Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina Estação Experimental de Itajaí

Soluções Tecnológicas a serviço do produtor rural e do consumidor

Santa Catarina State Agricultural Research and Rural Extension Agency Itajaí Experimental Station

Development of rice (*Oryza sativa* L.) lines resistant to herbicides throught seed induced mutation with gamma rays

LAERTE REIS TERRES

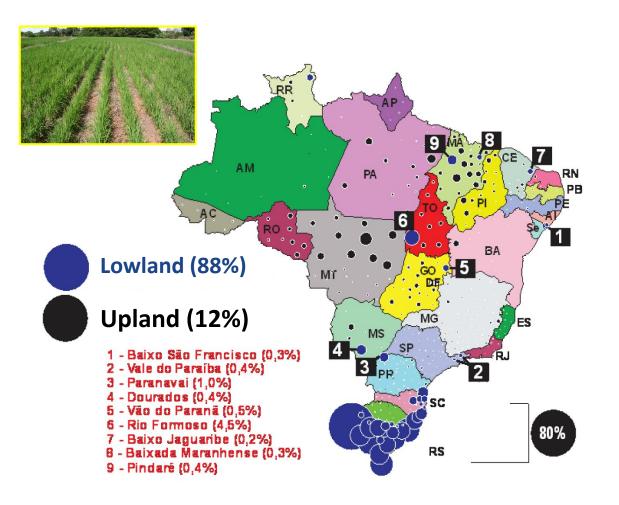
Andrade, A. Dr.

Terres, L.T.

Marschalek, R. Dr

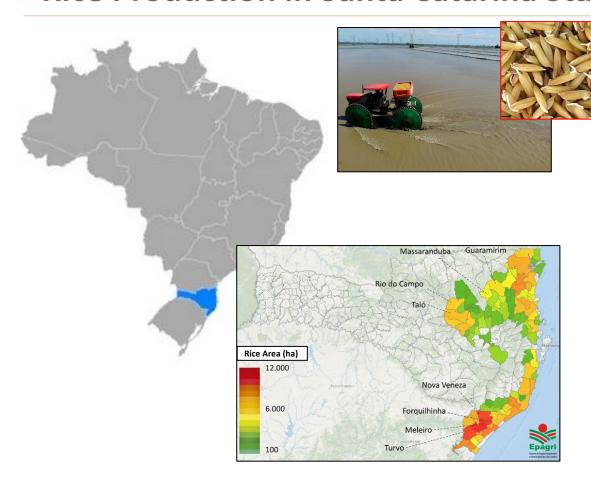
Pereira, A. M.Sc.

Scheuermann, K.K., Dr.


Wickert, E. Dra

Noldin J.A., Dr.

Vienna - 2024


Approxi. 1.1 Mi ha

Dry-seeded system (78%)
Pre-germinated system (22%)

Rice Production in Santa Catarina State

Approxi. 150 K ha - 94 county

Pre-germinated system (90%) Dry-seeded system (10%)

Approxi. 5 k producers involved in rice cultivation

Average cultivated area: 39,7 ha

Average Yield 8200 Kg/ha in the last 4 years

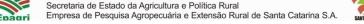
27 processing industries

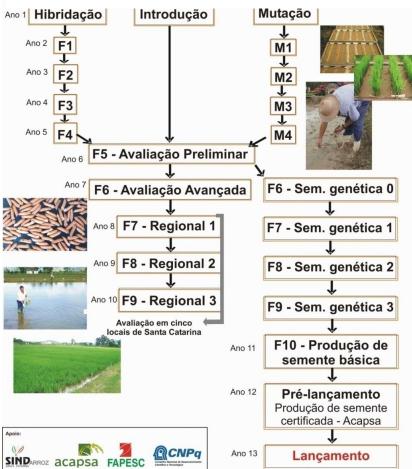
Rice in Santa Catarina

- 150.000 ha
- 6.000 families
- 83 counties (growing rice in Santa Catarina)
- 1.050 mil t / Production
- 8,0 t/ha Yield
- Yields of 10 t/ha are very common among farmers that use Epagri's recommended technologies

