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Abstract

In this work we considered cellular automaton model with time delay. Time delay included in this model
reflects the delay between the time in which the site is affected and the time in which its variable is
updated. We analyzed the effect of the rules on the dynamics through the cluster counting. According to
this cluster counting, the dynamics behavior is investigated. We verified periodic oscillations same as delay
differential equation. We also studied the relation between the time delay in the cell cycle and the time to
start the metastasis, using suitable numerical diagnostics.

Motivation

The cancerous tumors dynamics, including their growth, propagation, and treatment, is one of the major
problems in mathematical biology. The interest for the problem has led to the formulation of numerous
growth models proposed in order to analyze one or several basic features, such as the metastasis, the lack
of nutrients, the competition for resources and the cytotoxic activity made by the immune response.
Cellular automata are prototypes of spatially extended dynamical systems, that present discrete space and
time, as well thus the state variables take on a finite set of discrete values. In recent papers, cellular
automata models have been considered to model aspects of tumor growth and therapy and the presence of
immune surveillance. A two-dimensional stochastic cellular automata model was proposed to describe
avascular solid tumor growth, taking into account both the competition between cancer cells and normal
cells for nutrients, space and a time-dependent proliferation of cancerous cells.
In this paper we are to investigate the role of time delay in the cell interaction as a triggering factor for
metastasis, by using a modified version of a cellular automaton model for cancer growth proposed by Qi
and collaborators[1]. This model also takes into account other microscopic properties, as the proliferation
of cancer cells, the cytotoxic effect of the immune system, and the mechanical pressure inside the tumor;
so as to reproduce the Gompertz growth of cancer tumors.

Rules

Figure: (a) to (b) describes the possibility of
proliferation at one of the shadowed sites occupied
by normal cells, (a) to (c) denotes the cytotoxic
process and (c) to (d) the complex is replaced by a
dead cell.

Figure: The number 0 indicates the center of the square lattice, where 1,2,3
and 4 denote the four quadrants. When ρ(t) ≤ ρc the second daughter cell
will occupy one of the two shadowed sites with equal probability, as it is
showed in (a), and (b) for ρ(t) > ρc.

We insert a time delay in the cellular automaton [1] in order to analyze the dynamics behavior of
cancerous cells in a tissue. Then, let the cancerous (abnormal) cells, the dead cancerous cells, the effector
(cytotoxic) cells (macrophages, etc) and the complexes produced by the cytotoxic process be respectively
represented by C, D, E0, and E. Fig. (1) shows the processes considering the proliferation or dissolution
of a cancerous cell. As a matter of fact this process can be depicted by the following reactions:

C
k′1(t)−→ 2C, (1)

C + E0
k2−→ E

k3−→ E0 + D, (2)

D
k4−→ normal. (3)

Reaction (1) describes the proliferation of cancerous cells at a time t, with

k′1(t) = k1

(
1−

Nc

φ

)
, (4)

where k1(t) is the proliferation rate of cancerous cells, t is the time, Nc is the total number of cancerous
cells and φ is a constant, thus Nc reaches the maximum φ. We can see by Fig. 1(a) to (b) that the cell
C located at site will divide into two and one them will occupy the original position and the other will
randomly invade one of the four neighbor sites primarily occupied by normal cell. The first reaction in (2)
denotes the cytotoxic process, in that reaction (2) a single effector binds to one abnormal cell in a time. In
doing so, there is not cancerous cell proliferation, as it is showed in Fig. 1(b), and there is a probability of
a cytotoxic process (Fig. 1c). The second reaction of (2) depicts the dissolution of complexes. In this case
the cell died in accordance with a determined probability (Fig. 1d). Equation (3) describes the dissolution
of dead cells. The values adopted for the parameters k1, k2, k3 and k4 are listed in reference [1].

Figure: (Color online) The shape of a tumor k1 = 0.74, k2 = 0.2, k3 = k4 = 0.4, ρc = 3.85, φ = 103 and t = 50. Black
squares represent cancerous cells, red squares are complexes and green squares are the dead cancer cells. The initial configuration is
only 5 cancerous cells in the central part of the lattice.

Time Evolution

Figure: (Color online) The time evolution of Nc for k1 = 0.74, k2 = 0.2, k3 = k4 = 0.4 and ρc = 3.85. (a) 101× 101,
φ = 103, τ = 0 (black line) and τ = 5 (red line), (b) 1301× 1301, τ = 850 and φ = 1.7.106.

Figure: We consider k1 = 0.74, k2 = 0.2, k3 = k4 = 0.4 and ρc = 3.85. (a) Delay plot of the number of cancerous cells
showing a non regular behaviour for τ = 0 (black line) and a regular for τ = 6 (red line), as well as the figures (b) and (c) show
the respective power spectrum.

Metastasis

Figure: T(i)
m versus i and distribution for (a) and (b) with τ = 0, (c) and (d) with τ = 10. We considered N = 101, φ = 1000,

ρc = 3.85, k3 = k4 = 0.4, k2 = 0.2 and k1 = 0.5.

Figure: Average of T(i)
m varying the time delay, where we considered k1 = 0.5, k2 = 0.2, k3 = k4 = 0.4, ρc = 3.85 and

φ = 103. The solid line is a least-squares with slope≈1.
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