

# FINANCIAL HUB EXECUTIVE SUMMARY

PROPOSAL FOR A FINANCIAL HUB FOR ELECTROMOBILITY PROJECTS IN BRAZIL





PROPOSAL FOR A FINANCIAL HUB FOR ELECTROMOBILITY PROJECTS IN BRAZIL

#### FEDERATIVE REPUBLIC OF BRAZIL

**President** Jair Messias Bolsonaro

#### MINISTRY OF REGIONAL DEVELOPMENT

Minister of Regional Development Daniel Ferreira Executive Secretary Helder Melillo

## NATIONAL SECRETARIAT OF MOBILITY AND REGIONAL AND URBAN DEVELOPMENT

National Secretary of Mobility and Regional and Urban Development

Sandra Maria Santos Holanda

#### WORLD BANK

Senior Transport Economist Ana Waksberg Guerrini

**Transport Specialist Consultant** Aline Lang

**Social Development Specialist** Gabriela Lima de Paula

**Environmental Specialist Consultant** Márcia Noura Paes



# FINANCIAL HUB EXECUTIVE SUMMARY

PROPOSAL FOR A FINANCIAL HUB FOR ELECTROMOBILITY PROJECTS IN BRAZIL

#### General coordinators World Bank technical contributions Ana Waksberg Guerrini – World Bank Ana Waksberg Guerrini – Senior Transport Economist Fernando Araldi – MDR Aline Lang - Transport Specialist Consultant Alejandro Muñoz Muñoz – IABS Gabriela Lima de Paula - Social Development Specialist Márcia Noura Paes - Environmental Specialist Consultant **Content elaboration** Francisco Burgos – IDOM **Technical review** Edgar Cortés – IDOM Fernando Araldi – MDR Laura Gutiérrez - IDOM Adriana Souza – IABS Estefania Mejía - IDOM Jady Medeiros – IABS Daniel Rosas Satizábal- IDOM Anna Carollina Palmeira – IABS Maria Alejandra Rodríguez - IDOM Ariane Fucci Wady – IABS Andrés Gartner – GoAscendal Nicolás Gómez – GoAscendal Spelling and grammar review (English) Leonardo Bustos – GoAscendal InPauta Comunicação Carlos Botello – GoAscendal Vladimir Maciel – Urbana **Editorial coordination** Manoel Gomes – Urbana Mariana Resende – InPauta Comunicação Lucía Farrando – Tanoira & Cassagne Jaime Uranga – Tanoira & Cassagne Graphic design and diagramming Ignacio Zambón – Tanoira & Cassagne

Esa Gomes Magalhães – InPauta Comunicação

Proposal For a Financial Hub for Electromobility Projects In Brazil. Ministry of Regional Development - MDR and World Bank (authors). Clean Technology Fund - CTF (funder) - Brasília, 2022.

ISBN: 978-65-87999-56-2

32p.

1. Financial Hub 2. Electromobility Projects 3. Brazil I. Ministry of Regional Development - MDR II. World Bank III. Clean Technology Fund - CTF

CDU: 629.3

# - TABLE OF CONTENTS ----

| 3. | REFERENCES                    | 32 |
|----|-------------------------------|----|
|    | 2.5 Outputs                   | 27 |
|    | 2.4 Interface                 | 22 |
|    | 2.3 Assumptions and processes | 20 |
|    | 2.2 Input parameters          | 17 |
|    | 2.1 User types                | 14 |
| 2. | FINANCIAL HUB STRUCTURE       | 12 |
|    | 1.1 Financial Hub features    | 9  |
| 1. | THE FINANCIAL HUB             | 8  |
|    | INTRODUCTION                  | 7  |



## INTRODUCTION

This document is the Executive Summary of the Financial Hub, developed under the Transition to Electromobility in Brazilian Cities Project TEP – TF0A9650. This technical cooperation project between the Ministry of Regional Development (MDR) and the World Bank, is financially supported by the Clean Technology Fund (CTF) and implemented by the Brazilian Institute of Development and Sustainability (IABS).

The Financial Hub is a platform administered by the Ministry of Regional Development – MDR. It will gather stakeholders interested in the transition to electromobility in Brazilian cities; that is, municipalities with public transport electromobility projects requiring funding and project funders.

The following chapters will further analyze the Financial Hub platform's objectives, functionalities, and content.

## THE FINANCIAL HUB

The Financial Hub aims to **provide the Federal Government with a platform to stimulate the electrification of public transport fleets in Brazilian cities** via the Ministry of Regional Development. This platform is a virtual meeting space between those who need to finance electromobility projects and financiers from national and international public and private markets. It aims to materialize projects under the management of subnational entities, expanding their possibilities of social and environmental returns. Thus, the platform also facilitates the **improvement of urban mobility managers and technicians from the public and private spheres and civil society** in financing electromobility.

At least ten cities in Brazil have already become familiar with the new technology, conducting pilot projects, and other cities are currently learning about the technical and financial aspects to access funding that will allow the implementation of electric buses and the support infrastructure required for operation (charging infrastructure, chargers, and monitoring systems).

Brazilian cities have a growing interest in introducing electric buses to reduce emissions from the transport sector and improve air quality and the quality of public transport [1]. The Financial Hub tool was developed to foster and **scale up the transition to electromobility**, providing a way for cities to seek funders and expand the possibilities of including electric buses in public transport systems.

## 1.1 FINANCIAL HUB FEATURES

The tool has technical parameters and methods to calculate investments and business models **to respond to funding needs in the initial phase of project structuring**. This allows cities to define technical and financial parameters per the local context and financial institutions to get informed and adhere to cities' needs. Figure 1 summarizes the most innovative features of the Financial Hub.

#### Figure 1 – Financial Hub features



Source: Own elaboration.

The platform gathers two types of users: City and Funder, allowing the sharing of technical, financial, and regulatory information between the two stakeholders, including references to socio-environmental benefits. The Financial Hub receives input from the City user and the Funder user.



