
Avaliação de soluções de streaming para aplicar ao Avatar
Recepcionista

Thiago D. S. Lacerda, Artemis Moroni, Josué Ramos

t244712@dac.unicamp.br, {artemis.moroni, josue.ramos}@cti.gov.br

Núcleo de Robótica e Visão Computacional– NRVC
CTI/MCTI Renato Archer – Campinas/SP

Abstract. This project aims to propose a solution to the render streaming
problem within the project of developing the receptionist avatar on Unity and
Unreal Engine platforms. For that, alternatives were evaluated using TCP,
WebRTC protocols and STUN and TURN servers, with the Unity Render
Streaming package and Unreal Engine Pixel Streaming Plugin to implement
the communication between client computer and server.

Resumo. Este projeto tem como objetivo propor soluções para o problema de
renderização remota dentro do projeto do desenvolvimento do avatar
recepcionista avaliando a viabilidade de uso das plataformas Unity e Unreal
Engine. Para tal, foram analisadas alternativas usando protocolos TCP,
WebRTC e servidores STUN e TURN, o pacote Unity Render Streaming e
Unreal Engine Pixel Streaming para implementação da comunicação entre
computador cliente e servidor.

1. Introdução

Com o avanço das pesquisas em robótica, a sociedade integra-se cada vez mais com
robôs e assistentes robóticos cotidianamente. Essas tecnologias, quando oferecidas para
uso pessoal, promovem maior convivência entre as partes, idealmente auxiliando os
usuários em tarefas manuais e mentais. A multidisciplinaridade dentro da área de
Interação Humano Robô [1] é, portanto, necessária e envolve desde psicologia e
sociologia a engenharia mecânica e ciências da computação. Com isso em mente foi
desenvolvido a Avatar Recepcionista Ana, que incorpora aspectos de um SIR (Robô
Socialmente Interativo) [2][3].

Entretanto, a interação humano-robô atualmente é possível somente se o usuário tiver
acesso ao avatar embarcado, dificultando escalabilidade e locomoção do avatar, entre
outras desvantagens. Transferir alguns serviços do avatar para um servidor, como
síntese de voz, renderização e animação, diminuem os requisitos do sistema embarcado,
facilitando assim a interação entre usuário e avatar.

2. Objetivos

Inspirado no robô recepcionista da Carnegie Mellon University (CMU), o objetivo
deste projeto é propor topologias de rede para que o avatar possa ser executado
remotamente em um servidor em plataforma Linux, partes integradas a plataformas de
desenvolvimento de jogos multiplataforma, como Unity [4] e Unreal Engine [5]. O
avatar deve manter suas atuais funcionalidades: síntese de voz, movimentação e

animações e processamento de strings em áudio; manter conexão com o cérebro,
interpretador de dados desenvolvido pelo NRVC/CTI [6][7]; ser executado em
ambiente Linux e transportar o produto de suas funcionalidades usando o protocolo de
rede TCP IP [8].

3. Pesquisa

O diagrama da figura 1 apresenta o atual funcionamento geral e relações entre os
subsistemas do avatar.

Figura 1: Topologia geral das aplicações do Avatar [3]

No computador cliente, o Oak-D/Realsense estará conectado para coleta de dados
dos usuários, que serão enviados ao servidor, onde é executado o cérebro, a aplicação
Unity ou Unreal Engine e o sintetizador de voz. Dessa forma as facilidades já
implementadas no avatar mantêm-se intactas quanto a sua implementação.

3.1 - WebRTC

WebRTC [9] é uma API open source que viabiliza a transmissão de áudio e vídeo em
tempo real via navegadores, permite estabelecer conexões peer-to-peer entre 2 ou mais
navegadores que poderão então trocar dados sem a necessidade de uma aplicação nativa
ou servidor de terceiros.

Para estabelecer a conexão, o primeiro par instancia um objeto Offer SDP [9]
(Session Description Protocol), um meta-dado que descreve o formato do conteúdo da
conexão, e o envia a um servidor intermediário; o segundo par o procura e cria um
objeto Answer SDP para enviar ao servidor e ser lido pelo primeiro. Esse processo,
conhecido como signalling, permite que os participantes estabeleçam conexão sem que
o servidor acesse o conteúdo da transmissão.