Melhoramento genético Arroz Irrigado

Rice Breeding

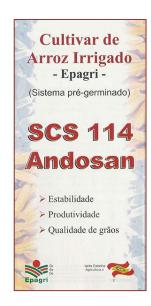

- → Cultivar development
- → Adapted to local conditions
- \rightarrow Yield
- → Disease tolerance
- → Abiotic stress tolerance
- → Grain quality



- Pedigree Method
- Until 2024 Epagri released 33 varieties (26 for Santa Catarina)

Rice breeding programme

EPAGRI RICE CULTIVARS 1980-2023



Mutant Variety

Rice Mutant Cultivar SCS114 Andosan

2005

T. Ishiy¹, M.S. Schiocchet¹, R.E. Bacha¹, D. Alfonso-Morel¹, A. Tulman Neto² and R. Knoblauch¹¹Epagri/Estação Experimental de Itajaí. Cx. 277, 88351-970, Itajaí, SC, Brazil, e-mail: mschio@epagri.rct-sc.br²Centro de Energia Nuclear na Agricultura. Cx. 96, 13400-970, Piracicaba, SP, Brazil, e-mail: tulmann@cena.usp.br

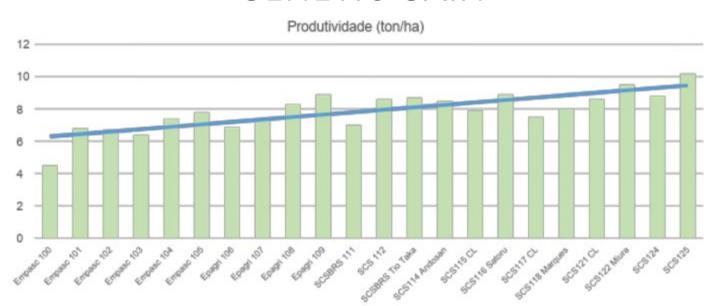
CULTIVAR RELEASE

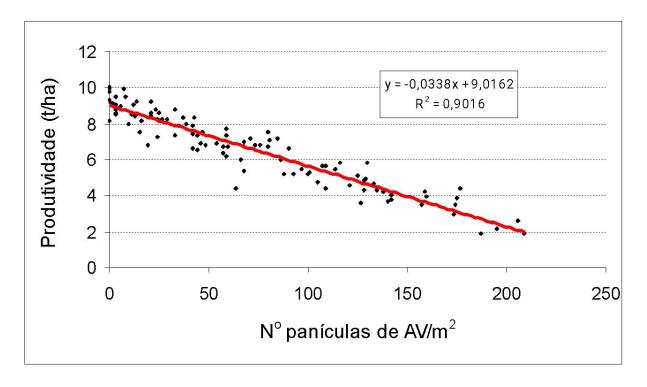
SCS118 Marques – New rice cultivar obtained through induced mutation

2013

Moacir Antonio Schiocchet^{1*}, Jose Alberto Noldin¹, Juliana Vieira Raimondi², Augusto Tulmann Neto³, Rubens Marschalek¹, Ester Wickert¹, Gabriela Neves Martins¹, Eduardo Hickel¹, Ronaldir Knoblauch¹, Klaus Konrad Scheuermann¹, Domingos Savio Eberhardt¹ and Alexander De Andrade¹

Received 20 February 2013





GENETIC GAIN

Weed rice causes losses to rice yield (Itajaí, SC)

Yield losses of 34 kg/ha for each weed rice panicle/m²

Con herbicida

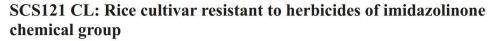
Sin herbicida

Germoplasma e lançamento de cultivares

SCS 115 CL: primeira cultivar de arroz irrigado para uso no sistema Clearfield de produção

SCS117 CL: NOVA CULTIVAR DE ARROZ IRRIGADO

Moacir Antonio Schiocchet¹; Rubens Marschalek²; José Alberto Noldin³; Juliana Vieira Raimondi⁴ Domingos Sávio Eberhardt⁵; Gabriela Neves Martins⁶; Richard Elias Bacha⁷,

