

Solugdo estitica do problema de difusiio
neutronica.

Gravaciio do fluxo de néutrons para cada
grupo de energia.

Solugio dinimica do problema de
difusio neutrdnica.

Imprime o fluxo de néutrons para cada
grupo de energia e em cada passo de tempo.

Gravagio do fluxo de néutrons para cada
grupo de energia em cada passo de tempo.

Fluxograma C 4: Bloco Excine.

C.2.8.3. Ascine

Tem a fungdo de calcular as matrizes e os dados a serem utilizados. A convergéncia do

processo de interacdo é de acordo com a escolha do método e da sub-rotina chamada. Para

resolver o problema néo estacionario, por exemplo, utiliza-se 0 METH 2, que executa exemplos

com algoritmos de Euler implicito.
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As execucdes dos calculos das matrizes sdo realizadas na sub-rotina elemento 22 (elem

22), do programa MEF. A sub-rotina elemento 22 foi desenvolvida para resolver o problema da

difusdo de néutron com uma, duas ou trés dimensdes e construir uma matriz ou um vetor

elementar de acordo com o valor de icod, que tem as seguintes defini¢des:

icod=1: Retorno dos parametros;

icod=2: Célculo das fungbes de interpolacdo e dos coeficientes de integracéo
numMerica;

icod=3: Matrizes elementares Hy e Hz (vke), correspondentes ao termos de fuga,
perda por absorcdo e remocédo por espalhamento, para os grupos de néutrons 1 e 2,
respectivamente;

icod=4: Matrizes elementares S1 e Sy, correspondente aos termos de producdo de
fisséo total e fonte externa, para os grupos de néutrons 1 e 2, respectivamente.
icod=5: Matrizes elementares A1 e Ay, correspondendo aos termos do fluxo de

néutrons com variacdo no tempo, para 0s grupos de néutrons 1 e 2, respectivamente
. DT
e da matriz C membro de C (E);

icod=6: Kc.T Contribuicdo do residuo (vfe);

icod=7: Solicitacao elementar (vfe);

icod=8: Calculo e Impressédo dos gradientes (derivada do fluxo);

icod=10: Célculo da carga devido ao fluxo quente aplicado no elemento no lado i-j;
icod=11: Kh.u contribuicéo do residuo (vfe);

icod=12: Célculo da caracteristica do comprimento do elemento;

icod=13: Célculo da carga devido ao fluxo quente aplicado no elemento no lado i-j;
icod=31: Impressdo dos pontos de Gauss no arquivo GIF;

icod=33:Calculo da coordenada elementar para coordenada global;

icod=60: Realiza célculo da poténcia no elemento em consideracao.

Para determinar as quantidades de variaveis que as matrizes sdo compostas, deve-se

considerar a seguinte expressao:

ipg x nnel x (ndim+1) (5.1)

Numero de pontos de integracéo (ipg);
Numero de nos por elemento (nnel);

Dimenséo do problema (ndim)
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ASCINE '“'l

T

Montagem da matriz elementar de difuslo e
absorglo de néutrons. Termo esquerdo da
ASMG—SC‘f‘PE | equagio de difuslo discretizada.
ASMG_SOURCE ]'v!nntagcm da mamz elzmentar da ﬁssa.c.u de
néutrons. Termo direito da equagio de difuslo
¥ discretizada.

y

loop i=2,nneutgr

loop j=i- 1 nneutgr

l’ Montagem da matriz elementar de
ASMG_SOURCE espalhamento de néutrons. Termo direito da
equacio dx difusio discretizada.

&

Solugao estitica do problema de difusao
newtronica {problema de autovalor

POWER_METHOD generalizado):

¥

Hydy = A(Fridy + Fredy )
Hzghz = Py

Fluxograma C 5: Bloco Ascine.

