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Abstract. This article evaluates computational modeling and simulation
techniques applied to biomechanical models, focusing on the SimSolid
software. Using the concept of Geometry-Function Decoupling, SimSolid
allows for faster and more efficient simulations by employing generic basis
functions that are independent of the model's geometry. A jaw model adapted
in Rhinoceros software was used to compare the accuracy and results of
SimSolid against traditional finite element methods. The results highlight
SimSolid's potential in healthcare applications, offering a good balance
between speed and accuracy.

Resumo. Este artigo avalia técnicas de simulação computacional aplicadas a
modelos biomecânicos, com foco no software SimSolid. Utilizando o conceito
de Geometry-Function Decoupling, o SimSolid permite simulações mais
rápidas e eficientes ao empregar funções de base genéricas independentes da
geometria do modelo. Foi utilizado um modelo de mandíbula adaptado no
software Rhinoceros para comparar a precisão e os resultados do SimSolid em
relação aos métodos tradicionais de elementos finitos. Os resultados destacam
o potencial do SimSolid em aplicações na área da saúde, oferecendo um bom
equilíbrio entre rapidez e precisão.

1. Introdução

A modelagem e simulação 3D se estabeleceram como ferramentas indispensáveis na
pesquisa e desenvolvimento de várias áreas, incluindo medicina, engenharia e ciências
biológicas. A capacidade de criar representações tridimensionais de objetos e sistemas
anatômicos complexos possibilita uma análise detalhada e uma visualização realista,
fundamental para o avanço de tecnologias e metodologias. Na medicina, por exemplo,
essas técnicas são usadas para criar modelos precisos de órgãos e tecidos, facilitando o
planejamento cirúrgico e a personalização e otimização de próteses, resultando em
melhorias significativas nos resultados clínicos.

A precisão oferecida pela modelagem e simulação 3D permite a identificação precoce
de problemas, a redução de erros e a otimização de designs, fatores que são críticos em
ambientes onde a margem de erro deve ser mínima. Isso não só melhora a qualidade dos
produtos e procedimentos, mas também proporciona uma redução significativa nos
custos e no tempo de operações. As simulações 3D permitem que pesquisadores e
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engenheiros testem múltiplos cenários e variáveis em um ambiente virtual controlado,
aumentando a eficiência do processo de inovação e diminuindo a necessidade de
protótipos físicos caros.

Hoje os principais desafios dessas tecnologias aplicadas na medicina envolvem a
fidelidade dos modelos devido à sua complexidade anatômica, o tempo de
processamento que pode ser limitante em um procedimento de emergência, a validação
dos resultados quando comparado aos resultados clínicos reais e a falta de integração
com sistemas médicos. O presente trabalho avaliou os resultados de uma forma de
simulação que não se baseia em simplificações geométricas, como o Método dos
Elementos Finitos (FEM), utilizando o software SimSolid que tem como base
tecnológica a utilização de funções base que variam para a interpretação do modelo
CAD.

O SimSolid como uma solução promissora para superar as limitações dos métodos
tradicionais de simulação, que enfrenta desafios em termos de complexidade
geométrica, custo computacional e necessidade de simplificações. Baseado em teorias
avançadas, o SimSolid permite simulações precisas sem a necessidade de malhas finas e
mantém a estabilidade numérica. O trabalho propõe avaliar a eficácia do SimSolid em
comparação com outras tecnologias de simulação, destacando sua capacidade de realizar
simulações mais rápidas e precisas em cenários reais.

2. Metodologia

2.1 A modelagem

O modelo estudado é uma representação em CAD (Computer-Aided Design) da metade
de uma mandíbula, criado com o software Rhinoceros e baseado nos modelos do
protocolo Biocad [1]. O modelo inclui diferentes estruturas anatômicas, como osso
cortical, osso trabecular, ligamento periodontal e dentes. Cada uma dessas estruturas foi
representada para simular com precisão suas propriedades mecânicas. Na simulação,
foram cuidadosamente considerados todos os pontos relevantes, levando em conta a
lâmina dura e os efeitos das diferentes propriedades dos materiais, especialmente nas
áreas de contato onde essas propriedades podem variar.