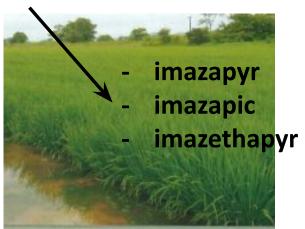


Crop Breeding and Applied Biotechnology 15: 282-284, 2015 Brazilian Society of Plant Breeding. Printed in Brazil

CULTIVAR RELEASE

http://dx.doi.org/10.1590/1984-70332015v15n4c47

Moacir Antonio Schiocchet¹, Jose Alberto Noldin¹, Rubens Marschalek¹, Ester Wickert¹, Gabriela Neves Martins¹, Domingos Savio Eberhardt¹, Eduardo Hickel¹, Ronaldir Knoblauch¹, Klaus Konrad Scheuermann¹, Juliana Vieira Raimondi² and Alexander de Andrade^{1*}



Inhibit the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS)

Several variant ALS genes conferring imidazolinone tolerance were discovered in plants through <u>mutagenesis</u> and selection

CLEARFIELD (CL) Rice Production System

SCS116 Satoru

(not resistant to ALS (IMI) herbicides)

(BASF/Epagri)

SCS121 CL

Resistant to ALS (IMI) Herbicides

Proud of it / concernt about it...

 2021 - About 60% of the rice area in SC was sowed by one single Epagri clearfield variety (SCS121 CL)

 What about food security - weed resistance to herbicides - the risk of diseases (blast) etc? Gene flow are causing weed rice resistance to "ALS inhibitor herbicides" (IMI herbicides)

Weed selection through herbicide selection

Epagri's Rice Team started to look for new herbicide resistance traits through mutagenesis (up to 2010)

Mutation in Rice at Epagri

Aims:

Grain quality, yield, herbicide tolerance, reducing height

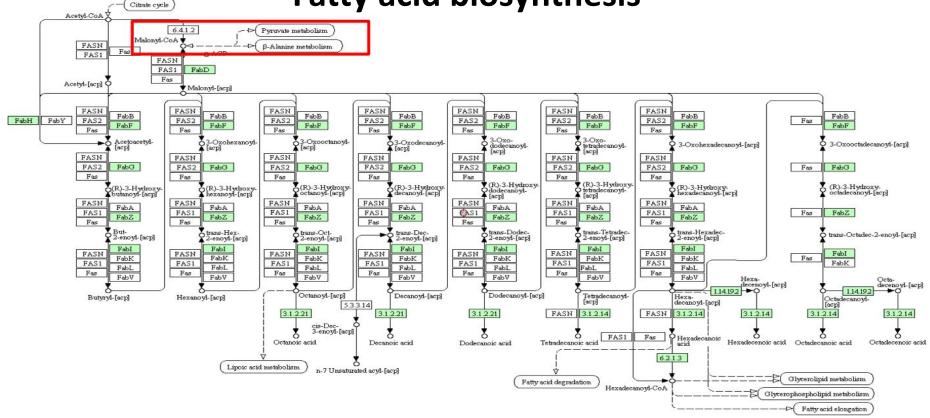
Gamma rays mutagenesis:

0,25 - 0,35 kGy

Chemical mutagenesis:

EMS – Ethyl methanesuphonate (1%)

Sodium azide (0.0025M)


Selection through Herbicides inhibiting acetyl-coenzime A carboxilase (ACCase)

ACCase inhibitors block fatty acid biosynthesis resulting in plant dead.

 Resistance is conferred by a single point mutation with an amino acid substitution of the carboxyl transferase domais of the ACCase gene

Fatty acid biosynthesis

Seeds of Epagri's rice variety 'Sabbore' were irradiated

Prof. Dr.

