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Comparing networks
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
 

Higher order ℓ
 

neighborhood evaluation


 
Description by matrices M(ℓ)


 

ℓ
 

= 1                               ℓ
 

= 2                         ℓ
 

= 3
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Comparing networks
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
 

Network distance 


 

Define a neighborhood based distance 


 

Minimize 
 

by Monte-Carlo procedure
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Comparing networks
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Modularity


 
Modularity: number of links among groups of 
nodes (modules) within a network is much larger 
than among nodes
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Modularity


 
Modularity: number of links among groups of 
nodes (modules) within a network is much larger 
than among nodes
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Modularity


 
Finding the modules of a network: difficult task 
with a large number of proposed algorithms


 

One important condition: modules must be there!!!


 

Setting links in a network representing actual 
system requires information on the interaction 
about the entities the nodes correspond to.


 

Reliability of knowledge about node interaction or 
strength of interaction are key steps.
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Modularity


 
Finding modules for a given network: efficient 
algorithm + network own features.


 

Interpret such conditions in terms of weighted 
networks


 

Adjacency matrix  weight matrix (WM)


 

Use W to define a set of networks M(w)

]1,0[1,0  ijij WM
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Modularity


 
Use W to define a set of networks M(w)


 

Tune w
 

to find M(w)
 

with best modular properties


 
Our proposal: use network distance between 
neighboring networks and look for values of w

 
that 

cause large peaks in the distance 
 

important 
changes in network structure

wWwM

wWwM

ijij

ijij





 if 1)(

 if 0)(
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
 

Take  = w
 

and  = w+w


 

Evaluate the neighborhood based distance 


 

Identify w*,
 

maxima of (w,w+w)


 
Apply community finding algorithms to M(w*)


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Modularity
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Modularity


 
Example for ER network


 

Emergence of a giant cluster at the transition point 
pc

 

= 1/N
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Phylogenetic
 

classification


 
Phylogenetic

 
trees as “periodic tables”

 
of biologic 

diversity


 

Usual classification: 
species, genus, family, 
order class, phylum, 
kingdom


 

Recently introduced 
domains (archea, bacteria,
eukarya) as basic roots of
biologic evolution 
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Phylogenetic
 

classification


 
Classical methods of phylogenetic

 
classification  

(grouping analysis): bayesian, distance, likelihood, 
parsimony. 


 

Heavily relies on qualitative biologic features as 
input to substitution matrices.


 

This work: provides phylogenetic
 

classification 
based networks constructed from protein data from 
completely sequenced genomes.
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Phylogenetic
 

classification


 
Biological basis of the method: 


 

Bio-molecules required for basic reactions present in 
large number of organisms


 

Synthesis of such molecules requires the presence of 
several enzymes


 

Distinct organisms use own enzyme sets (pathways) 
to obtain the “same”

 
molecule


 

Organisms can be classified according to similarity 
of enzyme sets
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Protein and molecular synthesis


 
This work: data for chitin synthesis


 

Chitin:  


 
Structural endogenous carbohydrate,  major 
component of fungal cell walls and arthropod 
exoskeletons.


 

Second most abundant polysaccharide in nature 
after cellulose


 

Method can use any other molecular synthesis  
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Protein and molecular synthesis
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Protein networks


 
Database: Protein sequences from NCBI (19/05/2007)


 

1695 protein sequences for 13 enzymes  within chitin 
metabolic pathway, e.g. 


 
UDP-acetylglucosamine

 
pyrophosphorylase


 

Acetylglucosamine
 

phosphate deacetylase


 
Hexosaminidase


 

Phosphoglucoisomerase


 
Glucosaminephosphateisomerase


 

Choose one of them along with the subset of 
organisms that include this or similar enzymes in the 
pathway
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Protein networks


 
Network node i

 
represents a protein of a sequenced 

organism


 

Network weight: comparison of  protein sequences 
performed by BLAST (v. 2.2.15) 

 
similarity index 

(S) and similarity matrix SM*.