- For the *City* user, the inputs are information from the initial structure of the transition project to electromobility. Examples: financing, beneficiary, bussiness model, regulatory feasibility, and project guarantees.
- The tool also **guides the City user** to enter operational and financial inputs. Examples: number of electric buses, project timeframe, useful life of assets (buses and batteries), cost of vehicles and infrastructure, net profit margin and % equity etc.
- The Funder **is advised to provide information** about the financing lines for electromobility, such as the financing term, % of financed amount, an interest rate range, guarantee conditions, grace period, among other inputs.

The platform provides cities with technical and training information on project structuring, a recommendation for the best financing model based on the project's initial parameters, and international best practices. The City also receives financial institutions' contacts if they respond to the funding need. Thus, the City can continue the structuring process with a financial feasibility study to access funding. On the other hand, funders receive information from the Financial Hub on the nature of the projects to identify and adjust their offer to the projects' demands.

City and Funder users have a **User Guide** that provides guidance on how to use the tool and what decisions to make within the tool, a glossary with definitions of essential concepts, and a **Benchmarking** of international success cases applied to Financial Hub [2, 3, 4].



Cities need references and information on the theme of the transition to electromobility, and funders need to know the financial, environmental, and social benefits to support customers better. Thus, the tool comprehensively analyzes the business and financing models based on international benchmarking but adapted to the country's reality to answer these questions.

Additionally, the platform offers a group of five (5) Technical Notes that provide the user with a detailed explanation of (1) electromobility business models, (2) financing models, (3) financing mechanisms for the transition, (4) electromobility regulatory framework and (5) the most critical criteria of banking capacity in the project structuring process, as shown in Figure 2.

#### Figure 2 – Financial Hub Technical Notes

## NT 1: Business Models

- Role of the municipality
- Responsibilities
  - Buses, chargers, charging and garages infrastructure

#### **NT 2: Financing Models**

- Financial Hub Model Details
- Financial barriers of the models

Financing lines for electromobility

### NT 3: Financing mechanisms in Brazil

Conditions and limits for credit operations

NT 4: Regulatory framework for electromobility

NT 5: Banking criteria

Source: Own elaboration.

- Regulation for electromobility projects
- Obstacles for the implementation of financing mechanisms
- Subsidy and financing rate
- Project IRR & Equity
- Debt Coverage Ratio

## FINANCIAL HUB STRUCTURE

The main element of the Financial Hub corresponds to a **multi-criteria reference tool that serves as a conceptual guide in the financial structuring** for cities or municipalities interested in planning the introduction of electric buses in their urban public transport systems. The tool assesses the feasibility of financing alternatives/models identified as the most common for projects of this type under the specific characteristics of the project entered by the City user. These models are specified in Figure 3:

#### Figure 3 – Financing models considered in the Financial Hub

|          |                                    | 1. Direct Ioan               |                                                      |                                                      |                                                      |                                    |  |  |  |  |
|----------|------------------------------------|------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------|--|--|--|--|
|          | Buses<br>characteristics           |                              |                                                      | Operator (Partial<br>Leasing) or public<br>entity    | -                                                    |                                    |  |  |  |  |
| C/D      | Battery investor characteristics   |                              |                                                      |                                                      | Energy company<br>Fleet provider<br>company          | Battery investor                   |  |  |  |  |
| X        | Maintenance                        | Operator or public<br>entity | Operator or public<br>entity                         | Manufacturer (OEM)                                   |                                                      |                                    |  |  |  |  |
| 1        | Operation                          |                              |                                                      | Operator                                             | Operator                                             | Operator                           |  |  |  |  |
| Ø,       | Charging<br>infrastructure         |                              |                                                      |                                                      | Energy company                                       | Supplier (SPE) or other            |  |  |  |  |
|          | Support investor<br>infrastructure |                              |                                                      | Manufacturer (OEM)                                   | Fleet company                                        | Support investor                   |  |  |  |  |
| <u>.</u> | User fees                          |                              | Centralized collection system                        |                                                      |                                                      |                                    |  |  |  |  |
| <b>W</b> | Financing                          | Commercial banks             | Development,<br>commercial and<br>multilateral banks | Development,<br>commercial and<br>multilateral banks | Development,<br>commercial and<br>multilateral banks | Development and multilateral banks |  |  |  |  |
| 01       | Fuel/energy                        | Energy free market           |                                                      |                                                      |                                                      |                                    |  |  |  |  |

Source: Own elaboration.

The assignment of responsibilities for each model may vary depending on the business model. Ownership of buses, batteries, and infrastructure may differ according to the current situation and the capacity of these stakeholders in each city. The description of these financing and respective business models are available in the technical notes **NT 1: Feasible business models** and **NT 2: Financing models**, respectively.

The tool provides the City user with technical and training information on project structuring, a recommendation of the suggested funding model based on the initial parameters of the project, and international best practices. The City also has access to the contact information of the financial institutions responding to the funding need. Thus, the structuring process may continue with a financial feasibility study to access financing.

We should stress, however, that the tool was designed to guide the financial structuring of an electromobility project and not as a substitute for a detailed structuring process or risk analysis to be implemented by stakeholders (City and Funder). This process should occur in a subsequent stage, following the financing model recommendations from the **Financial Hub**. Then, it will define the interest rates, guarantee conditions, and other necessary parameters in detail. Thus, the structuring itself must be customized for each project. Therefore, the feasibility study of the financing and the definition of conditions depend on the City's context and specific needs, the funding beneficiary, and the macroeconomic context.

The tool was developed based on Latin American market rules and adjusted to the Brazilian reality. Recommendation weights for the best financing model and interest rates assigned stem from the experience of other electromobility projects and information received by funders increasingly interested in this type of project.Thus, the project financial indicators estimated by the tool may differ considerably from those calculated at the time of a much more detailed structuring for project appraisal by a funder. For example, the Internal Rate of Return (IRR), net profit margin, and the percentage of net profit over income will vary depending on the interest rate, grace period, and financing term the funder offers. We should also mention that the financial feasibility of an electromobility project involves much more than just choosing an adequate financing alternative. Therefore, **Technical Notes** and **Technical, Operational, and Financial Recommendations** are available on the platform to evaluate the project comprehensively.