Para realizar a montagem dos elementos das matrizes de néutron sdo utilizadas as

seguintes sub-rotinas:

e WRELEMT: Lé as propriedades do elemento nos vetores elementos.
e ASMG_SCAPE: Monta as matrizes de fuga de néutron local (absorcéo,
espalhamento e fisséo),

Matrizes [H,, H, H|.
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ASMG SCAPE »
i
RDELEM2 Leitura de dados do elemento
L Calculo das coordenadas e pesos
ELEMLE (icod=2) nos p.g.das funcoes de interpo-
4, lagao & de suas derivadas
ELEMLRE (iCDd=3} Montagem da matrix elementar D
* de difusao neutrnicaem VME
ELEMLER (icod=4) | Montagem da matrix elementar H
1 de absorgio neutrdnica em Y hE
ASSEL Montagem da matrix global:

% H= MZM(DE+HEJ

Fluxograma C 6: Bloco ASMG_SCAPE.

e RDELEM: Propriedades de leitura de elemento correspondente a escrita da sub-
rotina WRELEMENT.

e ELEMLB: Chama primeiro a sub-rotina com elemento icod=2 (fungdes de
interpolagéo e pontos de Gauss) e entdo com icod=3 (calcula as matrizes de néutron
do elemento).

e MODFG: Modifica o segundo membro do vetor {f} levando em conta as condi¢Ges
de contorno ndo nula.

e ASSEL: Montagem dos elementos do vetor carga {vfe} no vetor carga global {vfg}.

e MULKU: Multiplica a matriz global por um vetor.

e ASMG_SOURCE: Monta as matrizes de fuga e absorcdo de néutron local,

Matrizes|F,, F, Ff] .
e ASMG_SOURCE: Monta a matriz fonte,
Matriz[S] .



ASMG_SOURCE

Funghes de interpolagao do
elamanto

Montagem da matrix
elementar F dz fissdo

RDELEM

L

ELEMLE (icod=2)

!

ELEMLE (icod=4)
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Leitura de dados do
elemenio

Caleulo das coordenadas e pasos
nos p.g..das funcoes de interpo-
lagio e de suas derivadas

Montagem da matrix elementar F
de fissdo neutrdnica em VEE

Montagem da matrix global:

am VEG B

Fluxograma C 7: Bloco ASMG_SOURCE.

e DIFU_OBJ: Calcula o proposito da funcéo.
e RIGHTMEMBER_CG: Calcula o segundo membro do vetor da equacao de difuséo

(levando em conta o decaimento).

Para a solucdo da difusdo estacionaria do fluxo, extrapolacdo da solucéo e do célculo da

poténcia do reator e impressao da solucdo, sdo utilizadas as seguintes sub-rotinas:

e POWER METH e GRADCONJ: Resolve o sistema de equacdo linear usando o

gradiente conjugado.
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POWER METHOD |——'l

g
K g‘;':': er—1

FB =y —
Hter—1

Montapem da matriz eleme ntar de
espalhamento de ndutrons. Temmo direito da
aguagio do difusio discrotizada

ol R v - R =
‘ruer_‘rner Fx8 e 50F

SolugZo estitica do problama de difusio
neutronica {problema de autovalor
; penaralizado):

gt MGG = Fhs

|68 = > 8+ 87
i=1

MP = D? 4 HY 4 HE™F

g = A=t g=2
i K8 = HE™ 4+ H
¥

'I'I:I:I!F _'I'I:I:I!F- 1

A=

<d, e

J‘I:I:I!F-:I.

B = ||¢£er| - |¢ﬁ£r—1||
e I
| |':pi|:¢-r—1 |

< gy

Fluxograma C 8: Bloco POWER METHOD.

SECONDMEMBER: Ler as propriedades do elemento.

SOL.: Resolve o sistema de equagéo linear com SCAL.

PRPVTS: Imprime o pivots da matriz global.

CHEBYSHEV: Calcula a extrapolacdo da solugdo baseada no polinémio de
Chebyshev.

ASGRAD: Calcula e imprime a solucéo dos gradientes.

POWER: Calcula a normalizacdo da poténcia do reator.
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Faz a normalizagdo, célculo dos valores médios. Para efeito de normalizacdo dos
resultados pode ser adotado um dos critérios:
a) Os fluxos térmico e rapido assumem valor unitario em um determinado n6 da malha;
b) Ou entdo para a poténcia do ndcleo do reator igual a 1n/cm?,
e ASGRAD_CG: Imprime o vetor residuo {r}da solucdo problema: [K]{u}-
{f}={r}, equacdes.
e PRSOL: Imprime a solucao {u} (fluxo ¢).

Imprime os valores dos fluxos répido e térmico por né da malha.
Para solucdo da difusdo da Cinética:
e ELEMLB: icod 1 (parametros iniciais do elemento) e icod 2 (calcula a funcao
de interpolacdo) do elemento 22.
e TKONE:
e ELEMLB: icod 3 (calcula a matriz [K]) e icod 5 (calcula a matriz [M]) do
elemento 22.