 

Associate W(w)
 

with SM, symmetric form of  SM* 
undirected network  adjacency matrix


 

Nodes i,j
 

are connected in a network if  SMij
 

is above 
a pre-established threshold Sth

 

(=w*)
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Results


 
Network measures for each value Sth

 

:


 
Degree distribution P(k)


 

Clustering coefficient C


 
Average path-length <d>


 

Edge betwenness
 

B


 
Network distance D


 

Networks depend on Sth


 

Judicious choice of value of Sth
 

optimizes reliability 
of classification scheme, based on Newman-Girvan 
method 
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Results


 
Enzyme UDP


 

Sth
 

 51%:
 

sudden transition in network properties


 
Sharp decrease in <d>


 

Clustering C
 

remains relatively unchanged 


 
Sharp change in dendrogram

 
based on B


 

Peak in the distance D,+1
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Results

D,+1
 

is reflected in the 
dendrogram

 
structure

At Sth
 

=51%, main groups 
identified are reproduced in 
neighborhood matrix
Moduli

 
C1-C6 with precise   

biologic meaning. 
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Results


 
C1 – Cyanobacteria

 
C2  – Firmicutes

 C3  –
 


 

and 
 

Proteobacteria
 

C4  –
 

-Proteobacteria
 C5  –

 
Actinobacteria

 
C6 –

 
-Proteobacteria
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Results


 
C1 – Cyanobacteria

 
C2  – Firmicutes

 C3  –
 


 

and 
 

Proteobacteria
 

C4  –
 

-Proteobacteria
 C5  –

 
Actinobacteria

 
C6 –

 
-Proteobacteria

Identification of these 
modules in the network.
Crossing results   from our 
approach with taxonomic 
and phylogenetic

 
data: the 

modules correspond in  clear 
and rather precise way to 
bacterial phyla and/or 
classes
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Results


 
C1 –

 
Blue

 
– Cyanobacteria

 C2  –
 

Yellow
 

– Firmicutes
 C3  –

 
Red

 
–

 
Beta and Gamma Proteobacteria

 C4  –
 

Green
 

–
 

Alpha Proteobacteria
 C5  –

 
Pink

 
– Actinobacteria

 C6 –
 

Orange
 

–
 

Epsilon Proteobacteria
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Results


 
Same method was applied to other networks (with 
no. of vertices 

 
100)  accurately defined  

grouping suggests  robustness of the method.
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Results


 
Network distance D

 
x threshold Sth

Acetyl                                    Gluco

Hexo
 

Phospho
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Results


 
Hexo: Dependence of network on  Sth

37%                                    40% 

44%                                     56%
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37%                                    40% 

44%                                     56%

Results


 
Hexo: Dependence of network on  Sth
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Results


 
Dendrograms

 
at

 
first threshold Sth

Acetyl                                    Gluco

Hexo
 

Phospho
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Results


 
Same method was applied to other networks (with 
no. of vertices 

 
100)  accurately defined  

grouping suggests  robustness of the method.
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Results


 
Number of distinct sequences in different networks 
totalize 1645 (out of 1695 in data set) 


 

Each sequence belongs to only one network


 
Identification of 382 distinct organisms


 

More than one sequence can be present in the same 
organism


 

Congruence  of classification by distinct networks 
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Results


 
Congruence  of classification by distinct networks 


 
Networks with different sizes and communities 
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Results


 
Congruence  of classification by distinct networks 


 
Networks with different sizes and communities 
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Results

Protein max # nodes # communities
Acetyl 42 176 12
Gluco 40 313 5
Hexo 37 238 10

Phospho 37 501 6
UDP- 51 327 7
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Results


 
Values of congruence obtained after pair-wise 
comparison of the phylogenetic

 
analysis provided by two 

different networks. The average value of the entries in the 
table is 84%. 

A G H P U

A 0.79 0.73 0.93 0.91

G 0.79 0.69 0.83 0.87

H 0.73 0.69 0.90 0.79

P 0.93 0.83 0.90 0.95

U 0.91 0.87 0.79 0.95
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Results


 
Further results for chitin synthase, another protein 
of the chitin metabolic pathway. 