## 2.1 USER TYPES

The Financial Hub allows the interactions of two user types:

1. **City**: This type of user corresponds to any municipality that provides a base or minimum advance of an electromobility project and that seeks funding for the project in the initial stage. The City user has the following interactive elements:

#### a. User City registers a project by entering:

#### I. General parameters of the project:

- Purchase accounting
- Funding beneficiary
- Business model
- Regulatory feasibility
- Project guarantees
- Credit rating

#### II. Operational and financial parameters:

- Number of buses (Padron/articulated)
- Number of chargers/buses
- Project deadline
- Fleet lifetime
- Bus battery life
- Average monthly trip
- Equivalent passengers/bus/day
- Expansion factor (which transforms passenger/ day into passenger/year)
- Bus cost
- Charger cost
- Infrastructure cost
- USD/BRL exchange rate \*
- Full fare per passenger
- Net profit margin (% of gross revenue)
- Equity %
- **b.** The parameters requested from the City user aim to characterize the electromobility project that requires funding. This characterization allows estimating the most critical flows and financial indicators to deliver the results or outputs to the user.

- **c.** The City user receives several outputs (based on the inputs filled in), such as evaluation and selection of the best financing model, cash flow for each option, and the possibility to view financing lines published by the Funder user. This type of user must register contact information, the name of the city, and the public institution responsible for the project to be structured. The tool evaluates the feasibility of each financing alternative under the specific characteristics of the project provided by the City user, which the Funder will evaluate.
- 2. Funder: This type of user can register contact information and the financial institution's name. The Funder user has two complementary interactive options with the platform, and it is not mandatory to choose both:
  - **a.** View the projects: The Funder can access projects registered by cities interested in structuring electromobility projects in the public transport system.
  - **b. Publish financing lines**: The second interactive option of the Funder is publishing financing lines. To register a line, the Funder user must complete the following information:
    - Financing institution name
    - Financing line name
    - Financing term (years)
    - Guarantee conditions (actual , third-party, or both)
    - Type of company to be financed (public or private)
    - Grace period
    - Financing object (vehicle, battery, charging infrastructure, and civil works combinations)
    - Interest rate range (p.a.)
    - % of the asset's financed value

The **platform administrator** is not considered a user. He/she will be responsible for coding the tool, computer security, domain, updates, permanent monitoring, maintenance, and active management of users interacting with the platform and for managing their credentials. Figure 4 shows the general structure of the Financial Hub.



#### Figure 4 – The general architecture of the Financial Hub

Source: Own elaboration.

### 2.2 INPUT PARAMETERS

#### 2.2.1 City

The tool operates based on a set of inputs that characterize an electromobility project in Brazil, consisting of 27 variables, as shown in Figure 5.

#### Figure 5 – Summary of Financial Hub Tool Input Parameters



\* Values preset by the Platform administrator, but can bemodified by the user if not correct, except for federal taxes and interest rate.

Source: Own elaboration.

The user must enter this set of inputs for the characteristics of the electromobility project, whose financing must be evaluated. Given the types of variables and how the Financial Hub processes the evaluation of alternatives, each parameter is classified into a typology (unique classification of inputs) which describes whether the value is delivered solely by the user, the type of value (numerical or categorical) and whether it has suggested default values, as shown in Figure 6.

#### Figure 6 – Types of parameters by origin



Source: Own elaboration.

#### INPUT

#### Selection from available op-

tions: User input parameter chosen from a closed list of options.

#### Numerical value:

Free user input, the value range varies by parameter and the indicated units.

#### INTERNAL CALCULATIONS AND DEFAULT VALUES

#### **Calculated value:**

Tool parameter calculated from **numerical values**.

#### **Standard value:**

Standard value defined by the platform's administrator.

Table 1 shows the values calculated from the inputs entered by the user in the tool. The calculated values are used directly in calculating the best financing model. The impact of these values on the final recommendation is explained in item 2.3 Assumptions and processes.

#### Table 1 - Calculated values used in the tool

| Parameter                                 | Description                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Calculated values                                                                                                                                                                                                                                                                                                                                                                               |
| Bus service<br>life/concession<br>term    | It is the relationship between the useful life of the electric bus and the concession term.<br>If the concession term is 20 years and the useful life of the electric bus is 15 years, the<br>value will be 0.75. The concession term and the useful life of the buses should be the<br>same. (See: Technical Note 1)                                                                           |
| Battery useful<br>life/concession<br>term | It is the relationship between battery life and concession term. If the concession term is 20 years and the battery life is eight years, the value will be 0.40. The term of the concession and the useful life of the buses should be the same, but current battery technology allows a duration of up to 8 or a maximum of 10 years.                                                          |
| Project size                              | <ul> <li>The project size corresponds to one of the following categories, defined by the number of electric buses purchased. (See: Technical Note 1, in the item "Projects' Size")</li> <li>Pilot project: &lt;= 19 electric buses</li> <li>Small project: 20-49 electric buses</li> <li>Medium-sized project: 50-99 electric buses</li> <li>Large project: &gt;= 100 electric buses</li> </ul> |

| Parameter                            | Description                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                      | Calculated values                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Total CAPEX                          | <ul> <li>Fleet + Infrastructure: Investment volume in BRL, the sum of buses, infrastructure, and chargers. (See: Technical Note 1)</li> <li>Small investment: up to 75 million reais</li> <li>Medium investment: 75-125 million reais</li> <li>Large investment: 125 million reais and over</li> </ul> |  |  |  |  |  |  |
| Equivalent<br>passengers per<br>year | N° of buses [7] x n° of equivalent passengers/bus/day [13] x expansion factor day per year<br>[14]                                                                                                                                                                                                     |  |  |  |  |  |  |

#### 2.2.2 Funder

The Funder user will have a different interaction than the City user. The Funder will be able to access projects registered by cities and publish financing lines that respond to the needs of electromobility projects. Figure 7 shows the Funder user's working architecture.





Source: Own elaboration.

### 2.3 ASSUMPTIONS AND PROCESSES

The final score of the financing alternatives considered in the Financial Hub follows two main aspects:

- 1. A score from 1 to 10 is assigned to each financing alternative per the value of each parameter;
- 2. The weight (%) of each parameter in the final evaluation of the best financing model (see Figure 8).