ELEMLB{icod=T)

'

ELEM22

fin:n:ld:LS]l

Definigdo dos pontos d2 integragio
dz Gauss

Cilculo das derivadas das fungies
de interpolagio nos pontos de Gauss

Calculo do Jacobiano da
transformagio.

Cilculo da matrix N das fungies de
interpolacio dos ndutrons prompis

Cilculo da matrix N'das fungbes de
interpolacio dos nlutrons retardados

Montagam da matrix [ de variagio
temporal do fluxo de ndulrons.

JACOB

DNIDX

D=NexNe=f+w

NE

—
Il
=
B
"
-

Fluxograma C 9: Bloco elemlb (icod=7).
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(icod=T)

loop 1g=1,1pg

Definiglo dos pontos de integracio

de Gauss GAUSS
Célculo das fungdes de interpolagio ¥
nos pontos de Gaoss NIOI
Célculo do Jacobiano da ‘l'
transformagao. JACOB
¥
Célculo da matrix &% das fungtes da 2
inerpolacao dos néutrons prompts i *
Célculo da matrix ¥ 'das fungbes de al
inerpolacan dos néutrons retardados T
I — !
Montagem da matrix © de variagio M=T=«n
temporal do fluxo d2 néutrons. Y
F=wn%.rf
< ¥

Fluxograma C 10: Bloco elemlb (icod=7).

e DELAYED NEUTRONS:

e ASFE: Calcula a equacdo [F] = adpas[F] + [M]{u} + Atu + ATt,zu

e ASKE: Calculaaequacdo [K] = [M] + % [K]

81
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ASCINEL ?
A loop nneutgr
Célculo das matrizes do termo esquerdo da equagio:

l g=1 _ _ P
ipos=(incuter-1*nke = Ar + 08t + e rﬂ_]PHﬁz
I o .
| ASMG_SCAPE_1 Tz = ——+ DI=2 4 192 4 [9=2p5

¥ . .
ASMG SOURCE 1 Cdleulo das matrizes do 2" termo direito da equagao:

Ag=t = = =F . =
4 E,= ( Y + W:[Pf_l) IV s re=pETI T 4 1A

loop i=2 nneutgr

. loop j=i- | ,nneutgr

v

ASMG_SOURCE I

9=t - a1 o=
E; = ( ot rﬂ-zpf"z) $F7 4 r9=2pf=1 g 871 4 1OT,C,

Cilculo das matrizes do 17 t2rmo direito da equagao:

— rg=1pa=2
le =TI 'E;ﬂ-ﬁt

— rg= =1
Tll =Tre 2'I:';:?I.-ﬁl:

&

k *
POWER_METHOD 1 Soluglo dindmica do problema de difusao
neutronica (solugio pelo método passo-i-
passa):

T”.:bf':;! =E- led’fzz
Tzsz-'i::: = E; — TzLﬁf"f:.:.[g

Fluxograma C 11: Bloco Ascinel.
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ASMG_SCAPE_| »

et

RDELEM Leitura de dados do elemento
v
ELEMLE (icod=2) Fungoes de interpolagio do elemento
v
. Montagem da matriz elementar 09 dz
ELEMLB (icod=3) difusan peutrénica
¥ ; L]
ELEMLB (icod=4) Montagem da matrix elementar I da
* fissdo neutrdnica (ipjacob=1)
ELEMLB (icod=4) Montagem da matriz elementar Agf&.
¥
i 2. g
ELEMLE (icod=4) Montagem da matriz elementar HF + 12

de absorgao ¢ espalhamento neutrdnico.

!

. Maontagem da matriz elementar I'T dos
ELEh{LBflcnd:ﬂ néutrons retardados

Ty, = Tyq + T8R2

E+AE

ASSEL Montagem da matriz elementar na
matriz global.

