

MINISTÉRIO DOS TRANSPORTES, PORTOS E AVIAÇÃO CIVIL - MT

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES - DNIT

DIRETORIA GERAL - DG

DIRETORIA DE PLANEJAMENTO E PESQUISA - DPP

INSTITUTO DE PESQUISAS RODOVIÁRIAS - IPR

Rodovia Presidente Dutra, Km 163 Centro Rodoviário - Vigário Geral Rio de Janeiro - RJ - CEP21240-000 Tel/Fax: (21) 3545-4600

MAR 2017

NORMA DNIT 410/2017 - ME

Solos - Prova de carga estática em placa para controle de qualidade na execução de aterros solo-enrocamento -Método de Ensaio

Autor: Instituto de Pesquisas Rodoviárias - IPR

Processo: 50600.006433/2015-72

Origem:

Aprovação pela Diretoria Colegiada do DNIT na Reunião de 20/03/2017

Direitos autorais exclusivos do DNIT, sendo permitida reprodução parcial ou total, desde que citada a fonte (DNIT), mantido o texto original e não acrescentado nenhum tipo de propaganda comercial

Palavras-chave:

Nº Total de páginas

Placa, Compactação, Módulo de Deformabilidade, Aterros, Soloenrocamento 8

Resumo

Esta norma define a sistemática a ser adotada para a execução de prova de carga estática sobre placa, visando a determinação do Módulo de Deformabilidade em camadas de solo-enrocamento, para o controle de qualidade na conformação de aterros solo-enrocamento em estradas de rodagem. São também apresentados os requisitos concernentes a aparelhagem, montagem, execução e apresentação dos resultados dos ensaios.

Abstract

This standard provides the method of performing the plate static loading test method for determining the Deformability Modulus to soils-backfill layers to use them in the construction of embankments to roads. It includes the requirement concerning to equipment, assembling, execution and presentation of test results.

Sumário

Pre	fácio	1
1	Objetivo	2
2	Referências normativas	2
3	Definições	2
4	Escolha de pontos para realização do ensaio	3
5	Aparelhagem	3
6	Preparo do local de ensaio	3

	7	Montagem	3	
	8	Execução do ensaio	3	
	9	Cálculos	4	
	10	Valores mínimos	4	
	11	Relatório	5	
Anexo A (Normativo) – tipos de placa que podem ser uti-				
	lizad	das na prova de carga estática	.6	
Anexo B (Normativo) – representação esquemática da				
	mor	ntagem da prova de carga estática	7	
	Índi	ce Geral	ρ	

Prefácio

A presente Norma foi preparada pelo Instituto de Pesquisas Rodoviárias—IPR/DPP para servir como documento base para a determinação do Módulo de Deformabilidade (*EV*₂) utilizando o ensaio de carga estática sobre placa. O ensaio pode ser realizado para controle da qualidade das camadas de solo-enrocamento utilizadas na construção de aterros.

Está formatada de acordo com a Norma DNIT 001/2009-PRO.

1 Objetivo

Esta Norma fixa a sistemática a ser adotada na realização do ensaio de placa para a determinação do Módulo de Deformabilidade (EV_2) visando o controle de

camadas solo-enrocamento, quando utilizadas nos serviços de terraplenagem sob estruturas de pavimento.

2 Referências normativas

Os documentos relacionados a seguir são indispensáveis à aplicação desta Norma. Aplicam-se as edições mais recentes dos referidos documentos (inclusive emendas).

- a) DEUTSCHES INSTITUT FUR NORMUNG. DIN 18134. Soil-Testing Procedures and Testing Equipment – Plate load Test. DIN. Berlin, 2012.
- b) ASSOCIATION FRANCAISE DE NORMATISATION. NF p 94-117-1. Portance des plates-formes. Partie1: Module sous chargement statique à la plaque (EV2). AFNOR. Paris, 2000.
- c) AMERICAN SOCIETY OF TESTING MATERIALS. ASTM D1196-93: Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for use in Evaluation and Design of Airport and Highway Pavements. Annual Book of ASTM Standards. Philadelphia, 1994.
- d) DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. DNIT 055/2004-ME: Pavimento rígido – Prova de carga estática para determinação do coeficiente de recalque de subleito e sub-base em projeto e avaliação de pavimentos - Método de ensaio. Rio de Janeiro: IPR, 2004.
- e) _____.DNIT 070/2006 PRO: Elaboração e apresentação de normas do DNIT. Rio de Janeiro, 2009.