A ranking is generated based on the total score obtained from the project characteristics, sorting the possibilities of the financial models per the one that got the best result and guiding the user to the most feasible alternative to structure their project. The best option identified is the alternative with the best score. The definition of scores assigned to each combination of variables and financial model is based on **experiences** in structuring processes for electromobility projects. Thus, the weights identified can be modified to better correspond to the reality and sensitivity of these types of projects in Brazil [5, 6]. We should high light that the score aims to guide the user in a final ranking of financing options that best fit the essential characteristics of the project in question and not to indicate that it is **necessarily** the best financing model. The weights employed on the platform are listed in Figure 8.



#### Figure 8 – Weights of the parameters of the Financial Hub

Source: Own elaboration.

As mentioned before, the interest rate under each alternative follows the assessment of the situation of electromobility projects in the Brazilian financial market. Thus, the score assigned to each alternative is based on the competitiveness of these interest rates. A score of 10 is assigned to the best option (corresponding to the lowest rate), and a weighted score is proportional to the relationship between the other alternatives' interest rates and the best alternative's rate. Table 2 shows the allocation of these scores.

| Variable: Interest rates            |                  |       |  |  |  |  |
|-------------------------------------|------------------|-------|--|--|--|--|
|                                     | Interest<br>rate | Score |  |  |  |  |
| 1. Direct Ioan                      | 9.80%            | 7.0   |  |  |  |  |
| 2. Concessional funding             | 8.50%            | 8.1   |  |  |  |  |
| 3. Leasing or finance lease model   | 8.10%            | 8.5   |  |  |  |  |
| 4. Asset Investor model             | 7.32%            | 9.4   |  |  |  |  |
| 5. Investment fund/SPE/Crowdfunding | 6.90%            | 10.0  |  |  |  |  |

| Table 2 – | Values | and | scores | of | the | parameter: | Interest | rates |
|-----------|--------|-----|--------|----|-----|------------|----------|-------|
|-----------|--------|-----|--------|----|-----|------------|----------|-------|

Source: Own elaboration.

However, these score assignments and the weights of the variables on the total score and overall feasibility of each financing alternative are only representative and may vary significantly with the type of project evaluated and the funder evaluating the project. The tool is **not designed to replace a detailed financial risk analysis by a bank or other funder** that may finance the project but to give an initial approximation of what cities can expect from the project's funding needs and the main alternatives to be considered.

Likewise, the model **provides the user with other general financial and economic indicators**, including an estimate of **subsidy need**, debt coverage, and overall financing flow [7]. The information contained in the tool is related to the cost of providing the assets, not incorporating operational costs throughout the project's useful life. (See: Technical Note 1)

In public transport projects of this type, **subsidies are often essential for the project's financial feasibility**. The tool calculates the project's subsidy requirement considering a standard net margin of 5%<sup>1</sup>. This value was defined based on the experience of consultants in structuring **urban public transport and bus operation projects**, where **profit margins for operators** and other stakeholders are generally **low**, which is one of the project's apects that shows the need for subsidies and funding.

<sup>1</sup> This value can be changed if necessary.

The financing and subsidy rates over the project's life are estimated, guaranteeing this minimum net margin of 5% (value suggested by the platform, which the user can modify). This value serves as a reference for the city or other entity that **offers guarantees to the project** by obtaining funding from subsidies from stakeholders such as the Federal Government or multilateral agencies whose agendas prioritize this type of project.

### 2.4 INTERFACE

The interface is intended to be as friendly as possible to both user types. Figure 9 shows what the City interface looks like. On the left are the hyperlinks of interest for downloading supporting documents, and on the right, the user is asked to **complete the project structuring information and the operational and financial parameters**. Besides the **User's Guide**, the **Technical Notes**, and the **Glossary**, the user will be able to access a list of **links of interest** with reference materials and information related to the structuring of electromobility projects in Brazil (i.e., WRI Brasil, BNDES, EPE, MDR, ITDP Brasil, *Diário do Transporte*, and the like).

The platform guides the user to understand the meaning of each parameter and, if necessary, delivers a detailed explanation of the available options. The City user can **compare results and financial indicators** between different financing models and settings created by the same user before the definitive registration of the electromobility project.

| СІТУ         | FINANCIAL HUB ELETROMOBILIDADE BRASIL      Concert unide on financial structuring for cities integrated in including electric burge in their public transport putters                                                                                                 |                                          |                                                                                                                                                                                           |                                                                                                                                                                 |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| User's Guide | SAVED PROJECTS     REGISTERED FINANCING LINES                                                                                                                                                                                                                         | public transport systems                 |                                                                                                                                                                                           | Enter the scenery name SAVE SCENARIO                                                                                                                            |  |  |  |  |
| _            | PARAMETERS FOR PROJECT STRUCTURING                                                                                                                                                                                                                                    |                                          | OPERATIONAL & FINANCIAL PARAMETERS                                                                                                                                                        |                                                                                                                                                                 |  |  |  |  |
| Γø           | 1. Purchase accounting                                                                                                                                                                                                                                                | ^                                        | 7A. # Electric standard buses:<br># STANDARD BUSES                                                                                                                                        | 15A. Standard bus cost (BRL):<br>• USD • BRL                                                                                                                    |  |  |  |  |
| Glossary     | This is the payment obligation to be accounted for as payment for services or as public debt. If you are still not sure about this technical parameter, you can check it out: Technical Note 3. Financing mechanisms in Brazil Technical Note 5. Bankability criteria | t<br>se current<br>affecting the<br>vre) | 78. # Articulated electric buses:<br># ARTICULATED BUSES<br>8. # Chargers/buses:<br># CHARGERS/BUSES<br>9. Project timeframe (Years):<br>PROJECT TIMEFRAME<br>10. Fleet lifetime (Years): | 1800000<br>158. Articulated bus cost (BRL):<br>1850000<br>16. Charger cost (BRL):<br>USBO BRL<br>CUSTO CARREGADOR<br>17. Infrastructure cost (BRL):<br>USBO BRL |  |  |  |  |
|              | 2. Beneficiary of the financing                                                                                                                                                                                                                                       | ~                                        | FLEET LIFETIME<br>11. Battery lifetime (Years):                                                                                                                                           | INFRASTRUCTURE COST                                                                                                                                             |  |  |  |  |
|              | 3. Business model                                                                                                                                                                                                                                                     | ~                                        | BATTERY LIFETIME<br>12. Average Monthly Travel per Bus (#                                                                                                                                 | 5,4                                                                                                                                                             |  |  |  |  |

#### Figure 9 – Interface aspect for the City user in the Financial Hub

Source: Financial Hub of Electromobility in Brazilian Cities.