Augusto Tulmann Neto

(USP - SP - Brazil)

200-300 Gy Gamma Rays

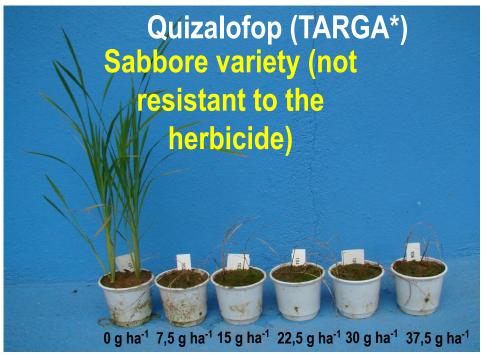
Center of Nuclear Energy for Agriculture - USP

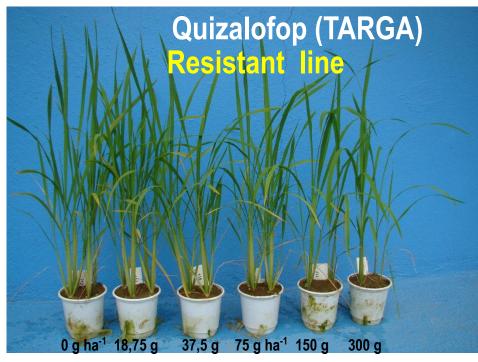
- 1. M1 seeds sowed
- 2. From the M1 plants 8-10 Seeds per plant were used to generate the M2 population
- 3. The 200.000 plants M2 population were screened for the herbicide resistance about 15 days after emergency (V3-V4
- 4. Herbicide: Quizalofop-p-ethyl 60g a.i./ha
- 5. Survived plants were transplanted into a greenhouse
- 6. The resulting M3 progenies were tested again under quizalofop to confirm the resistance
- 7. 2 progenies were selected
- 8. The 2 M4 resistant pop. show no herbicide injury (R lines)

Resistant plants through Epagri's "ACCase System"

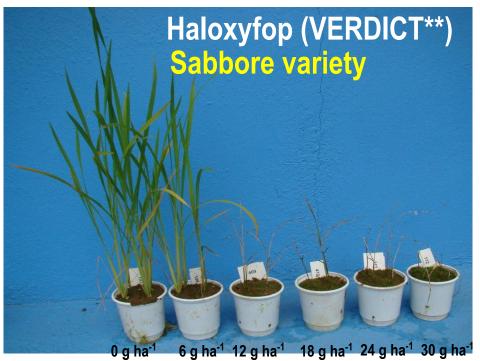
DOI: 10.1111/pbr.12592

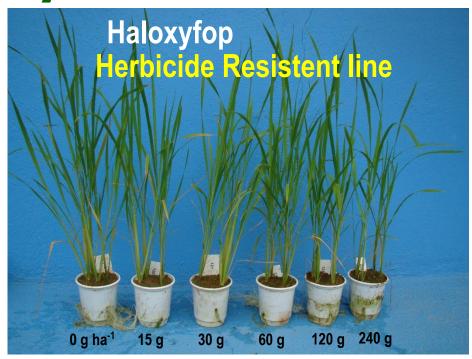
ORIGINAL ARTICLE




Development of rice (Oryza sativa) lines resistant to aryloxyphenoxypropionate herbicides through induced mutation with gamma rays

Alexander de Andrade¹ | Augusto Tulmann-Neto² | Fernando A. Tcacenco³ | Rubens Marschalek¹ | Adriana Pereira¹ | Antonio M. de Oliveira Neto⁴ | Klaus K. Scheuermann¹ | Ester Wickert¹ | José A. Noldin¹




Resistance evaluation of Epagri's "ACCase system"

Evaluation of resistance of Epagri's ACCase system

^{**} Corteva Agriscience

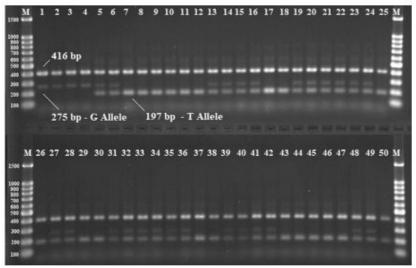
Rice resistant to ACCase inhibitors herbicides