3.1.1. Servidor STUN

Entretanto, para contornar firewalls e mudanças de endereços de IP (NAT), é
utilizado o padrão ICE server [10] (Interactive Connectivity Establishment). Ambos os
pares geram uma lista de ICE Candidates, que contém endereços de IP e Port. A
WebRTC implementa esse processo via requisições ao servidor STUN [11], um

protocolo para descobrir endereços públicos e determinar/mapear restrições em redes
que podem impedir conexões P2P. A figura 2 apresenta um exemplo de conexão P2P
usando o servidor STUN.

Figura 2: Comunicação peer-to-peer usando servidor STUN

3.1.2. Servidor TURN

Alternativamente, pode-se utilizar um servidor TURN [11] (Traversal Using Relays
around NAT), que retransmite todas as informações que a ele chegarem. Dentro da
Unity Render Streaming [12], podemos configurar o envio dos dados da Unity para o
computador cliente usando um servidor TURN, que atende à restrição da comunicação
ser realizada usando o protocolo de rede TCP. A implementação desse servidor é feita
utilizando o projeto open source Coturn [13], e seu comportamento é de retransmissão
de dados recebidos (Server Relay). A figura 3 apresenta um exemplo de conexão P2P
usando o servidor TURN.

Figura 3: Comunicação peer-to-peer usando servidor TURN

3.2 - Unity: Comunicação servidor-cliente

Para realizar a comunicação servidor-cliente, foi escolhida a extensão Unity Render
Streaming. Esse pacote, que ainda se encontra em preview até a escrita deste artigo,
possibilita o envio de vídeo e áudio para o servidor cliente usando o protocolo de
comunicação WebRTC, implementado como pacote Unity.

3.2.1. Unity Render Streaming

Esse pacote nos possibilita configurar uma transmissão peer-to-peer [14] (P2P),
suportando transmissão de vídeo e áudio renderizados na Unity, e também fornece ao
usuário a opção de interagir com a aplicação com o envio de mensagens simples como o
aperto de botões ou interação com a UI.

A conexão da rede é estabelecida entre o Unity (servidor) e o Navegador (cliente), o
envio dos dados é realizado via protocolo UDP [15] por padrão, mas existe a
possibilidade de configurar um servidor TURN e configurar a comunicação para o uso
do protocolo TCP. Os componentes da estrutura do sistema e a compatibilidade com
navegadores podem ser vistos nas figuras 4 e 5, respectivamente. Os problemas de
compatibilidade devem-se ao uso do pacote WebRTC [16] (preview), dependência da
Render Streaming.

Figura 4: Topologia da rede usada pela extensão Unity Render Streaming

Figura 5: Browsers suportados atualmente pelo Unity Render Streaming

3.2.2. Requisitos de Hardware e Software

A implementação da WebRTC na Unity requer mínimos de hardware e software,
visto que o funcionamento da API depende do Codec SDK 9.1 da Nvidia. A tabela de
compatibilidade é visível na figura 6.

Figura 6: Suporte a Encoder via hardware e software

3.2.3. Comunicação cliente-servidor

Até o momento, não há suporte ao envio de áudio e vídeo do navegador à Unity via
Unity Render Streaming, logo a etapa de transmissão de dados do usuário terá de ser
desenvolvida separadamente. Para atingir esse objetivo, o envio dos dados do usuário,
captados pelo Oak-D/Realsense vinculado ao computador cliente, pode ser feito usando
o protocolo TCP entre o computador cliente e o cérebro, executado no computador
remoto. Alternativamente é possível também modificar e adicionar funcionalidades à
biblioteca Unity e implementar essa comunicação via servidor TURN, dessa forma a
completa comunicação entre cliente e servidor seria feita utilizando WebRTC.