A score table of the financing models is displayed once all the fields requested from the user are complete, as shown in Figure 10. Figure 10 – Default values and model score results for the City user in the Financial Hub

| DEFAULT VALUES (TAXES, INSURANCE AND FINANCIAL MODEL ASSUMPTIONS) |      |                    |   |  |  |  |
|-------------------------------------------------------------------|------|--------------------|---|--|--|--|
| INSURANCE AND MANAGEMENT                                          |      |                    |   |  |  |  |
| Insurance (% de CAPEX):                                           | 2    | %                  |   |  |  |  |
| Management and administration (% Revenues):                       | 2    | %                  |   |  |  |  |
| MUNICIPAL TAXES                                                   |      |                    |   |  |  |  |
| Taxes and Licenses (% Revenues):                                  | 2,5  | %                  |   |  |  |  |
| STATE TAXES                                                       |      |                    |   |  |  |  |
| Tax on Circulation of Goods and Services (ICMS):                  | 14   | %                  |   |  |  |  |
| Motor Vehicles Ownership Tax (IPVA):                              | 2    | %                  |   |  |  |  |
| FEDERAL TAXES                                                     |      |                    |   |  |  |  |
| Corporate Income Tax (IRPJ):                                      | 25   | % (Pre-tax profit) |   |  |  |  |
| PIS/COFINS:                                                       | 9,25 | % Revenues         |   |  |  |  |
| LONG-TERM INFLATION                                               |      |                    |   |  |  |  |
| 1-0-11                                                            | _    | 0/                 | - |  |  |  |

MODELS SCORES

| CALCULATE RESULTS |                                                                                 |       |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| ĜExport           |                                                                                 |       |  |  |  |  |  |  |
| Position          | Model                                                                           | Score |  |  |  |  |  |  |
| 1                 | 5. Investment Trust, SPE, ou<br>outro tipo de financiamento de<br>crowd-funding | 6.464 |  |  |  |  |  |  |
| 2                 | 4. Modelo de Participação Asset<br>Investor                                     | 6.336 |  |  |  |  |  |  |
| 3                 | 3. Modelo de Leasing                                                            | 6.235 |  |  |  |  |  |  |
| 4                 | 2. Financiamento concessional                                                   | 6.143 |  |  |  |  |  |  |
| 5                 | 1. Instrumento de Empréstimo<br>Direto                                          | 5.794 |  |  |  |  |  |  |

Source: Financial Hub of Electromobility in Brazilian Cities.

The results and financial indicators for a project with and without subsidy based on the parameters entered by the user also appear and are available for download, as shown in Figure 11.

## Figure 11 – Financial results for the model with and without subsidy for the City user in the Financial Hub



Source: Financial Hub of Electromobility in Brazilian Cities.

Besides the possibility of reviewing the leading financial indicators during the project's useful life and downloading a spreadsheet with the results, the user can compare diesel and electric technology through a cost-benefit analysis. The user must confirm the technologies to be compared, the number of buses for each technology (anticipating that the size of the fleet may vary in the transition), the unit cost of the bus, and the fuel or energy cost. The results of the cost-benefit analysis are shown in Figure 12.

## Figure 12 – Results of the Cost-Benefit Analysis for the City user in the Financial Hub



Source: Financial Hub of Electromobility in Brazilian Cities.

Finally, users can register the project after duly entering the parameters. Users must confirm that all the parameters entered are correct and certify their validity for publication on the platform, as shown in Figure 13.

|               | 100             |                 |                            |        | CORRENT TECHNOLOGY                                                                       |          |                                         |                          |                                                                     |
|---------------|-----------------|-----------------|----------------------------|--------|------------------------------------------------------------------------------------------|----------|-----------------------------------------|--------------------------|---------------------------------------------------------------------|
|               | CaRe:           | sults Padron    | Euro VI (Proconve 8)       |        |                                                                                          | ~        |                                         |                          |                                                                     |
| -             | Pac             | dron Euro VI (  | Proconve 8)                |        | REGISTER PROJECT                                                                         | ^        | 3                                       |                          |                                                                     |
| lser's Guide  |                 |                 |                            |        | Citv:                                                                                    |          |                                         |                          |                                                                     |
| SE.           | <b>O</b> Re:    | sults Electric  | Bus                        |        | Contact Name:                                                                            | -        |                                         |                          |                                                                     |
| thnical Notes | Eler            | ctric Bus       |                            |        | Contact E-mail:                                                                          | 2        | 0,45                                    |                          |                                                                     |
|               | <b>⊠</b> Ca     | alculate result | ts of the Cost-Benefit Ana | alysis | Contact phone 1:                                                                         |          |                                         |                          |                                                                     |
| Glossary      |                 |                 |                            | Envir  | Contact phone 2:                                                                         |          | Impact on OPEX                          |                          |                                                                     |
| Q             |                 | 120k            |                            |        | Link of interest of the city (optional):                                                 |          | - E - E - E - E - E - E - E - E - E - E |                          | Tecnologia do ônibus<br>Padron Euro VI (Proconve 8)<br>Electric Bus |
| elevant links |                 | 100k            |                            |        | Best Model:<br>5. Investment Trust, SPE, ou outro tipo de financiamento de crowd-funding | -        |                                         |                          |                                                                     |
|               | mpact<br>-)     | 80k             |                            |        | Purchase accountinα:<br>Dívida                                                           |          |                                         |                          |                                                                     |
|               | nual ir<br>(BRI | 60k             |                            |        | Funding Recipient:<br>_Empresa pública (paraestatal)                                     |          |                                         |                          |                                                                     |
|               | Ar              | 40k             |                            |        | Business Model:<br>Operação Pública                                                      |          |                                         |                          |                                                                     |
|               |                 | 20k             |                            |        | Regulation feasibility:<br>Definido em termos regulamentares                             |          |                                         |                          |                                                                     |
|               |                 | o 🗖             | Air                        |        | Project Guarantees:<br>Crédito sem garantia ou garantia conjunta e solidária             |          | Plan                                    | Res                      | Infra                                                               |
|               |                 |                 | pollution (BRL)            | emi    | Credit ratina:<br>3                                                                      |          | innual costs of<br>intenance (BRL) insu | costs of<br>irance (BRL) | annual costs of<br>maintenance (BRL)                                |
|               |                 |                 |                            | Type   | Equity (%):                                                                              | -        | Type or operational of                  | OST                      | Tefen oppunt anistering                                             |
|               |                 |                 | Bus technology             | Air p  | 20                                                                                       | -        | costs (BRL)                             | (BRL)                    | costs (BRL)                                                         |
|               |                 |                 | Padron Euro VI (Proconv    | e 8)   | CAPEX (M BRL):                                                                           |          | 0.358                                   | 3.6                      | 0.004                                                               |
|               |                 |                 | Electric Bus               |        | <ul> <li>accurate.</li> </ul>                                                            | 2        | 0.155                                   | 3.6                      | 0.003                                                               |
|               |                 |                 |                            |        |                                                                                          | 00000000 | lodel not registered, to be             | able to register pleas   | e fill in all the required fields                                   |
|               |                 |                 |                            |        |                                                                                          | REGISTER | •                                       |                          | <b>AREGISTER PROJECT</b>                                            |