Fy

L J

Fluxograma C 12: Bloco ASMG_SCAPE_1.
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ASMG_S0OURCE_L __1
| RDELEM | liedtura de dados dowe kme nia
!
ELEMLE {icad=2) Jamgfes de inierpalagio doelementa
3
N Montapem: da matrix Fdevido 2 el
| ELE) "'“-i ficod=4) | mririzica fipjacob= 11
I DLELM | I treir o fluse de newens ¢ local
x
| DLELM | Extrair a Maxo de séutross ¢
bocal,
| DELAYED_NEUTRONS | Clule da conratmagso & nduirams
4
[ ELEMLE Good=2) | Fungtes de inkerpeiagso doclemenia
L - -
| ELEMLE {icod=4) J H-:nngcmd:l.rrum:l..-l_"" de variaci,
* emperz] do fluxa de néamns.
. _A
£ —E'it'l:
*
| ELEMLE {icod=T1) J Montzpe m da matriz edeme ntar (@ dos
'I' néirons relandados
By = £ + PP 4 e T e
}
f=E - r'l.:a':;’f-z
¥
Fy = By — T ™
!
| ARSEL Menlzze m dzvetar ¢ koo nlr na
vetor glokal

Fluxograma C 13: Bloco ASMG_SOURCE_1.
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POWER_METHOD _] ﬂ

I8l = ) 88+ 8f
i=1

Montzgem da matriz elementar de
l espalhamento de péutrons. Temmo dineito da
equacdo de difusdo discrelizada
SECONDMEMBER
ol R o7 -
‘ruer - "rIJ:e'r £l e 5600
SOL Solugo estitica do problema de difusdo
neutronica {problema da auloyvalor
-l ceneralizado):
nglt 'H'F"?jgtr - F&Fﬂ—i

M8 = D8 4 HE 4 HI™F

¥

i g=1 g=2
K = Hf +le

A -4 -
‘;l': = | Leer LEor :| = "'I-.E

-'1|:|:|:r-:|.

O - |
|08 |

P

[

<

Fluxograma C 14: Bloco POWER METHOD _1.
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ASCINE_|

Célculo das matrizes do
termo esquefdo da

equagio:

Tl e TZ2

ASMG_SCAPE_I1

o

Leitura de dados do

e lemento

Fungfes de imerpolagio do
elemento

Montagem da matix [ de
difusdo neutrtinica

Montagem da matrix Hde %
abs. e fissdo neutrénica

Montagem da matrix P
dos néutrons retardados

Montagem da matrix
elementar na matriz global.

s

RDELEM2

1

ELEMLB (icod=2)%

.

ELEMLR (icod=3}2

k

ELEMLB (icod=4

+

ELEMLB (icod=7#

v

ASSEL

w

Fluxograma C 15: Bloco Ascine_1.
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Célculo das

rrﬂg’ 25 do N
termo direito da equagio:

EleTI2

E?eT21

ASMG_SOURCE_1%

P
L

Leitura de dados do
elemento

Fungies de interpolacio do
elemento

Montagem da matrix F
devido a fissdo neutrimica

Célculo da conceniragio de
néutrons reiardados

Fungies de interpolacio do
elemento

Montagem da matrix 4° de
variagio temporal do fuxo
de néutrons.

Montagem da matrix
elementar na matriz global.

RDELEM2

v

ELEMLE (icod=2"

v

ELEMLE (icod=4)#

*

DELAYED_NEUTRONS

!

ELEMLB (icod=2)2

+

ELEMLB (icod=4"

+

ASSEL

POWER_METHOD_1%

Fluxograma C 16: Bloco do calculo das matrizes do lado direito da equacéo.
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|
loop j=1 | .nneutgr

ASMG_SOURCE_1v

.
o

e

Leitura de dados do

elemento RDELEM?

Fungies de interpolagdo do
elemento ELEMLE (icod=2)2
Montagem da matix 5 de :
espalhamento newrdnico ELEMLB (icod=4)5
Montagem da matrix ASSEL

elementar na matriz global

F

Solugdo do sistema de

13
i POWER_METHOD_|

Fluxograma C 17: Bloco do célculo das matrizes do lado direito da equag&o.



C.2.9. Dados de entrada do bloco CINE

e m2: numero ldgico de arquivo de elemento (assumindo m2=1);

e m3: numero légico de arquivo onde a matriz [K] e o vetor [F] sdo armazenado e

usado para calcular o residuo (assumindo m3=2).

Para o calculo do parametro residuo e impresséo do gradiente do fluxo, as variaveis lidas

Sao:

Variaveis Formato Descricéo
Célculo do problema
Nres 15 )
residual: =1
Impressdo do gradiente da
Nprgrad 15 i
solucdo.

Tabela 3: Variaveis de entrada para o calculo do pardmetro residuo e o gradiente do fluxo.