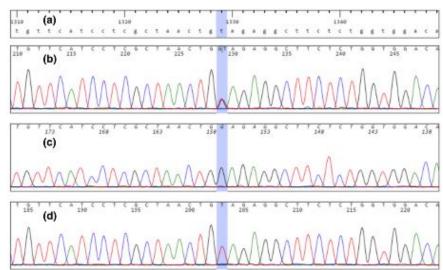
weed-rice SCS121 CL Epagri resistant line

- DNA from R and S lines were taken
- Eight set of primer were generated/designed based on the cloroplastic ACCase sequences
- The amplified DNA was sequenced
- Sequencing of the carboxyl-transferase region ACCase gene revealed <u>one single pair change</u> (transversion G>T) that was found in the coding region of the ACCase gene at the position 2027.
- This caused an amino acid change in the ACCase protein: from tryptophan to cysteine.

Carboxyl-transferase sequence site of Acetyl coenzima A carboxylase (ACCase) gene

A.	FONTE	SEQUÊNCIA (numeração correspondente ao gene ACCase de Alopecurus myosuroides,
		GenBank locus CAC84161.1, EMBL accession AJ310767.1/mostrada parcialmente)
701- 800	GENBANK US/2013 EPAGRT	T.AANSGARTGTADEVKSCFRVGWSDDGSPERGFOYTYT.SEEDYARTGTSVTAHKMOT.DSGETRWVTDSVVGKEDGT.GVEN <mark>T</mark> HGSAATASAY T.AANSGARTGTADEVKSCFRVGWSDDGSPERGFOYTYT.SEEDYARTGTSVTAHKMOT.DSGETRWVTDSVVGKEDGT.GVEN <mark>T</mark> HGSAATASAY T.AANSGARTGTADEVKSCFRVGWSDDGSPERGFOYTYT.SEEDYARTGTSVTAHKMOT.DSGETRWVTDSVVGKEDGT.GVEN <mark>T</mark> HGSAATASAY
801-	GENBANK US/2013	I.TEVTGRTVGTGAYLARI.GTRCTORI.DOPTTI.TGYSAI.NKILI.GREVYSSHMOLGGPKTMATNGVVHI.TVSDDI.EGVSNIT.RWI.SYVPAYTG
900	EPAGRI	I.TEVTGRTVGTGAYLARLGTRCTORLDOPITI.TGYSALNELLGREVYSSHMOLGGPETMATNGVVHI.TVSDDLEGVSNILRWI.SYVPAYIG
901-	GENBANK HS/2013 PPAGRT	DPPDRPVAYIPENSCDPRAAIRGVDDSOGKWLGGMFDKDSFVETFEGWAKTVVTGRAKLGGIPVGVIAVETOTMMOTIPADPGOLDSREOS DPPDRPVAYTPENSCDPRAATRGVDDSOGKWLGGMFDKDSFVETFEGWAKTVVTGRAKLGGIPVGVTAVETOTMMOTIPADPGOLDSREOS DPPDRPVAYTPENSCDPRAATRGVDDSOGKWLGGMFDKDSFVETFEGWAKTVVTGRAKLGGIPVGVTAVETOTMMOTIPADPGOLDSREOS
001-	GENBANK US/2013	PDSATKTAOALLDPNREGLPLFTLAN <mark>W</mark> RGFSGGORDLFEGTLOAGSTTVENLRTYNOPAFVYTPMAAELRGGAWVVVDSKINPDRIECYAE PDSATKTAOALLDFNREGLPLFTLAN <mark>W</mark> RGFSGGORDLFEGTLOAGSTTVENLRTYNOPAFVYTPMAAELRGGAWVVVDSKINPDRIECYAE
100	EPAGRT	PDSATKTAOAT.T.DFNREGT.PT.FTT.ANCRGFSGGORDT.FEGTT.OAGSTTVENT.RTYNOPAFVYTPMAAET.RGGAWVVVDSKTNPDRTECYAE
101-	GENBANK US/2013	POGLIFIKERSEELODOMSRLDPTLIDIKAKLEVANKNGSADTKSLOENTEARTKOLMPLYTOTAIRFAELHDTSLRMAAKGVIKKVVDWE POGLIFIKERSEELODOMSRLDPTLIDIKAKLEVANKNGSADTKSLOENTEARTKOLMPLYTOTAIRFAELHDTSLRMAAKGVIKKVVDWE
200	FPAGRT	POGLIETKERSEELODCMSRLDPTLIDLKAKLEVANKNGSADTKSLOENTEARTKOLMPLYTOTATREAELHDTSLRMAAKGVIKKVVDWE
201-	GENBANK US/2013	LRRRISEDVLAKEIRAVAGEOFSHOPAIELIKKWYSASHAAEWDDDDAFVAWMDNPENYKDYIOYLKAORVSOSLSSLSDSSSDLOALPOG LRRRISEDVLAKEIRAVAGEOFSHOPAIELIKKWYSASHAAEWDDDDAFVAWMDNPENYKDYIOYLKAORVSOSLSSLSDSSSDLOALPOG
300	PDAGDT	T.DDDTSPNUT.AKFTBAVAGF0F8H0D4TFT.TKKWY8ASHAPWNONDAFVAWMNNDFNYKNYT.KYAODV80ST.SST.SNSSSNT.OAT.DOG