 

For this data set, we have found that the 
phylogenetic

 
classification obtained through the 

complex network with other methods agrees with 
those based


 
Bayesian –

 
0.56, 



 
Distance –

 
0.53



 
Likelihood –

 
0.58 



 
Parsimony –

 
0.64


 

Scores are similar when methods are compared 
among themselves  
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Network robustness


 
Robustness: How long a network can stand (

 
giant 

cluster) if successive attacks eliminate nodes or 
connections


 

Usual robustness measure: percolation threshold qc


 

New proposal (JSTAT P01027 (2011) takes into 
account the size of all largest clusters after the 
removal of each node:





N

Q

Qs
N

R
0

)(
1

1
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Network robustness


 
Two different kinds of attack: malicious (targeted at 
highly connected nodes) and random


 

Depending on the topology, networks can be more 
resistant to one or other type of attack


 

Networks with onion like topology (core is occupied 
by highly connected nodes) is more resistant to 
targeted attacks 


 

How do biological networks resist to both kinds of 
attacks?
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Fragility of protein network


 
Protein Interaction Networks (PIN): main source of 
information for cellular processes. 


 

If two proteins are present in a same reaction within 
the organism they maybe linked in a network 
representation.


 

PPI of 20 different organisms in the bacteria and 
eukarya

 
domains


 

Submit each network to a series of malicious and 
random attacks.


 

R
 

measure the network robustness.
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Fragility of protein network


 
STRING 8.2 database


 

Combined Score (CS) as a measure of the likelihood 
that two proteins interact in a given network.


 

Threshold value CSth
 

= 70%. 


 

Smaller values produce dramatic growth in 
numbers of edges, masking relevant information 
with extraneous information, while larger CSth

 

may 
exclude known protein interaction


 

Compare results with ER surrogates with same 
number of nodes and edges 
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Results


 
Robustness of PPI against random and malicious attacks.


 

Solid and open symbols correspond to biological data and 
surrogates.
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Results


 
Robustness against random attacks RRA is smaller than 
surrogates with identical degree distributions,


 

Robustness against malicious attacks RHDA is larger than 
surrogates. 
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Results


 
Paradoxical behavior can be analyzed by evolution of the 
behavior of R for original and randomized networks 
(measured by C/M)


 

Highlights the different behavior of fragile and robust 
networks
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Results


 
RRA increases with C/M for C. Elegans

 
(●), air-line (∆), 

citation (), and PoP
 

networks (○).


 
RRA decreases with C/M for the Internet (□) and corporate 
ownership network (◊).
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Results


 
Improvement RRA significantly larger for C. Elegans

 
and 

airline networks (modular), in opposition to Internet
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Results


 
RHDA also differs between biological and other networks.


 

For biological networks, it increases with C/M up to 12% 
until C/M1, but then decreases
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Results


 
For all other networks, RHDA

 

monotonically increases 
with C/M.


 

Exception only for the ownership network.
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Results


 
Effects of modularity on robustness in model (curves) and 
a sample biological networks (C. Elegans

 
–

 
data points).


 

Simple network (left figure, dashed curves).


 
More complex network (right figure, solid).
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Conclusions


 
The application of a complex network approach to 
the comparative analysis of protein sequences of 
chitin metabolic pathway resulted in the 
identification of modularity (communities) in a 
critical region of similarity threshold


 

Communities (modules) were automatically 
revealed by calculating edge betweenness, and a 
highly significant and remarkably agreement 
between modules and phylogeny of organisms was 
retrieved.
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Conclusions


 
Robustness and fragility of PPI and other biological  
networks may help understand evolutionary 
processes and strategies.


	Detecting network communities: an application to phylogenetic analysis
	Slide Number 2
	Complex networks and phylogenetic analysis
	Complex networks and biological physics
	Other contributions
	Other colaborators
	Outline
	Comparing networks
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Modularity
	Modularity
	Modularity
	Modularity
	Modularity
	Slide Number 22
	Modularity
	Phylogenetic classification
	Phylogenetic classification
	Phylogenetic classification
	Protein and molecular synthesis
	Protein and molecular synthesis
	Protein networks
	Protein networks
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Network robustness
	Network robustness
	Fragility of protein network
	Fragility of protein network
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Conclusions
	Conclusions