3 Definições

3.1 Ensaio de placa

Ensaio em que uma placa circular é submetida a um processo de carga e descarga estática. O processo é realizado em incrementos, obtendo-se medidas do deslocamento associado a cada valor de carga.

O ensaio de placa pode ser realizado em solos finos firmes, solos grossos e misturas de solos e blocos de rocha.

3.2 Aterros

Segmentos de rodovia cuja implantação requer depósito

de materiais provenientes de cortes e/ou de empréstimos no interior dos limites das seções de projeto (*off sets*) que definem o corpo estradal, o qual corresponde à faixa terraplenada.

3.3 Solo-enrocamento

Mistura de material, constituída por solos e materiais provenientes da escavação de rocha sã, com adequadas características de resistência e durabilidade, baixa fragmentação, além de uma faixa granulométrica específica, intermediária entre as dos solos e dos enrolamentos. A granulometria máxima dos fragmentos de rocha sã permitida na conformação de aterros de solo-enrocamento será de 25 cm.

A faixa granulométrica para solo-enrocamento deverá atender aos seguintes critérios:

- a) tamanho máximo das partículas inferior a 2/3 da espessura da camada compactada;
- b) Porcentagem de partículas com tamanhos menores que a abertura da peneira de 1" deve ser inferior a 30%;
- c) Porcentagem de partículas com tamanhos menores que a abertura da peneira N° 200 deve ser inferior a 10%;
 Preferencialmente, a faixa granulométrica deverá cumprir as condições apresentadas na Tabela 1.

Tabela 1 - Faixa granulométrica para solo-enrocamento.

Tamanho (cm)	Intervalo da porcentagem que passa (%)
D	90 - 100
D/4	45 - 60
D/16	25 - 45
D/64	15 - 35

Nota: D = diâmetro máximo.

3.4 Módulo de Deformabilidade

Parâmetro que representa as caraterísticas de deformação de um solo. É determinado a partir da curva de tensão-deslocamento obtida do ensaio de placa.

4 Escolha dos pontos para realização do ensaio

Os pontos para realizar o ensaio de carga estática sobre placa devem ser escolhidos com base nas informações geológicas e geotécnicas disponíveis.

Para o caso de trechos aparentemente homogêneos, as determinações podem ser feitas, inicialmente, a cada 100

m, obedecendo à ordem: borda direita, eixo, borda esquerda, eixo, etc.

Estes intervalos poderão ser modificados, a critério da fiscalização, em função da uniformidade observada nos resultados dos ensaios.

5 Aparelhagem

5.1 Sistema de reação

Qualquer sistema rígido que permita aplicar uma carga de reação pelo menos 20% maior que a carga máxima aplicada no ensaio.

Pode ser utilizado qualquer sistema como carreta, caminhão, etc., que ofereça reação mínima de 80 kN.

5.2 Placa de prova

Placa circular de aço. Pode-se utilizar uma placa circular com diâmetro mínimo de 76,2 cm e 2,0 cm de espessura.

A placa deve possuir rigidez suficiente para o trabalho a ser executado.

Para garantir a rigidez do sistema pode-se utilizar, conforme o Anexo A.:

- a) Um arranjo piramidal de no mínimo quatro placas superpostas, com máximo 15 cm de diferença nos diâmetros entre placas adjacentes, ou;
- Reforços enrijecedores igualmente espaçados na face superior, e que permitam a colocação do macaco hidráulico e a aplicação do carregamento.

5.3 Macaco hidráulico

Equipamento com capacidade entre 100 e 200 KN, que permita a aplicação de pequenos incrementos de carga, que serão mantidos até que se obtenha a estabilização dos deslocamentos.

Deve ser dotado de sistema de controle (p.e manômetro) com precisão da ordem de 0,01 MPa.

5.4 Defletômetros

Três no mínimo, graduados em 0,01 mm, com curso mínimo de 10 mm.

5.5 Dispositivos de suporte dos defletômetros

O sistema de suporte dos defletômetros deverá ser composto, com um mínimo de:

- a) Duas hastes verticais de aço galvanizado com diâmetro ³/₄" = 19mm e 1,50m de comprimento, fixadas em sapatas metálicas;
- b) Viga de sustentação das hastes de fixação dos defletômetros, com comprimento mínimo de 5,5m;
- c) Hastes de fixação deslocáveis nos sentidos horizontal e vertical, com os respectivos suportes.

5.6 Ferramentas

Nível de pedreiro, trena de aço de 2,00m, enxada, picareta, alicate, pá e chave de grifo.