ORIGINAL ARTICLE

Detecting acetyl-coenzyme a carboxylase resistance gene in rice (Oryza sativa L.)

Adriana Pereira 10 · Fernando Adami Tcacenco · Gustavo Henrique Ferrero Klabunde · Alexander de Andrade 1

Prolocolo

Namero

Côdigo Q R

INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL Diretoria de Patentes Sistema e Patentes/Depósito

GPATENTES

Tipo de Dogumento:

Recibo de Peticionamento Eletrônico

Pagina: DIRPA

1/2 Verdan:

Titula da Dagumenta:

Recibo

Cádiga : RECIBO

Modo:

DIRPA-FQ001 - Depósito de Pedido de Patente ou de Certificado de Adição

Produção

O Instituto Nacional da Propriedade Industrial informa:

Este é um documento acusando o recebimento de sua petição conforme especificado abaixo:

Dados do INPI:

Número de processo:

Número da GRU principal:

Número do protocolo:

Data do protocolo:

Número de referência do envio:

Dados do requerente ou interessado:

Tipo de formulário enviado:

Referência interna:

Primeiro requerente ou interessado:

CNPJ do primeiro requerente ou interessado:

Número de requerentes ou interessados:

Título do pedido:

83.052.191/0001-62

BR 10 2015 017012 2

DIRPA FQ001 v.006

860 150 150 787

P842Epagri

121648

Epagri - Empresa de Pesquisa Agropecuária e Extensão Rural de Santa

Catarin a

00.000.2.2.15.0530991.8 (serviço 200)

16 de Julho de 2015, 10:54 (BRT)

Desenvolvimento de linhagens de arroz (Onyza sativa L.) com resistência a herbicidas inibidores da enzima acetyl coenzima A carboxilase (ACCase)

obtidas por mutação induzida com raios gama

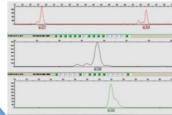
Patent

Yield kg/ha

Nowadays:

	SC 965	SC 964
Tratamentos	Média	Média
0,75L/ha Targa	8217,55	8234,304
1,5L/ha Targa	8130,57	7477,075
3,0L/ha Targa	8000,64	8169,742
4,5L/ha Targa	8165,99	7881,681
6,0 L/ha Targa	6660,72	7779,142
0,5 L/ha Verdict	8214,98	8247,369
1,0 L/ha Verdict	8757,16	7816,307
2,0 L/ha Verdict	8235,79	7781,806
4,0 L/ha Verdict	7286,35	6837,216
Control	7361,57	7211,576