2.1.1 O cortical e o trabecular

O osso cortical, também conhecido como osso compacto, é a camada externa
densa e rígida que proporciona suporte estrutural e proteção ao esqueleto. Na
mandíbula, ele resiste a cargas pesadas e protege as estruturas internas. O osso
trabecular, ou esponjoso, é encontrado no interior dos ossos e possui uma
estrutura porosa que absorve impactos e distribui a carga de maneira eficiente.
Juntos, os ossos cortical e trabecular garantem a resistência e a flexibilidade
necessárias para a função e a estabilidade da mandíbula.
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Além disso, os dentes são revestidos por uma camada externa chamada lâmina
dura, que é uma parte do esmalte dental. A lâmina dura é a substância mais dura
do corpo humano e proporciona uma superfície resistente ao desgaste e à pressão
mastigatória. Ela protege a dentina subjacente e contribui para a eficiência da
mastigação e a integridade estrutural dos dentes. Na figura 1 vemos a parte do
cortical separada da parte do trabecular.

Figura 1. a) - Resultado final cortical, b) Resultado final trabecular

2.1.2 Dentina e Ligamento periodontal

A dentina é um tecido mineralizado que forma a maior parte do dente, localizada abaixo
do esmalte e ao redor da polpa dentária, proporcionando proteção e suporte durante a
mastigação. O ligamento periodontal é um tecido fibroso que conecta a raiz do dente ao
osso alveolar, funcionando como um amortecedor que distribui as forças mastigatórias,
protegendo tanto o dente quanto o osso ao redor. Ambos são essenciais para a
integridade e funcionalidade do sistema dentário, trabalhando em conjunto para suportar
e proteger os dentes. Na figura 2, vemos o ligamento periodontal e os dentes, onde o
ligamento se encaixa perfeitamente nos dentes.

Figura 2. a) - Resultado final dentes, b) Resultado final ligamento periodontal
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2.1.3 O modelo completo

Dividimos a mandíbula em quatro regiões, devido às diferenças nas propriedades
mecânicas de cada uma delas. Foi importante distinguir essas regiões para selecionar
materiais condizentes com a realidade, garantindo uma simulação com resultados mais
precisos. Na tabela 1 podemos ver os materiais e suas propriedades aplicados a cada
uma das quatro partes do modelo

Tabela 1. Propriedades mecânicas dos materiais da mandíbula [2][3][4]

Propriedade Dentina
Ligamento
Periodontal Trabecular Cortical

Módulo de Elasticidade 2 × 10¹⁰ Pa 2 × 10⁶ Pa 1,3 × 10⁹ Pa 1,3 × 10¹⁰ Pa

Módulo de Young 19 GPa 1 GPa 18 GPa

Módulo de Cisalhamento 7 GPa 0,15 GPa 4 GPa

Poisson Ratio 0,31 0,35 0,3 0,33

Densidade 2,2 g/cm³ 1,04 g/cm³ 0,6 g/cm³ 1,99 g/cm³

Ultimate Tensile Stress 104 MPa 7 MPa 162 MPa

Tensile Yield Stress 70 MPa 2 MPa 114 MPa

Condutividade Térmica 5 × 10⁻¹ W/m·K 5 × 10⁻¹ W/m·K 3 × 10⁻¹ W/m·K 4 × 10⁻¹ W/m·K

2.2 O método de elementos finitos (FEM)

O FEM é uma técnica numérica para obter soluções aproximadas de objetos complexos
dividindo-os em pequenos elementos finitos conectados por nós. As propriedades são
calculadas em nós, e a solução global é formada pela combinação das soluções desses
elementos menores.

O primeiro passo no FEM é criar geometrias (triangulares, quadrangulares ou
tetraédricas) e organizá-las em uma malha. Cada elemento é descrito por uma função de
forma, que aproxima o comportamento físico, como tensão e deslocamento, dentro do
elemento.

As funções de todos os elementos são combinadas para formar um grande sistema de
equações. Isso é feito montando as equações locais de cada elemento em uma matriz
global que reúne as rigidezes locais de todos os elementos da malha para representar a
estrutura inteira. Após a criação da malha, são aplicadas as condições de contorno, que
simulam apoios e restrições na estrutura.

A solução é obtida por métodos numéricos, onde o software resolve equações lineares
para determinar os valores nos nós. Esses valores, juntamente com as funções de forma,
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são então usados para interpolar a solução dentro de cada elemento, proporcionando
uma visualização completa da resposta do sistema [5].