Figure 13 – Final form with contact information and project summary for the City user in the Financial Hub

Source: Financial Hub of Electromobility in Brazilian Cities.

Figure 14 shows the general Funder user interface. This type of user has two interactions with the Financial Hub: (1) registering the financing line with essential information related to financing conditions and (2) viewing information about projects registered by cities and their contact details (see Figure 15).

#### Figure 14 – Interface aspect for the Funder user in the Financial Hub

| Funder          | FINANCIAL HUB ELETROMOBIL Concept guide on financial structuring for cities interested in in |          |                                    |          |                                        |                 |
|-----------------|----------------------------------------------------------------------------------------------|----------|------------------------------------|----------|----------------------------------------|-----------------|
|                 |                                                                                              |          | REGISTRO DE LINHA DE FINANCIAMENTO | 8        |                                        |                 |
| <b>E</b>        | 1. Name of the funding institution                                                           |          | 2. Funding line name               |          | 3. Funding Term (Years)                |                 |
| Technical Notes |                                                                                              |          |                                    |          |                                        |                 |
| ~               |                                                                                              |          |                                    |          | 6. Grace Period (Months)               |                 |
| L. ja           | 4. Guarantee Conditions                                                                      |          | 5. Type of company to be financed  |          | C wionth Orears                        |                 |
| Glossary        | 7 Object of the financing                                                                    | <u> </u> | 8 Interest rate range (n a )       | <u> </u> | 9 % of the financed value of the asset |                 |
| æ               | Select                                                                                       | -        | Select                             | •        | Si // Si the maneed value of the asset |                 |
|                 |                                                                                              |          |                                    |          | CONTACT INFORMATION                    |                 |
| Relevant links  |                                                                                              |          |                                    |          |                                        | 🌲 REGISTER LINE |

Source: Financial Hub of Electromobility in Brazilian Cities.

#### Figure 15 – Viewing cities' records for the Funder user in the Financial Hub

|         | VISUALIZATION OF REGISTERED PROJECTS BY CITIES                                                                                                                              |            |                                                                                                     |                     |                               |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|---------------------|-------------------------------|--|--|--|--|--|
| Downlo  | lownload all information about all projects 🗅 Download information about selected projects 🖒                                                                                |            |                                                                                                     |                     |                               |  |  |  |  |  |
| Click o | Click on the ID column to expand the project information of the city                                                                                                        |            |                                                                                                     |                     |                               |  |  |  |  |  |
|         | Id                                                                                                                                                                          | City       | Best model                                                                                          | Purchase accounting | Funding Recipient             |  |  |  |  |  |
|         | 01_C1_01                                                                                                                                                                    | Cidade1    | 5. Investment Trust, SPE, ou outro<br>tipo de financiamento de crowd-<br>funding                    | Dívida              | Projeto com fundo fiduciário  |  |  |  |  |  |
| 0       | 02_C2_01                                                                                                                                                                    | Cidade2    | 4. Modelo de Participação Asset<br>Investor                                                         | Dívida              | Projeto com fundo fiduciário  |  |  |  |  |  |
|         | <u>01_C3_01</u>                                                                                                                                                             | Cidade     | 4. Modelo de Participação Asset<br>Investor                                                         | Dívida              | Projeto com fundo fiduciário  |  |  |  |  |  |
|         | 01_C3_01                                                                                                                                                                    | x          | <ol> <li>Investment Trust, SPE, ou outro<br/>tipo de financiamento de crowd-<br/>funding</li> </ol> | )<br>Dívida         | Operador                      |  |  |  |  |  |
|         | 01_C3_01                                                                                                                                                                    |            | 5. Investment Trust, SPE, ou outro<br>tipo de financiamento de crowd-<br>funding                    | )<br>Dívida         | Parceria Público-Privada      |  |  |  |  |  |
|         | <u>01_C3_01</u>                                                                                                                                                             |            | <ol> <li>Investment Trust, SPE, ou outro<br/>tipo de financiamento de crowd-<br/>funding</li> </ol> | )<br>Dívida         | Empresa pública (paraestatal) |  |  |  |  |  |
|         |                                                                                                                                                                             |            |                                                                                                     |                     |                               |  |  |  |  |  |
|         | •                                                                                                                                                                           | CIDADE2    |                                                                                                     |                     | City Informatione             |  |  |  |  |  |
|         |                                                                                                                                                                             | PAR        | AMETERS FOR STRUCTURING THE PROJEC                                                                  | т                   |                               |  |  |  |  |  |
|         | Purchase accounting:                                                                                                                                                        |            | Beneficiary of the funding:                                                                         | R                   | egulation feasibility:        |  |  |  |  |  |
|         | Dívida                                                                                                                                                                      |            | Projeto com fundo fiduciário                                                                        | Definido            | o em termos regulamentares    |  |  |  |  |  |
|         | Project guarantees:                                                                                                                                                         |            | Business model:                                                                                     |                     | Credit Rating:                |  |  |  |  |  |
|         | Receitas de bilhetagem e fontes adicionais                                                                                                                                  | de receita | Operação Pública                                                                                    |                     | 2                             |  |  |  |  |  |
|         | OPERATIONAL & FINANCIAL PARAMETERS                                                                                                                                          |            |                                                                                                     |                     |                               |  |  |  |  |  |
| Numb    | umber of padron buses: Number of articulated buses: Chargers/buses: Project Timeframe (Years): Fleet lifetime (Years): Battery lifetime (Years): Infrastructure cost (BRL): |            |                                                                                                     |                     |                               |  |  |  |  |  |