Para o procedimento de normalizacdo, as variaveis lidas sao:

Variaveis Formato Descricéo
nneutgr 15 NUmero de grupos de energia de néutron

Para os tipos de fisséo:

nim 15 =1: fissdo somente com 0s néutrons rapidos.
=2:fissdo com os néutrons termicos.
Para solugdo da normalizag&o:

inorm 15 = 0: em funcdo unitaria do nicleo da poténcia do reator.

=m: em funcdo dos fluxos rapido e térmico.

iref 15 Regido onde nédo tem fissao (refletor e anteparo).

cnorm 15 Poténcia de normalizacdo do nucleo do reator.

Tabela 4: Variveis de entrada para o procedimento de normalizag&o.

Para o calculo do parametro critico kefr ,as variaveis lidas sao:
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Variaveis Formato Descricéo
niter 15 Méaximo de numero de interacGes no power method.
eps_flux 15 Tolerancia para o fluxo de néutron convergir.
eps_lambda 15 Tolerancia para Keft convergir.
Para relacdo de dominio para uma rapida
convergéncia dos polindmios de Chebshev:
sgmb 15 =0: calcular a estimativa da relacdo de dominio.
>1: A convergéncia rapida nao € requerida.
<1: A estimativa da relacdo do dominio

Tabela 5: Variaveis de entrada para o calculo do parametro keff..

C.2.10. Dados de entrada do bloco COOR

A funcdo do bloco COOR é ler as coordenadas e 0 nimero de graus de liberdade dos

nos, gerar nés por interpolacdo e criar as tabelas VCORG e KDLNC.

As variaveis lidas sio:

Variaveis Formato Descricéo
nnt 15 NUmero maximo de nos.
ndinb 15 Numero maximo de graus de liberdade por no.
ndim 15 Dimens6es do problema ( um, dois ou trés dimensoes).
fac (1) f10.0 Fator escalar na diregéo x
fac(2) f10.0 Fator escalar na direcdo y
fac(3) f10.0 Fator escalar na direcdo z
in2 15 NUmero do ultimo né gerado.
X2 (1) f15.0 Coordenada X do né.
X2 (2) f15.0 Coordenada Y do né.
X2 (3) f15.0 Coordenada Z do no.
Incr 15 O incremento no nimero de n6 usado na geracao.
i 5 Numero de graus de liberdade gerado no no. Se
eles séo diferentes do nimero assumido (ndin).

Tabela 6: Variaveis de entrada do bloco COOR.
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Observagoes:

1. O ndmero dos graus de liberdade de cada n6 tem que ser consistente com os elementos que
sdo ligados neste no;

2. Se 0 numero de graus de liberdade é diferente de um n6 para outro na mesma linha de
geragdo, entdo isto é possivel para o uso dos graus de liberdade assumido e para modificar
eles utilizam-se a ajuda do bloco DLPN (este bloco ler os niUmeros dos graus de liberdade
e modifica a tabela KDLNC. Isto é necessario somente quando o numero dos graus de

liberdade muda de um né para outro).

C.2.11. Dados de entrada do bloco PRND

A funcéo do bloco PRND ¢ ler as propriedades nodal e criar a tabela VPRNG.

As variaveis lidas sio:

Variaveis Formato Descricéo
nprn 15 Numero de propriedades por nd.
vprng 8f10.0 Lista de propriedades para sucessivos nos (n61, n62, n63).

Tabela 7: Variaveis de entrada do bloco PRND.

C.2.12. Dados de entrada do bloco PREL

A funcdo do bloco PREL é ler e imprimir as propriedades do elemento e criar a tabela
VPREG que contém todos os grupos das propriedades do elemento.

As variaveis lidas sdo, onde igpe=0:

Variaveis Formato Descricdo
ngpe 15 Numero dos grupos das propriedades do elemento.
npree 15 Numero das propriedades para cada grupo.
Ig 15 Numero de grupo.
vl 7f10.0 Sucessivos valores de diferentes propriedades.

Tabela 8: Variaveis de entrada do bloco PREL.



C.2.13. Dados de entrada do bloco ELEM
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A funcéo do bloco ELEM é ler os elementos de conectividades e gerar o arquivo de elemento.

e m2: numero ldgico de arquivo de elemento (assumindo m2=1).