3.3 - Unreal Engine: Comunicação servidor-cliente

Para realizar a comunicação servidor-cliente, foi escolhida a extensão Pixel
Streaming Plugin [17]. Esse pacote, que está disponível em versão beta apenas para
Unreal Engine 4 ou versão superior, possibilita o envio de vídeo e áudio para o servidor
cliente usando o protocolo de comunicação WebRTC, implementado internamente pelo
motor gráfico.

3.3.1. Unreal Engine Pixel Streaming

Esse pacote nos possibilita configurar uma transmissão peer-to-peer (P2P),
suportando transmissão de vídeo e áudio renderizados na Unreal Engine, e também
fornece ao usuário a opção de interagir com a aplicação com o envio de mensagens
simples como o aperto de botões ou interação com a UI, que pode ser customizada com
o uso de tecnologias como Javascript [18] e HTML [19].

A conexão da rede é estabelecida entre a Unreal Engine (servidor) e o Navegador
(cliente) usando dois componentes: o Pixel Streaming Plugin e o Signalling and Web

Server. O primeiro é executado internamente na Unreal Engine e é responsável pela
codificação/encoding dos frames comprimidos e, juntamente com o áudio da cena,
forma um pacote a ser enviado aos navegadores via conexão P2P. O segundo é
responsável pelo gerenciamento e estabelecimento das conexões entre o Pixel Streaming
Plugin e os navegadores, além de fornecer as aplicações Javascript e HTML aos
navegadores para visualização da mídia enviada pelo servidor.

Assim como o pacote unity Render Streaming, a Pixel Streaming realiza o envio dos
dados via protocolo UDP mas existe a possibilidade enviar os dados via protocolo TCP
ao configurar servidores TURN. Para redes locais não é necessário o uso de serviços
STUN e TURN. Caso a conexão cliente-servidor envolva passagem por algum NAT, o
uso dos serviços STUN e TURN é necessário. A Figura 7 mostra uma versão
simplificada de uma conexão que faz uso do pacote Pixel Streaming.

Figura 7: Topologia de comunicação entre cliente e servidor - Pixel Streaming

Ademais, o pacote conta com Selective Forwarding Unit (SFU) [20], feature em fase
experimental até a escrita deste artigo. A SFU é um servidor intermediário que deve
receber os pacotes de mídia da Unreal Engine e entregá-las aos pares conectados de
forma que, considerando a qualidade da rede disponível para uso da aplicação, a
resolução de imagem recebida pelo cliente pode variar entre 4k e 720p de modo a
reduzir a latência. A Figura 8 mostra a arquitetura de rede entre esses componentes.

Figura 8: Topologia de Selective Forwarding Unit

3.3.2. Requisitos de Hardware e Software

Os navegadores suportados são Google Chrome (desktop e mobile), Microsoft Edge
(desktop), Mozilla Firefox (desktop e mobile) e Apple Safari (desktop e mobile) [21]. O
Pixel Streaming Plugin é suportado em plataformas Windows (recomendado na versão
10) e Linux [22] (recomendado nas versões 18.04/20.04). Requisitos de GPU podem ser
encontrados nas páginas da AMD [23] e NVIDIA [24] indicadas na seção de
referências. Os encoders suportados podem ser conferidos na Figura 9.

Figura 9: Encoders/Codificadores compatíveis com Pixel Streaming

3.3.3. Comunicação cliente-servidor

Até o momento, assim como a Unity Render Streaming, não há suporte ao envio de
áudio e vídeo do navegador à Unreal Engine via Pixel Streaming, logo a etapa de
transmissão de dados do usuário terá de ser desenvolvida separadamente. Para atingir
esse objetivo, o envio dos dados do usuário, captados pelo Oak-D/Realsense vinculado
ao computador cliente, pode ser feito usando o protocolo TCP entre o computador
cliente e o cérebro, executado no computador remoto. Alternativamente é possível
também modificar e adicionar funcionalidades ao plugin Pixel Streaming e implementar
essa comunicação via servidor TURN, dessa forma a completa comunicação entre
cliente e servidor seria feita utilizando a estrutura WebRTC.