0 20 3 15 12 8 300000
BRL/USD exchange rate: % Equity or own capital of total Cost of the standard bus (BRL) Articulated bus cost (BRL) Charger cost (BRL) Average Monthly Travel per Bus (kms/bus/month)

Source: Financial Hub of Electromobility in Brazilian Cities.

## 2.5 OUTPUTS

The tool assesses the feasibility of several financing models for electric bus projects in Brazil. The way to evaluate the different financing alternatives is to assign weighted scores to each of the financing alternatives according to the project described by the tool user, as detailed in the previous section. The tool's results are shown in Figure 16:

#### Figure 16 – Outputs of the Financial Hub



Source: Own elaboration.

#### 2.5.1 Best financing option

For the **feasibility of each financing alternative**, the tool ranks them by order of preference per weighted score from 1 to 10. Figure 17 shows an example of the ratings given to each funding alternative for a **medium-sized project (60 buses)** that requires an initial investment of **R\$93 million** and whose primary beneficiary is **a trust fund project.** 

#### Figure 17 – Examples of results and feasibility of financing alternatives

| Parameter                  | User input                                     | Weighting       | Final weight     | 1. Direct Ioan          | 2. Concession<br>financing | 3. Leasing model | 4. Asset Investor<br>Model | 5. Investment<br>Trust, SPV, or<br>crowd-funding |
|----------------------------|------------------------------------------------|-----------------|------------------|-------------------------|----------------------------|------------------|----------------------------|--------------------------------------------------|
| FUNDING RECIPIENT          | Project with Trust Fund                        | 10,0%           | 10,0%            | 6                       | 7                          | 7                | 7                          | 7                                                |
| BUSINESS MODEL             | Shared responsibility                          | 9,0%            | 9,0%             | 9                       | 9                          | 9                | 10                         | 10                                               |
| REGULATORY FEASIBILITY     | Defined in regulatory terms                    | 15,0%           | 15,0%            | 6                       | 6                          | 6                | 7                          | N/A                                              |
| PROJECT GUARANTEES         | secured credit or joint and several guarant    | 18,0%           | 18,0%            | 4                       | 4                          | 4                | 4                          | N/A                                              |
| CREDIT SCORE               | 2                                              | 6,0%            | 6,0%             | 7                       | 7                          | 7                | 7                          | 7                                                |
| PURCHASE ACCOUNTING        | Debt                                           | 5,0%            | 5,0%             | 3                       | 3                          | 3                | 3                          | 3                                                |
| NUMBER OF BUSES            | Average project                                | 3,0%            | 3,0%             | 6                       | 6                          | 6                | 6                          | 6                                                |
| TOTAL CAPEX                | Average investment                             | 7,0%            | 7,0%             | 7                       | 7                          | 7                | 6                          | 4                                                |
| INTEREST RATE              | Depends on the alternative                     | 23,0%           | 23,0%            | 7,04                    | 8,12                       | 8,52             | 9,43                       | 10,00                                            |
| FLEET USEFUL LIFE / TERM   | 1                                              | 2,0%            | 2,0%             | 0,00                    | 0,00                       | 0,00             | 0,00                       | 0,00                                             |
| BATTERY USEFUL LIFE / TERM | 0,53                                           | 2,0%            | 2,0%             | 1,25                    | 1,25                       | 1,25             | 1,25                       | 1,25                                             |
|                            |                                                | SCORE<br>100,0% | SCORE<br>100,0%  | 5,91                    | 6,26                       | 6,35             | 6,73                       | N/A                                              |
|                            |                                                | Best option     |                  | 4. Asset Investor Model |                            |                  |                            |                                                  |
|                            | Selecting the Operator as the Financing Recipi | ient and the P  | Public Operation | as the Business Mo      | del                        |                  |                            |                                                  |

Selecting variables that from experience in other Latin American cities

Source: Own elaboration.

In this case, the most feasible alternative, as recommended by the multi-criteria tool, is an **Asset Investor participation model** in which an asset investor has interests and participates in the business through the transfer of resources in exchange for a future return without the need to operate or provide assets within the model. For example, this investor can be a subsidiary company of an **energy company** (e.g., ENEL X, Engie, or the like) or a **fleet company** that supplies electric buses.

The expected annual interest rate following **this financing alternative is 7.32%**. The least recommended option is a direct business model, while a model that seeks funding through an Investment Trust is not considered feasible.

#### 2.5.2 Financial indicators

On the other hand, regarding the **financial indicators** calculated for the values of capital investment, interest rate, and additional costs associated with the project entered by the user in the tool, the following information is presented:

- **Financial statements** for the project term in years, including annual cash flows, for the overall project and the equity interest in the project.
- **Profitability indicators**, which include the project's Internal Rate of Return (IRR) (ratio between initial investment and expected cash flows), again, for both the overall project and the equity percentage, and the net margin for the project term (net profit to revenue percentage ratio) [8].
- **The debt coverage ratio**, which corresponds to the fraction of annual debt obligations that can be covered by net operating income.
- An estimate of the need for subsidy and the associated funding rate. This calculation is made annually for the project term considering an annual net margin of 5% and responds to the need for subsidies for electromobility projects for public transport.