As variaveis lidas sdo:

Variaveis Formato Descricao
nelt 15 NUmero maximo de elementos.
nnel 15 NUmero méaximo de nos por elementos.
ntpe 15 Tipo de elemento por falta.
ngre 15 Numero do grupo de elemento por falta.
=0: matriz [K] é simétrica.
nsym 15 ] o
=1: matriz [K] ndo é simétrica.
) =0: todos as matrizes [K] sdo diferentes.
nident 15 _ o
=1: se todas matriz [K] sdo idéntica.

Tabela 9: Variaveis de entrada do bloco ELEM.

As variaveis lidas, onde iel<0, sdo:

Variaveis Formato Descricéo

lel 15 Numero do primeiro elemento.

igen 5 NUmero dos elementos gerados por IEL incluindo o
primeiro elemento.

incr 15 Incremento do numero de nd para geracao automatica.

itpe 15 Numero de tipo de elemento se for diferente de NTPE.

igpe 15 NUmero do grupo de propriedade de elementos.

igre 15 Numero do grupo de elemento.
Define o tipo de integracao:

knint0 10i5 =0: integragdo normal,

=1: integragéo reduzida.

Tabela 10: Variaveis de entrada do bloco ELEM com iel<0.



93

Como exemplo de tipo de elemento, tem-se um elemento triangular linear para problema

de difusdo de néutron em duas dimensoes.

AT

ndim =2

ndin=1

nnel=3

ndle=3

Varavel=g;

Sendo,

ndim = dim ensfo do problema;

ndln=nhm ero de graus de iberda de porné;
finel=nnm ero de nd por elem ento;

ndle=nim ero de graus de liberdade por elem ento

lr”

>

Figura 15: Elemento triangular linear com coordenadas de referéncias da

transformacdo do Jacobiano.

C.2.14. Dados de entrada do bloco DYNS

A func¢do do bloco DYNS é resolver um problema néo estacionario e ndo linear usando

0 método de Euler.

As variaveis lidas sio:

Variaveis Formato Descricdo
npas 15 NUmero de passos de tempo igual.
dpas f10.0 Passo de tempo f.

Dfg f10.0 Incremento de carga por passo.

Tabela 11: Variaveis de entrada do bloco DYNS.

C.2.15. Descricao e listagem dos blocos funcionais do programa MEF

C.2.15.1. Programa principal



Tabelas Definidas no Programa MEF

Descricao do Problema Fisico

Tabela

Dimensao

Bloco que
cria a tabela

Especificagdes

vcorg

nnt X ndim

COOR

Coordenadas global de todos os nds:
e Para 1 dimensdo:({x; H{x, Hxs}...)
e Para 2 dimensdo:{({x;y; Hx2y2} ...)

e Para 3 dimens@es:{{x;y,z3 Hx1y,25} ...)

kdInc

nnt+1

COOR

Numero de graus de liberdade acumulado
kdInc(i+1) tem o ndmero de nds de graus de
liberdade 1,2,3,...,i-1,i

kdInc(nnt+1)=ndlIt; kdIinc(1)=0

kneq

ndlt

ELEM

NUmero de equacdo de cada grau de liberdade
J=kneq(i):

e Para j>0: o grau de liberdade &
desconhecido e corresponde a equagéo j
na equacdo do sistema.

e Paraj<0: o grau de liberdade é conhecido
e este valor ¢ VDIMP(-J)

vdimp

nclt

COND

Valor de todos os graus de liberdade imposto
pela condicdo de contorno

vprng

nnt X nprn

PRND

Lista dos grupos de propriedade nodal:

{P1P2 pnprn}né 1{p1p2 pnprn}

no 2 )
{Plpz pnprn}

né nprn

Lista dos grupos de propriedade elemento:

{Plpz pnprn}grupo 1{101292 pnprn}
{P1P2 ---pnprn}

grupo 2

grupo nprn

Vpreg

ngpe X npre

PREL

Lista dos grupos de propriedade elemento:

{P1P2 pnprn}grupo 1{p1p2 pnprn}
{P1P2 ---pnprn}

grupo 2

grupo nprn
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kld

neq+1

ELEM

Localizagdo do comeco de cada coluna da matriz
global KG.

KLD(NEQ+1)-1 € o numero de termos do
triangulo superior de KG sem os termos da
diagonal. kld(1)=kld(2)=1.