4. Resultados

O uso do pacote Unity Render Streaming e/ou do Unreal Engine Pixel Streaming e
do protocolo WebRTC podem auxiliar na implementação remota do Avatar. A
comunicação entre cliente e servidor pode ser feita expandindo funcionalidades da
Unity Render Streaming e/ou da Unreal Engine Pixel Streaming para suportar o envio
de áudio e vídeo, ou esses dados pré-processados, do cliente para a máquina servidora.
Alternativamente, o protocolo TCP pode ser usado para enviar os dados do cliente ao
servidor e os pacotes dos motores gráficos seriam usados para enviar os dados do
servidor ao cliente. A figura 10 apresenta uma possível topologia para solucionar o
problema da renderização remota do Avatar.

Figura 10: Topologia geral das aplicações remotas do Avatar Recepcionista

5. Conclusão

O pacote Unity Render Streaming e o Unreal Engine Pixel Streaming apresentam
alternativas promissoras para a implementação do Avatar Recepcionista em um servidor
remoto, o envio dos dados renderizados via streaming usando o protocolo WebRTC
viabiliza que o computador cliente tenha apenas as configurações necessárias para
suportar tanto a conexão com o Oak-D/Realsense quanto o envio dos dados coletados ao
servidor, reduzindo custos de instalação do sistema embarcado atual.

6. Próximos Passos

O pré-processamento dos dados deve ser realizado na máquina que gerar menor
latência total para a aplicação, pois quanto menor o tempo de resposta do Avatar melhor
será a experiência do usuário. As opções consideradas são: processar dados coletados
pelo Oak-D/Realsense no computador cliente e enviá-los ao servidor ou enviar os dados
coletados pelo Oak-D/Realsense ao servidor e processá-los no computador servidor.

Além disso, é possível considerar o envio da renderização do Avatar ao computador
cliente via servidores STUN, visto que o envio de dados é mais rápido quando
comparado a servidores TURN e a latência de transmissão seria reduzida. Essa
implementação depende de 3 fatores. O primeiro é se as razões para a restrição do uso
do protocolo TCP não apresentam conflito com o uso do servidor STUN. O segundo é
se a experiência do usuário é pouco impactada com a eventual perda de pacotes na
transmissão servidor-cliente. O último ponto é em especial relevante pois a WebRTC foi
construída para facilitar a implementação de serviços de comunicação em tempo real
por chamadas de vídeo entre usuários, logo, esses experimentariam potenciais perdas de
dados na transmissão do Avatar, semelhante a flutuações da estabilidade de conexão em
serviços de comunicação por vídeo, como Skype ou Google Meets. O terceiro é, no caso
da comunicação cliente-servidor também ser implementada com esse servidor, se os
pacotes perdidos na transmissão levam o cérebro a cometer erros críticos na
interpretação do áudio recebido e na geração da resposta do Avatar.

O modelo 3D do Avatar recepcionista foi desenvolvido manualmente [3] com o uso
de tecnologias como Fuse 3D, Mixano, dentre outras. Uma nova atualização do modelo
3D seria laborioso para quem o fizesse, entretanto, a Unreal Engine 5 conta com uma
ferramenta MetaHuman [25], um framework gratuito da própria Unreal Engine que
permite geração e customização de aspectos físicos de alta fidelidade de avatares
humanos que já contam com esqueletos/rigs e meshes para animações corporais e
faciais. A geração do avatar é feita em nuvem e é necessário uso de plataformas
Windows ou MAC para tal, contudo, uma vez gerado o modelo, este pode ser exportado
para um projeto Unreal Engine em ambiente Linux. Idealmente o modelo gerado atende
aos mesmos padrões de qualidade que o desenvolvimento do Avatar atual, feito em
ambiente Unity [26][27].