2.3 O método variacional

Em 2015, uma nova abordagem para simulações estruturais foi introduzida com o
desenvolvimento do software SimSolid por Victor Apanovitch e sua equipe. O SimSolid
é baseado em métodos variacionais, nos quais problemas de contorno são abordados
como a minimização de uma função de energia (uma expressão matemática que
descreve a energia total de um sistema físico em termos de variáveis). A técnica de
Ritz-Galerkin, tradicionalmente empregada para essa finalidade, é expandida no
SimSolid através do uso de funções base mais sofisticadas. Isso melhora a eficiência
computacional e a precisão, especialmente em geometrias complexas.

No SimSolid, as funções de aproximação internas pertencem a um espaço de Sobolev,
garantindo continuidade nas fronteiras dos elementos. Em problemas de elasticidade 2D
e 3D, essas funções são contínuas entre os elementos, enquanto em problemas de flexão
de placas, tanto as funções quanto suas primeiras derivadas são contínuas.

O software emprega elementos finitos incompatíveis, que enriquecem as funções de
interpolação padrão, permitindo aproximações mais precisas, ainda que possam
introduzir pequenas descontinuidades nas fronteiras dos elementos. A abordagem
teórica de aproximações externas permite que os elementos tenham formas arbitrárias e
funções de aproximação flexíveis, desde que pertençam ao espaço de Sobolev.

O grande diferencial ao utilizar SimSolid para avaliar o método é a separação entre
geometria e funções de aproximação, com as funções base geradas dinamicamente
durante a execução, adaptando-se à geometria e precisão necessárias, eliminando a
necessidade de malhas tradicionais. Essa abordagem oferece vantagens como:

● Uso de funções especiais para garantir soluções incondicionalmente estáveis,
como no caso de materiais incompressíveis.

● Flexibilidade para diferentes classes de materiais em partes vizinhas, como
materiais compressíveis e incompressíveis.

● Funções base projetadas para satisfazer diretamente as equações governantes dos
problemas, aumentando a precisão e reduzindo os graus de liberdade (DOF).

● Aproximações construídas no espaço físico, evitando erros relacionados ao
mapeamento.

● Conjunto completo de funções base sempre utilizado, garantindo alta precisão e
facilitando a adaptação da solução.

● Capacidade de lidar com montagens de diferentes escalas e formatos [6].
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2.3.1 As conexões

Ao importar o modelo para software de simulação o primeiro passo foi acrescentar as
conexões entre os diferentes componentes da mandíbula, incluindo o osso trabecular e
cortical, o osso cortical e o ligamento periodontal, e o ligamento periodontal e os dentes.
Para cada uma dessas conexões, foi utilizado um espaçamento inicial (gap) de 0,156,
que representa a folga entre os componentes antes do contato. Além disso, permitimos
uma penetração (penetration) de até 0,078, que define o limite de invasão entre os
elementos antes que uma reação seja gerada na simulação. É importante destacar que o
software Simsolid tem uma ferramenta para criar automaticamente as conexões das
simulações.

2.3.2 Os suportes

Os suportes são regiões que simulam apoios onde os objetos se encostam e geram forças
em diferentes eixos. Na figura 3, é possível ver as regiões de suporte que foram
utilizadas, todas configuradas como Sliders, que permitem a movimentação linear ao
longo de uma única direção ou eixo e restringem os movimentos perpendiculares.

Figura 3. A imagem apresenta as 3 regiões onde os suportes são aplicados: Côndilo,
Masseter e representação de simetria.

O primeiro suporte está localizado no côndilo, que é a porção arredondada da mandíbula
que se articula com o osso temporal do crânio, formando a articulação
temporomandibular (ATM). Esta articulação permite os movimentos da mandíbula,
como abrir e fechar a boca, além de movimentos laterais necessários para a mastigação.

O segundo suporte representa o músculo responsável pela mastigação, o músculo
masseter. Ele é um dos principais músculos da mastigação e está localizado na lateral da
face, conectando a mandíbula ao osso zigomático. O masseter atua elevando a
mandíbula, ou seja, fechando a boca [7]
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O terceiro suporte simula a outra metade da mandíbula, garantindo que a condição do
lado oposto fosse adequadamente representada. O Slider restringe qualquer movimento
vertical da metade da mandíbula, simulando a reação da articulação
temporo-mandibular do outro lado.