Reacciones de PCR 24 marcadores SSR



Electroforesis horizontal

Electroforesis capilar

Genotipagem

Electroferograma

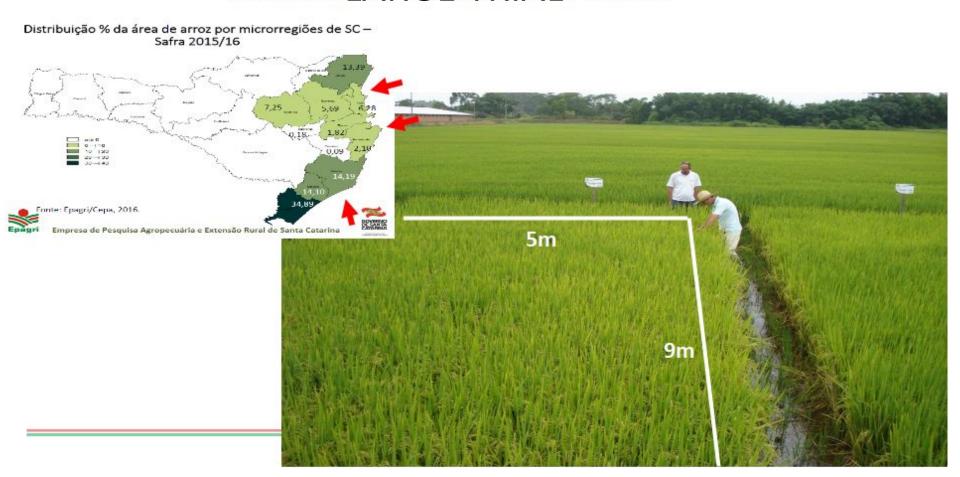
Dendograma

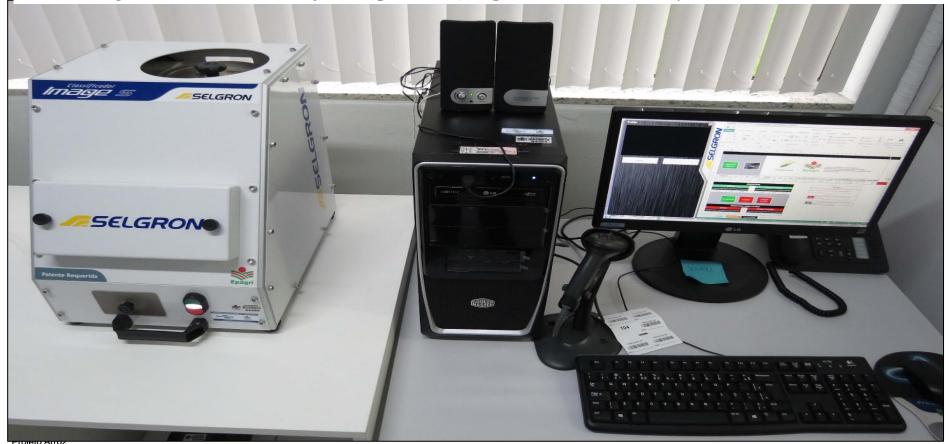
Extracción de ADN

Selecion Herbicida

BACKCROSS

Nowadays:





LARGE TRIAL

Grain quality at Image Rice Grain Scanner (digital platform for breeding and research by **Selgron/Epagri**, CBAB 2017)

40 grain quality traits for each sample in 3 minutes three-dimensional measurement of grain size, dimensional classes, number of chalked grains and chalked area, defects of the grain, milling quality, length/width ratio, % whole grains, % broken grains, etc.

Results in a Microsoft excel spreadsheet

http://www.sbmp.org.br/cbab/siscbab/uploads/c8eb9792-c9e1-ce1f.pdf

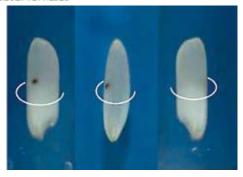

SOFTWARE/DEVICE RELEASE

Image - Rice Grain Scanner: a three-dimensional fully automated assessment of grain size and quality traits

Rubens Marschalek¹, Mauricio Cesar Silva¹, Samuel Batista dos Santos¹, Johnny Ricardo Manke², Carlos Bieging², Geovani Porto¹, Ester Wickert¹ and Alexander de Andrade¹