Além disso, como o sistema da Unreal Engine permite a importação de um mesh
customizado para integrá-lo a face do avatar gerado [28], é possível avaliar a
possibilidade de gerar as expressões faciais da avatar usando um sistema automatizado
como o JALI [29], sistema que gera expressões faciais e sincronia labial com suporte
multilingue para avatares digitais recebendo áudio e informações como tonalidade e
emoção pretendida como parâmetros. Esse sistema foi desenvolvido em parceria com a
Universidade de Toronto para o jogo Cyberpunk 2077 [30] da empresa polonesa CD
Projekt Red. O desenvolvimento de um sistema semelhante especializado na língua
portuguesa pode ter muito a acrescentar a qualidade de interação humano-robô que o
Avatar Recepcionista promove.

7. Agradecimentos

Agradecemos ao CNPq, pela concessão de uma bolsa do Programa Institucional de
Bolsas de Iniciação Científica, ao NRVC/CTI pela oportunidade de realização deste
projeto, aos meus Orientadores Artemis Moroni e Josué Ramos.

8. Referências

[1] IEEE/AC sobre interação Humano Robô:

http://humanrobotinteraction.org/category/conference/

[2] Fong, T. W.; Nourbakhsh, I.; Dautenhahn, K. “A Survey of Socially Interactive
Robots: Concepts, Design, and Applications”, 2003.

[3] Ito, G. S.; Artemis; Josué; “Unity: Avatar Recepcionista”.

[4] Unity Manual. Disponível em:

<https://docs.unity3d.com/Manual/UnityManual.html>. Acesso em: ago. 2022.

[5] Unreal Engine. Disponível em: <https://www.unrealengine.com/en-US>. Acesso
em: Ago. 2022.

[6] Oliveira, G. “A Integração do Sistema de Reconhecimento Facial ao Arcabouço do
Robô Recepcionista do CTI”. Disponível em:

<https://drive.google.com/file/d/0B1PZV7lFyXDZUzlFZ0pCSHpQcnZ0c1NQV0Fnc3Z
JbC1peG5n/view>. Acesso em: jun. 2022.

http://humanrobotinteraction.org/category/conference/
https://docs.unity3d.com/Manual/UnityManual.html
https://www.unrealengine.com/en-US
https://drive.google.com/file/d/0B1PZV7lFyXDZUzlFZ0pCSHpQcnZ0c1NQV0Fnc3ZJbC1peG5n/view
https://drive.google.com/file/d/0B1PZV7lFyXDZUzlFZ0pCSHpQcnZ0c1NQV0Fnc3ZJbC1peG5n/view

[7] Ramos, J. et al. “Informações não-verbais na interação humano-robô aplicado a um
robô recepcionista”, 2015.

[8] Introdução à Arquitetura TCP/IP da Internet. Disponível em:
<https://www.gta.ufrj.br/grad/03_1/ip-security/paginas/introducao.html>. Acesso em
ago. 2020.

[9] Introduction to WebRTC protocols. Disponível em:
<https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API>. Acesso em mar.
2021.

[10] rfc5245 - IETF Tools. Disponível em:
<https://datatracker.ietf.org/doc/html/rfc5245>. Acesso em jun. 2021.

[11] What is a STUN/TURN Server?. Disponível em:
<https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/>. Acesso em
jun. 2021.

[12] Unity Render Streaming Manual. Disponível em:

<https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
>. Acesso em jul. 2021.

[13] Coturn, Free open source implementation of TURN and STUN Server. Disponível
em: <https://github.com/coturn/coturn/blob/master/README.md>. Acesso em: jun.
2021.

[14] Marciano, C.; Assis de Souza, F.; Baptista de Souza, R. “Redes Par-a-Par (Peer to
Peer/P2P Networks) GTA - UFRJ”. Disponível em:

<https://www.gta.ufrj.br/ensino/eel878/redes1-2018-1/trabalhos-v1/p2p/arquitetura.html
>. Acesso em jul. 2021.

[15] The User Datagram Protocol (UDP). Disponível em:
<https://erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html>. Acesso em jun. 2021.

[16] Unity’s WebRTC Manual. Disponível em:
<https://docs.unity3d.com/Packages/com.unity.webrtc@2.4/manual/index.html>.
Acesso em jul. 2021.