#### 2.5.3 Operational and economic indicators

The Financial Hub considers a series of economic indicators that aim to give the user the benefits of reducing emissions and operating costs of electric technology compared to diesel. The emissions and operating costs are considered in the platform, as shown in Figure 18.



Figure 18 – Emissions considered in the Financial Hub

\*Well-to-Wheel: analysis that evaluates the total energy consumed by the vehicle for each kWh of energy or liters of diesel supplied to the vehicle's wheels, including all the steps covered by the well-to-wheel conversion, and, later, by the tank-to-wheel conversion.

\*\*kWh for electric buses and liters of diesel for internal combustion buses. \*\*\*Operation and maintenance of buses which include tire replacement costs, lubricants, ARLA, parts and accessories. \*\*\*Operation and maintenance of charging infrastructure for electric buses

\*\*\*\*Operation and maintenance of charging infrastructure for electric buse: and fuel stations.

Source: Own elaboration.

Considering the technologies provided for purchase under the legislation [9], the technologies available for comparison for Padron or Articulated buses are:

- EURO V (Proconve 7) Diesel
- EURO VI (Proconve 8) Diesel
- Electric

The emissions included are:

- Particulate matter (PM)
- Carbon dioxide (CO2)
- Nitrogen oxide (NOx)
- Sulfur dioxide (SO2)

The comparison of the two technologies includes a Padron low-floor diesel bus with EURO V technology, the technology required by law for passenger transport vehicles in Brazil, and a Padron low-floor electric bus. The calculation is based on emission factors from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency (EEA) [10]. CAPEX and OPEX data provided by SPTrans and BYD Brasil were used to calculate the two technologies' reduced emissions and operating costs. Other values such as insurance and infrastructure costs are indicative values based on the operational experience in Latin American cities.

As an example, the impacts on emissions and operating costs are shown for the case of a city with inputs as shown in Table 3.

| Input                                     | Diesel EURO<br>V bus | Electric bus |
|-------------------------------------------|----------------------|--------------|
| Concession period                         | 15                   | 15           |
| N° of buses                               | 60                   | 60           |
| Kilometers/bus/month                      | 6,000                | 6,000        |
| Kilometers/bus/year                       | 72,000               | 72,000       |
| Expansion factor of pass-day to pass-year | 312                  | 312          |

Table 3 – Examples of inputs for reducing emissions and operational costs

Source: Own elaboration.

During the project of a city with these characteristics and a 15-year concession period, emissions are reduced by 90% and 74.2% for operating costs. Although electric buses have higher start-up and insurance costs due to investment in electric buses and charging systems, the total operating cost is almost three times lower than diesel. The main results appear next in Figure 19.

| Input                                    | Padron electric bus | Diesel Padron<br>EURO V bus | % of variation<br>vs. Euro V |  |
|------------------------------------------|---------------------|-----------------------------|------------------------------|--|
| ANNUAL IMPACT (BRL)                      |                     |                             |                              |  |
| Air pollution                            | \$-                 | \$253,541.87                | -100.0%                      |  |
| GHG                                      | \$79,613.80         | \$1,216,321.92              | -93.5%                       |  |
| Noise pollution                          | \$0.20              | \$1.12                      | -82.5%                       |  |
| Annual impact                            | \$79,613.99         | \$1,469,864.91              | -94.6%                       |  |
| TOTAL IMPACT IN THE CONCESSION<br>PERIOD |                     |                             |                              |  |
| TOTAL impact                             | \$1,194,209.92      | \$22,047,973.67             | -94.6%                       |  |

| Input                                          | Padron electric bus | Diesel Padron<br>EURO V bus | % of variation<br>vs. Euro V |  |
|------------------------------------------------|---------------------|-----------------------------|------------------------------|--|
| OPEX REDUCTION                                 |                     |                             |                              |  |
| Bus: energy consumption (R\$)                  | \$17.90             | \$186.89                    | -90.4%                       |  |
| Bus: maintenance costs (R\$)                   | \$14.59             | \$67.14                     | -78.3%                       |  |
| Bus: insurance costs (R\$)                     | \$0.45              | \$0.17                      | 169.1%                       |  |
| Infra: annual maintenance costs (R\$)          | \$0.06              | \$0.08                      | -19.8%                       |  |
| TOTAL OPEX in the concession period<br>(M BRL) | \$33.01             | \$254.28                    | -\$0.87                      |  |

Figure 19 – Reduced emissions and operational costs between Padron EURO V and electric buses



Source: Own elaboration.

## REFERENCES

- [1] ANTP. **Construindo hoje o amanhã:** propostas para o transporte público e a mobilidade urbana sustentável no Brasil. Brasília, 2019.
- [2] CAF. La electromovilidad en el transporte público de América Latina. CAF, Buenos Aires, 2019.
- [3] THE WORLD BANK. Latin America Clean Bus in LAC: lessons from Chile's experience with E-mobility, 2020.
- [4] ZEMO PARTNERSHIP. Accelerating transport to Zero Emissions, 05 2021. [Online]. Available at: https://www.zemo.org.uk/.
- [5] WRI BRASIL. Guia de Eletromobilidade: orientações para a estruturação de projetos no transporte coletivo por ônibus. Mobilidade Urbana de Baixo Carbono, 2022.
- [6] WRI BRASIL. Eletromobilidade no transporte coletivo, 2019.
- [7] TESOURO NACIONAL. Sistema de Análise da Dívida Pública, Operações de Crédito e Garantias da União, Estados e Municípios, 24 01 2022. [Online]. Available at: https://sadipem.tesouro.gov.br.
- [8] GIZ. Financial mechanisms for e-bus adoption, 2019.
- [9] CONAMA. **Resoluções do Conama**, 2012. [Online]. Available at: https://www.iwa-network.org/filemanager-uploads/WQ\_Compendium/Database/Selected\_guidelines/007-11.pdf.
- [10] EMEP; EEA. Air pollutant emission inventory guidebook 2016, 2016.





## **Eletro**Mobilidade

Transição para a Eletromobilidade nas Cidades Brasileiras

Executor

Realização







MINISTÉRIO DO DESENVOLVIMENTO REGIONAL