Abstract: The Image is a scanner developed as a grain classifier for quality control at the rice industry based on Brazilian official norms. It orders the dehulled grains ensuring that each grain would pass individually, in free fall, while the grain is analysed from different sides, covering its whole surface. It ensures a precise three-dimensional measurement of grain size, chalkiness, defects of the arain, milling quality, given out a total of 39 traits/classes/defects/values, which

Crop Breeding and Applied Biotechnology 17: 89-97, 2017 Brazilian Society of Plant Breeding. Printed in Brazil http://dx.doi.org/10.1590/1984-70332017v17n1s15

Grain quality by Image Rice Grain Scanner (Selgron)

Parcela	Comprimento do grão	Largura Grão	Espessura grão	Relação compr/largura	PESO TOTAL DA AMOSTRA	Bom %	Bom + Barriga Branca %	Picados ou Manchados %	Área Gessada % (Centro Branco Oficial Brasil)	Grãos não gessados %	Grãos gessados %	Amarelos e Destoante %	Longo Fino %	Longo %	Médio %	Curto %	Inteiro %	Quebrados %	Inteiro %	Quebrado %	Renda %	Means (kg.ha)
RH2017CV1-1	7,13	2,00	1,70	3,56	31,13	86,61	86,61	6,54	0,97	98,40	1,60	4,43	19,87	68,35	2,76	1,23	92,64	6,51	57,64	4,10	61,74	7335
RH2017CV1-2	7,02	2,01	1,70	3,50	29,25	88,44	88,44	5,49	1,08	98,09	1,91	3,70	17,47	67,18	3,19	1,26	89,58	9,55	52,38	5,60	57,99	6942
RH2017CV1-4	6,99	2,05	1,73	3,41	35,46	88,15	88,15	5,21	1,44	97,78	2,22	3,64	10,66	79,39	2,99	0,61	93,97	5,31	66,63	3,76	70,40	6794
RH2017CV1-6	6,93	2,12	1,72	3,27	34,91	89,58	89,58	3,28	2,01	96,15	3,85	3,87	5,38	82,90	4,51	0,38	94,03	5,23	65,65	3,66	69,31	8053
RH2017CV1-7	7,04	2,14	1,75	3,29	36,31	90,36	90,36	2,71	2,30	96,76	3,24	3,19	4,02	85,59	2,60	0,37	93,81	5,43	68,10	3,97	72,07	10273
RH2017CV1-8	7,09	2,16	1,75	3,29	35,49	91,06	91,06	2,29	2,35	96,67	3,33	2,95	2,38	86,39	2,52	0,47	93,04	6,15	66,03	4,37	70,40	10369
RH2017CV1-10	7,32	2,07	1,69	3,54	33,74	89,66	89,66	4,23	1,38	97,50	2,50	3,23	8,52	80,89	1,64	0,92	92,77	6,41	62,65	4,29	66,94	9726
SC 964	6,85	2,17	1,79	3,16	37,93	92,98	92,98	2,88	0,54	98,88	1,12	2,44	2,11	88,62	4,36	0,21	96,27	3,01	73,01	2,29	75,30	8897
SC 965	6,81	2,16	1,78	3,15	36,86	94,95	94,95	1,65	0,67	98,67	1,33	1,74	2,23	85,14	6,98	0,25	95,67	3,59	70,53	2,65	73,18	8839
SCS121 CL	7,19	2,19	1,77	3,28	30,76	80,22	80,22	13,07	0,94	97,93	2,07	3,59	2,17	80,08	1,56	1,00	88,00	11,03	54,21	6,71	60,92	10893

Grain quality analysis:

- *Sensory tests
- *Cooking quality
- *Amylose content

Still using Gamma ray irradiation to induce mutation for:

Herbicide resistance

Agronomic traits

Tolerance to abiotic stress

Conclusions:

- Gamma ray irradiation was able to create new rice mutants with tolerance to Haloxy/Quizalofop's herbicide.
- It will take 2 years more to release a new "ACCase system" resistant cultivar with good yields and grain quality.
- "ACCase system" varieties would help to manage weeds and alternate herbicides and varieties of the Clearfield (CL) system.
- Gamma ray has a great potential in rice breeding.

Itaja

Rice Team

PARTNERS