[17] Unreal Engine Pixel Streaming Plugin. Disponível em:
<https://docs.unrealengine.com/5.0/en-US/pixel-streaming-in-unreal-engine/>. Acesso
em: Ago. 2022.

[18] JavaScript. Disponível em: <https://www.javascript.com/> Acesso em: Ago. 2022.

[19] HTML. Disponível em: <https://html.com/> Acesso em: Ago. 2022.

[20] Selective Forwarding Unit (SFU). Disponível em:
<https://docs.unrealengine.com/5.0/en-US/hosting-and-networking-guide-for-pixel-strea
ming-in-unreal-engine/> Acesso em: Ago. 2022.

[21] Pixel Streaming Reference. Disponível em:
<https://docs.unrealengine.com/5.0/en-US/unreal-engine-pixel-streaming-reference/>
Acesso em: Ago. 2022.

https://www.gta.ufrj.br/grad/03_1/ip-security/paginas/introducao.html
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://datatracker.ietf.org/doc/html/rfc5245
https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://github.com/coturn/coturn/blob/master/README.md
https://www.gta.ufrj.br/ensino/eel878/redes1-2018-1/trabalhos-v1/p2p/arquitetura.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html
https://docs.unity3d.com/Packages/com.unity.webrtc@2.4/manual/index.html
https://docs.unrealengine.com/5.0/en-US/pixel-streaming-in-unreal-engine/
https://www.javascript.com/
https://html.com/
https://docs.unrealengine.com/5.0/en-US/hosting-and-networking-guide-for-pixel-streaming-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/hosting-and-networking-guide-for-pixel-streaming-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/unreal-engine-pixel-streaming-reference/

[22] Linux Development Requirements. Disponível em:
<https://docs.unrealengine.com/5.0/en-US/linux-development-requirements-for-unreal-e
ngine/> Acesso em: Ago. 2022.

[23] Advanced Media Framework SDK. Disponível em:
<https://gpuopen.com/advanced-media-framework/> Acesso em: Ago. 2022.

[24] NVIDIA Video Codec SDK. Disponível em:
<https://developer.nvidia.com/nvidia-video-codec-sdk#NVENCFeatures> Acesso em:
Ago. 2022.

[25] MetaHuman. Disponível em: <https://www.unrealengine.com/en-US/metahuman>
Acesso em: Ago. 2022.

[26] Moroni, A.; Ramos, J.; Oliveira, G.; Ito, G. “Modelando a personagem de um
recepcionista para brasileiros no ambiente Unity”.

[27] Ramos, J.; Azevedo, H.; Moroni, A.; Trovato, G.; Bernardes, R.; Magossi, S.;,
Donizete, V. “Informações não-verbais na interação humano-robô aplicado a um robô
recepcionista”.

[28] Custom Mesh to MetaHuman. Disponível em:
<https://www.unrealengine.com/en-US/blog/new-release-brings-mesh-to-metahuman-to
-unreal-engine-and-much-more> Acesso em: Ago. 2022.

[29] Edwards, P.; Landreth, C.; Fiume, E.; Singh, K. “JALI: An Animator-Centric
Viseme Model for Expressive Lip Synchronization”. Disponível em:
<http://www.dgp.toronto.edu/~elf/JALISIG16.pdf> Acesso em: Ago. 2022.

[30] Cyberpunk 2077. Disponível em: <https://www.cyberpunk.net/us/pt-br/> Acesso
em: Ago. 2022.

https://docs.unrealengine.com/5.0/en-US/linux-development-requirements-for-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/linux-development-requirements-for-unreal-engine/
https://gpuopen.com/advanced-media-framework/
https://developer.nvidia.com/nvidia-video-codec-sdk#NVENCFeatures
https://www.unrealengine.com/en-US/metahuman
https://www.unrealengine.com/en-US/blog/new-release-brings-mesh-to-metahuman-to-unreal-engine-and-much-more
https://www.unrealengine.com/en-US/blog/new-release-brings-mesh-to-metahuman-to-unreal-engine-and-much-more
http://www.dgp.toronto.edu/~elf/JALISIG16.pdf
https://www.cyberpunk.net/us/pt-br/