6 Preparo do local do ensaio

Deve-se garantir uma área livre em torno de 2,00m de diâmetro para a execução do ensaio (nunca inferior ao dobro do diâmetro da placa). Qualquer material solto deverá ser removido.

As áreas de apoio da placa e das sapatas de suporte dos defletômetros devem ser niveladas, colocando-se um colchão de areia com a menor espessura necessária para formar um apoio uniforme (máximo 2 cm).

Deve ser tomado cuidado para assegurar que a placa não seja colocada diretamente sobre as partículas de maior tamanho (maiores do que um quarto do diâmetro da placa).

7 Montagem

Colocar a placa sobre o colchão de areia, movimentandoa nos dois sentidos de rotação (horário e anti-horário), duas ou três vezes, até que a placa fique convenientemente assentada sobre a superfície lisa e nivelada

Alinhar o centro da placa de forma que sua vertical fique no mesmo eixo com o ponto de aplicação da carga no sistema de reação.

Colocar o veículo de reação (carreta, caminhão etc) na posição de operação. A distância entre os apoios do sistema de reação e a periferia da placa deve ser, no mínimo, de 1,50 m.

Deve-se garantir que o sistema de reação e de carga permaneçam estáveis, sem inclinações, durante o tempo do ensaio.

Montar o dispositivo de suporte dos defletômetros, colocando suas sapatas sobre o colchão de areia, com o mesmo procedimento prescrito no primeiro parágrafo deste item.

A distância entre o centro da placa e o ponto de apoio do suporte dos defletômetros, deve ser de no mínimo 1,5 m.

Fixar os defletômetros na viga de sustentação, formando um triângulo equilátero sobre a placa (separação de 120º entre cada um deles).

Se necessário, proteger todo o equipamento da ação direta do sol e do vento.

Colocar o macaco hidráulico na posição de carregamento, de forma a permitir a utilização do seu curso máximo, com livre operação e fácil leitura do manômetro e dos defletômetros, que devem estar de frente para o operador.

Um esquema da montagem é apresentado no Anexo B.

8 Execução do ensaio

Antes de iniciar o ensaio, os instrumentos de medida devem estar ajustados em zero.

Determinar o carregamento máximo que será aplicado, em função do tipo de camada, do objetivo do ensaio e do diâmetro da placa.

O carregamento será aplicado em pelo menos seis etapas, com incrementos aproximadamente iguais, até atingir o máximo carregamento.

8.1 Pre-carregamento

Aplicar um primeiro carregamento que produza uma pressão de 0,005 MPa. Manter durante pelo menos 30 s e, após, descarregar e retornar os defletômetros a zero.

8.2 Primeiro ciclo de carregamento

Cada carga do ciclo deve ser colocada gradativamente, em um intervalo mínimo de 60 s (1 minuto) e ser mantida constante pelo menos durante 120 s (2 minutos).

Após a estabilização dos defletômetros, registrar as leituras. O processo deverá ser realizado em, no mínimo, 6 etapas, até que se atinja o carregamento máximo desejado. A carga máxima deve ser retirada em três etapas, variando de 100% para 50%, 25% e 2% do valor total.

A Tabela 1 ilustra modelo de planilha para a leituras do

primeiro ciclo de um ensaio de carga estática em placa.

Tabela 1 – Leituras do primeiro ciclo de carregamento.

Etapas	Carga kN	Tensão Normal MPa	Leitura da média dos defletômetros mm	Desloca mento mm
0	0,71	0,00		
1	5,65	0,01		
2	11,31	0,02		
3	17,67	0,04		
4	23,33	0,05		
5	29,69	0,07		
6	35,34	0,08		
7	17,67	0,04		
8	8,84	0,02		
9	0,71	0,00		

8.3 Segundo ciclo de carregamento

Após descarregar a placa, deve ser realizado um segundo ciclo de carregamento, até a penúltima carga da etapa anterior (sem atingir a carga máxima).

A Tabela 2 ilustra modelo de planilha para as leituras do segundo ciclo de um ensaio de carga estática em placa, tendo como referência o primeiro ciclo ilustrado na Tabela 1.

Tabela 2 – Leituras do segundo ciclo de carregamento.

Etapas	Carga kN	Tensão Normal MPa	Leitura da média dos defletômetros mm	Desloca mento mm
9	0,71	0,00		
10	5,65	0,01		
11	11,31	0,02		
12	17,67	0,04		
13	23,33	0,05		
14	29,69	0,07		

Para placas de diâmetro mínimo de 76,2 cm, sugeridas nesta Norma, o Módulo de Deformabilidade será

determinado para tensões e deslocamentos máximos de 0,2 MPa e 13,0 mm, respectivamente.