Matrizes e Vetores Global

Termos do tridngulo superior de matriz KG

nkg=kld
vkgs armazenado na linha da coluna descendente sem
(neq+1)-1 .
0s termos da diagonal.
vkgd | neq Termos da diagonal da matriz KG.
Termos do triangulo inferior de matriz KG
vkgi nkg armazenado na linha da coluna descendente sem
o0s termos da diagonal.
vfg neq Vetor de solicitagéo (ou forca) global.
NLIN, . . x
vdlg ndlt Vetor global das varidveis nodais (solugéo).
TEMP
LINM, ] 3
vres ndlt Vetor residuo e reagéo.
LIND
LINM, Vetor linear elastico para toda estrutura e grupos
nlgr x nelt x | GRAD, de carga:
VS . .
J nscomp LIMI, vse|i 0T vse |l L )
SHAK vse|idT=" - vse| I L vse| 9T TIT
LINM,
) (nlgr+1) x| GRAD,
vdisp Vetor desacoplamento de cada grupo carga.
neq LIMI,
SHAK
LINM,
GRAD,
vigv 2 X neq LM Vetor carga para cada grupo carga.
SHAK
LINM,
vfgs 4 X neq

LIND
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klocg

ndle x nelt

Vetor de todos elementos kloce localizado:

(kloce|;e=q; kloce|ie=z; ..-; kloce|o=neir)

Descrigéo do Elemento

NUumero de n6 do elemento (elemento

kne nnel o
conectividade).
Localizacao do elemento obtido pela extracéo de
kloce | ndle KNEQ a informagdo correspondente do
elemento dado.
vcore | nnel x ndim Coordenadas do elemento extraido de VCORG.
Lista da propriedade nodal dada pelo elemento
vprne | nnel X nprn ]
extraido de VPRNG.
Lista de propriedade do elemento dado pelo
vpree | npre

elemento extraido de VPREG.

Matrizes e Vetores Elementos

Se
nsym.eq.0:
nke=ndle x )
Elemento armazenado na matriz por colunas
(ndle+1)/2 . ]
vke S descendentes do triangulo superior, somente
e
para matriz simétrica.
nsym.eq.1:
nke= ndle x
ndle
ndle X _
vme Elemento da matriz massa, armazenado por
(ndle+1)/2 L _
colunas descendentes do triangulo superior.
vfe ndle Vetor de solicitacdo (ou for¢a) do elemento.
Valor do grau de liberdade dado ao elemento
vdle ndle

(vetor de solicitagdo do elemento).
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Vvse

nscomp X

ipg

Vetor linear elastico para o elemento:
050y Txy00°0000 det]|;pg—1;
(0x0yTxy00°0000 det]|ipg=2; - 5)
050y Txy00°0000 det]|;pg—npg

Integracdo Numeérica

Coordenadas dos pontos da integracdo numérica

vkpg | ipg x ndim no elemento referido estruturado com em
VCORG (Ksi de pontos de Gauss).
) Pontos de integracdo numérica da funcdo peso
vepg P9

(coeficientes de pontos de Gauss).

Armazenamento das funcdes (N)e Matix Jacobiana

Lista dos valores das fungdes de interpolacao (N)
e isto é derivado nas direcdes &, { e n para todos

0s pontos de integracao:

) ipg x nnel x
vni (ndim+1) Para 2 dimensoes:
<1v11v2 aal\? aal\? 061;1 6611172 - |ponto vy
l... Ip(mtoz;

vj,vjl | ndimxndim Matriz Jacobiana e a inversa.

Lista dos valores das fun¢des de interpolacao (N)

e isto é derivado nas direcGes X, y e z para cada
vnix nnel x ndim

ponto de integracéo:
dN, N,  ON; ON, 0N, 0N,
ox dx oy dy ' 0z 0z

Calculo Automatico das fungdes de interpolagédo (N)

vksi

inel x ndim

¢, ¢; e n; S@o coordenadas dos nos de elemento

de referéncia estruturado com em VCORG.

kexp

inel x ndim

Exponentes das bases polinomial
(1énén) > KEXP =(00;10;01;11).




98

kder

ndim

Indica a definicdo da ordem da derivagcdo da

funcéo de interpolacgéo

e Para 2 dimensdes:

2

o¢an
e Para 3 dimensdes:

— KDER =(11)

3

ON | KDER (20 1)
[ —
0820¢

vpn

inel x inel

Matriz nodal PN ou inversa.

vp

inel

Valor do polindmio base no ponto dado.

Tabela 12: Tabelas globais, locais e dos elementos do programa MEF (DHATT e TOUZOT,1981).