Foi aplicada uma força resultante para simular a reação da mordida nos três molares.
Para isso, foram utilizados 500 N como um valor médio usado [8], divididos entre os
três dentes. É importante destacar que, diferentemente dos softwares de simulação que
utilizam o método dos elementos finitos, onde as regiões de aplicação das forças são
delimitadas de acordo com a malha criada, aqui foi preciso utilizar as áreas definidas
pelas funções pré-estabelecidas de aproximação, limitando as aplicações das forças em
regiões já definidas no modelo. No nosso modelo, a coroa do 1º molar foi dividida em
15 regiões para a aplicação das forças, enquanto as coroas do 2º e 3º molar foram
divididas em 12 regiões cada.

3. Resultados e discussão

Ao realizar a simulação, obtivemos resultados que corroboram a proposta do artigo,
destacando o potencial do software SimSolid para simulações biomecânicas rápidas e
precisas. Com base no conceito de Geometry-Function Decoupling, o SimSolid
demonstrou ser uma ferramenta eficiente para a análise da mandíbula, permitindo
realizar simulações complexas sem a necessidade de malhas finas, uma característica
comum nos métodos tradicionais de Elementos Finitos (FEM).

O modelo da mandíbula, adaptado no software Rhinoceros e utilizado no SimSolid,
apresentou uma distribuição de tensões realista e consistente com a biomecânica da
mandíbula. A região de maior concentração de tensões foi observada próxima ao
terceiro molar, o que está de acordo com as forças mais intensas aplicadas durante o
processo de mastigação. A simulação revelou um valor máximo de tensão de 5.6235 ×
10⁻¹ MPa. No entanto, o resultado mais significativo surge ao comparar essas tensões
com simulações realizadas utilizando o método dos Elementos Finitos (FEM).

Na Figura 4, é possível observar a comparação entre o modelo SimSolid e um modelo
FEM, neste, com uma força de 300 N em uma mordida unilateral. As regiões da incisura
e do terceiro molar concentraram as maiores tensões em ambos os modelos. A diferença
mais marcante está na força máxima aplicada, sendo aproximadamente 5.6235 × 10⁻¹
MPa no nosso modelo SimSolid e cerca de 2 × 10⁻¹ MPa no modelo FEM. Essa
discrepância pode ser explicada pela diferença na abordagem de modelagem e
simulação utilizadas, bem como na forma como cada método lida com a aplicação da
força máxima [9].
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Figura 4. a) - Resultado FEM, b) Resultado Simsolid

A análise realizada destaca a eficiência do SimSolid ao empregar funções de base
genéricas, que independem da geometria do modelo, resultando em simulações mais
rápidas e sem perda significativa de precisão. Essa característica torna o SimSolid
particularmente atraente em um mundo cada vez mais ágil e prático, onde soluções
rápidas são valorizadas. Além disso, sua baixa curva de aprendizado e facilidade de uso
oferecem uma vantagem significativa em comparação com métodos mais tradicionais e
complexos, como o FEM, tornando-o acessível a uma gama maior de profissionais.

Os resultados também demonstram que o SimSolid é uma ferramenta promissora para
aplicações na área da saúde, oferecendo um excelente equilíbrio entre velocidade e
confiabilidade na análise de modelos biomecânicos complexos, como a mandíbula.
Esses avanços são particularmente relevantes para o planejamento cirúrgico e o
desenvolvimento de próteses, além de abrirem novas possibilidades no campo da
bioengenharia, permitindo inovações rápidas sem comprometer a precisão dos
resultados.

No entanto, algumas limitações devem ser consideradas. As regiões para a aplicação das
forças foram delimitadas de forma aleatória, o que pode impactar a precisão dos
resultados. Além disso, embora o SimSolid seja prático e eficiente, ele ainda possui
limitações no que diz respeito à fidelidade de algumas simulações mais detalhadas,
como as que exigem maior controle sobre as condições de contorno ou forças aplicadas.

Para pesquisas futuras, é necessário explorar uma comparação direta entre os métodos
FEM e SimSolid, utilizando os mesmos parâmetros em ambas as simulações. Isso inclui
a replicação das mesmas condições de contorno, força aplicada e materiais, o que
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permitirá uma análise mais precisa das diferenças de eficiência e precisão entre os dois
métodos. Dessa forma, seria possível validar com mais robustez as vantagens do
SimSolid sobre o FEM, além de determinar em quais contextos médicos e de
bioengenharia cada método é mais adequado.
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