9 Cálculos

9.1 Curva de tensão - deslocamento

É obtida plotando-se, nas ordenadas, os deslocamentos verticais após cada carregamento (média dos resultados dos três defletômetros) e, nas abscissas, as tensões (pressões) transmitidas pela placa.

9.2 Cálculo do Módulo de Deformabilidade (EV2)

O módulo de deformabilidade deve ser calculado para o primeiro e o segundo ciclo de carregamento, com base nos pontos da curva tensão – deslocamento.

Para cada ciclo de carga deve ser realizada uma regressão polinomial de segunda ordem, de acordo com a equação:

$$s = a_0 + a_1 \sigma_0 + a_2 \sigma_0^2$$

Onde:

s = deslocamento da placa (média dos três defletômetros), (mm);

 σ_0 = pressão média na placa, (MN/m²);

 a_0 = constante da regressão polinomial de segunda ordem, (mm);

 a_1 e a_2 = constantes da regressão polinomial de segunda ordem, (mm/(MN²/m⁴)).

O Módulo de Deformabilidade (EV_2) é determinado com a expressão:

$$EV_2 = 1.5 \ r \ \frac{1}{a_1 + a_2 \ \sigma_{0 \ max}}$$

Onde:

 EV_2 = Módulo de deformabilidade (MPa);

r = raio da placa (mm);

 $\sigma_{0\;m\acute{a}x}$ = pressão máxima vertical sob a placa no ensaio ou pressão máxima no primeiro ciclo de carregamento (MPa).

 a_1 e a_2 = constantes da regressão polinomial de segunda ordem, com os dados do segundo ciclo de carga e as unidades acima indicadas.

As constantes a_0 , a_1 e a_2 poderão ser obtidas por meio da curva tensão – deslocamento, na qual se estabelece

uma linha de tendência polinomial do segundo grau, ligando os pontos do segundo ciclo, adotando-se algum aplicativo de criação de planilhas eletrônicas.

Pode ser estabelecido um Módulo do primeiro ciclo de carga (EV_1), utilizando a expressão acima e as constantes de regressão polinomial de segunda ordem, com os dados do primeiro ciclo.

Para a regressão do primeiro ciclo, deve desconsiderarse a primeira etapa do carregamento (ver Tabela 1).

A razão entre os valores dos módulos (k_{EV}), é um indicativo do grau de compactação. Esta razão pode ser determinada com a expressão:

$$k_{EV} = \frac{EV_2}{EV_1}$$

O Módulo de Deformabilidade (EV_2) e o Módulo para o primeiro ciclo de carregamento (EV_1), deverão ser expressados em MPa, ou em unidades similares do Sistema Internacional de Unidades.

10 Valores sugeridos

Para camadas de solo-enrocamento, os valores sugeridos, obtidos do ensaio de placa, são apresentados na Tabela 3.

Tabela 3 - Valores sugeridos para o ensaio de carga estática em placa em solo-enrocamento.

Parâmetro	Valor
EV ₂ (MPa)	≥ 60
S _{máx} (mm)	13
k _{EV} (%)	≥ 2

Salienta-se que o controle de execução de aterros com solo-enrocamento dependerá principalmente dos parâmetros obtidos em trechos experimentais executados com o material, equipamento e método construtivo que será implementado pela construtora, e aprovado pela fiscalização.

Assim, os valores da Tabela 3 podem ser modificados pela fiscalização, dependendo das condições específicas de cada projeto.

11 Relatório

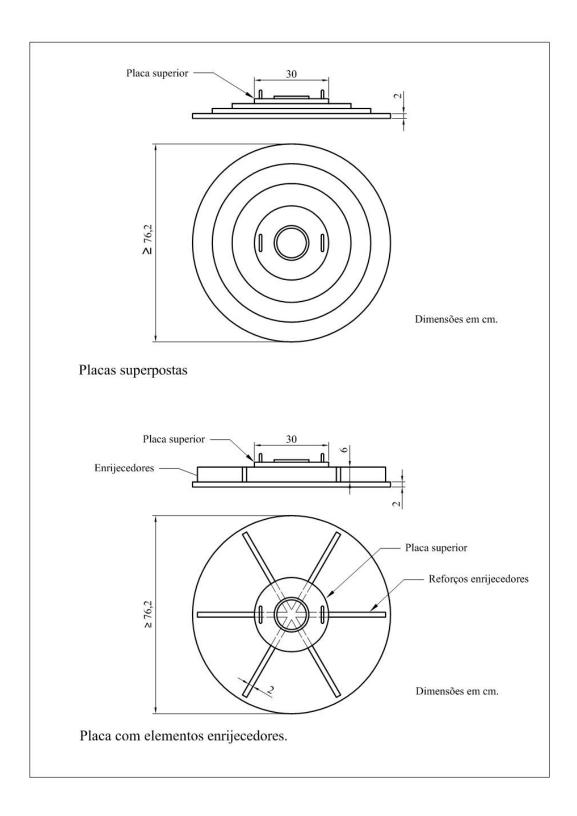
O relatório deve conter como mínimo as seguintes informações:

a) Identificação da obra e do ponto do ensaio (estaca,

km, etc.);

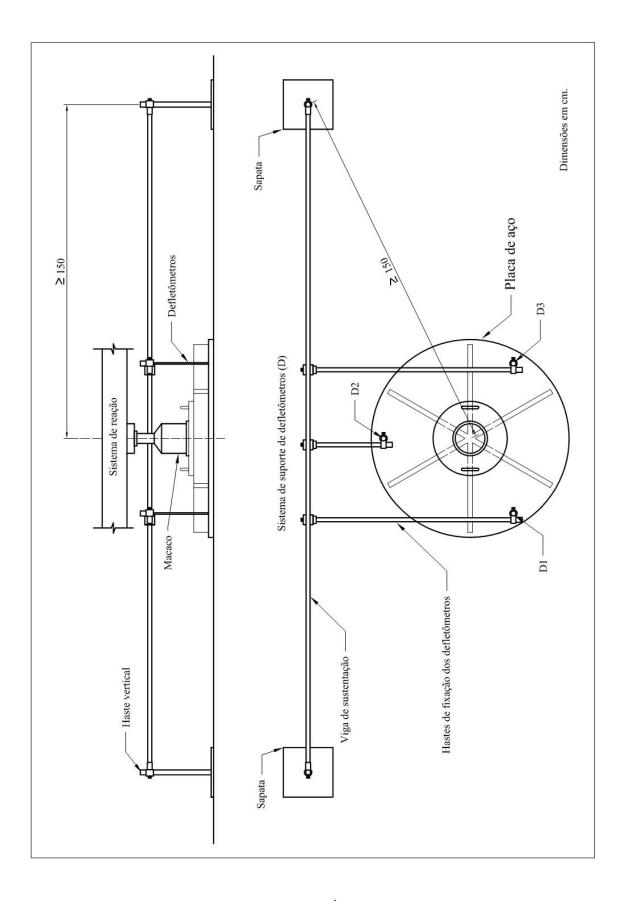
- b) Data, horário de início e fim das operações e pessoal empregado;
- c) Condições climáticas;
- d) Identificação das caraterísticas da placa e do sistema de reação utilizado;
- e) Identificação, tipo e espessura da camada avaliada;

f) Descrição do material;


- g) Leituras;
- h) Curvas de tensão deslocamento;

i) Memórias de cálculo para a determinação dos Módulos de Deformabilidade (EV_1), (EV_2) deslocamento máximo ($s_{m\acute{a}x}$) e razão entre os valores dos Módulos (k_{EV}).

____/Anexo A


Anexo A (normativo)

Configuração das placas que podem ser utilizadas na prova.

_____/ Anexo B

Anexo B (normativo) Representação esquemática da montagem da prova.

_____/Índice geral

Índice geral Índice geral Abstract 8 Misturas de solo 3.5. Anexo A (Normativo) - tipos de 2 placa que podem ser utilizados na prova 6 Macaco hidráulico 5.3. 3 Anexo B (Normativo) -Módulo de Deformabilidade 3.4. representação esquemática dos equipamentos do ensaio 7 Montagem 7. Aparelhagem 5. 3 Objetivo 1. 3.2. Aterros 2 Placa de Prova 5.2. Cálculos 9. 4 Prefácio Cálculo do Módulo de Preparo do local do ensaio 6. 9.2..... Deformabilidade (EV₂) Referências normativas 2. Curva de tensão-deslocamento 9.1..... 11..... Relatório 3. Definições Resumo 1 5.4. Defletômetros 5.1. Sistema de reação Dispositivos de suporte dos defletômetros 5.5. 3 3.3. Solo-enrocamento 3.1. Ensaio de placa 2 Sumário 1 Escolha de pontos para Tabela 1 - Valores sugeridos 4. realização do ensaio 2 do ensaio de placa em solo-enrocamento Execução do ensaio 8. 3 10..... Valores sugeridos 5.6. Ferramentas