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Absorbing state of a Markov process:

Consider a population of organisms, population size N(t)

N evolves via a stochastic dynamics with transitions from N to 
N+1 (reproduction), and to N-1 (death)

N=0 is an absorbing state: if N=0 at some time t, then N(t') = 0 
for all times t' > t

Systems with spatial structure: phase transitions between 
active and absorbing states are possible in infinite-size limit 

Of interest in population dynamics, epidemiology, self-organized 
criticality, condensed-matter physics, social system modelling...

General references on NEPT: 
J Marro and R Dickman, Nonequilibrium Phase Transitions in Lattice          
Models, (Cambridge University Press, Cambridge, 1999). 
H Hinrichsen,  Adv. Phys. 49 815 (2000).
G Odór, Rev. Mod. Phys. 76,  663 (2004)



  

Contact Process (Harris 1972): a birth-and-death process with 
spatial structure

Lattice of  Ld sites

Each site can be either active (σi = 1) or inactive (σi = 0)
An active site represents an organism

Active sites become inactive at a rate of unity, indep. of neighbors
An inactive site becomes active at a rate of λ times the fraction of 
active neighbors

The state with all sites inactive is absorbing



  

Contact Process: order parameter ρ  is fraction of active sites

Rigorous results: continuous phase transition between active and 
absorbing state for d ≥  1, at some λc (Harris, Grimmet...)

Order parameter:  ρ  ∼   (λ − λc)β

(Mean-field theory: λc = 1, β = 1)

Results for λc, critical exponents: series expansion, simulation, 
analysis of the master equation, ε-expansion

Types of critical behavior: static, dynamic, spread of activity



  

Order parameter in the one-dimensional contact process:
series expansion analysis



  



  



  
Spread of activity in contact process (avalanches)

subcritical                         critical                             supercritical



  

Mean-field theory for the contact process



  



  

CP: finite-size scaling



  

Contact process on a ring: exact QS properties of small systems



  



  

After 30 years!
Experimental realization of the contact process/directed percolation
(Takeuchi et al, PRL 99 234503 (2007))

Absorbing-state phase transiton between two turbulent regimes in 
electrohydrodynamic convection of liquid crystals in a thin layer



  

Takeuchi et al: order parameter vs control parameter 

Experiments confirm critical exponents of DP in 2 space dimensions,
for example: β = 0.59(4) (expt), β = 0.583(3) (sim) 



  



  

Principal universality classes of absorbing-state phase transitions:

 Directed percolation (DP) (contact process)

 Parity-conserving  (branching-annihilating random walks)

 Conserved DP* (conserved stochastic sandpile)

 Pair contact process with diffusion (PDPC)

*Experiment: L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008
Transition between reversible and irreversible deformation in sheared colloidal
suspension



  

Stochastic Sandpile Model (Manna model)

Conserved Version

A Markov process defined on a lattice of Ld sites with
periodic boundaries

Particles perform random walks on the lattice
Let ni denote the number of particles at site i (ni = 0, 1, 2,...)

Initially N particles are distributed randomly over the lattice

Dynamics: any site with ni ≥ 2 is active 
Active sites topple at a rate of unity, sending two
particles to nearest-neighbor sites, chosen at random

Number of particles remains constant throughout the evolution
Particle density ζ = N/Ld is a control parameter



  

Activated random walkers (ARW): when site i topples two particles 
jump from i to a nearest neighbor, independently

Examples of topplings in one dimension



  

Stochastic sandpile: any configuration without active sites is absorbing

Such configurations exist for ζ  < 1 

There is an continuous absorbing-state phase transition at ζ = ζ c 
(= 0.94885 in one dimension)

Order parameter: ρ, the fraction of active sites



  

time

Typical evolution of stochastic sandpile



  

Like the contact process, the conserved stochastic sandpile exhibits 
scale-invariance at the critical point
To reach this point we must tune ζ  to its critical value

Now we make two simple changes in the model:

1. Replace the periodic boundary condition with open boundaries  
    When a site at the edge topples, particles may be lost

2. Eventually the system reaches an absorbing configuration
    When this happens a new particle is added at a randomly chosen site

This converts the model into the nonconserved Manna sandpile

These changes force the model to its critical point:

If  ζ   >  ζ c  there is activity and  ζ  can only decrease

If  ζ   <  ζ c activity will stop and  then ζ  will increase



  

Nonconserved Manna sandpile: avalanche distribution



  

Absorbing-state mechanism for SOC: 
(A Vespignani, RD, S Zapperi & M A Muñoz, PRE 2000)

self-organized criticality in a slowly driven system corresponds to an 
absorbing-state phase transition in the model with the same local dynamics, 
but with strict conservation

Simulations confirm that the critical exponents in SOC and in the absorbing
phase transition are related

As the system size increases, the fluctuations of ζ  in the driven sandpile 
are restricted to an ever smaller region centered on the critical density of
the conserved model

The SOC and absorbing “ensembles” are however distinct
(Pruessner and Peters, Phys. Rev. E, 2006, arXiv:0912.2305)

In deterministic sandpiles, the critical density in the conserved version is
a tiny bit higher than in the SOC version! (Fey et al., Phys Rev Lett, 2010)
But the two densities are the same if system starts with a larger negative 
height!  (Poghosyan et al, arXiv:1104.3458)



  
CDP class: still no precise value for z

Critical exponents for 1d conserved stochastic sandpile/CDP



  

Experimental realization of the CDP transition

L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008

Transition between reversible and irreversible deformation in 
sheared colloidal suspension

Non-Brownian colloidal suspension in Couette geometry: deformation 
is reversible at low shear rates, for which particles arrange to avoid 
collisions
Above a critical shear rate the deformation is irreversible 
Corté et al interpret irreversible particle motion as activity, observe a 
phase transition between absorbing and active phases



  

Corté et al 2008

model experiment



  

Interpretation of experiment of Corté et al:
(Menon & Ramaswamy, PRE 2009)

The system suffers an absorbing-state phase transition

Activity is carried by the particles, which are conserved

This suggests that the transition belongs to the conserved
DP universality class – no precise results for critical
exponents yet

Corté et al, PRL 2009: Study the same system but with 
slow sedimentation
Now the bulk particle density is subcritical
Under shear the density profile exhibits a plateau at the
critical density, verifying absorbing-state transition/SOC
connection



  

Corté et al 2009



  

Harris criterion (dν < 2): quenched disorder relevant for
contact process (CP) and directed percolation (DP)
(For recent perspective: T Vojta and M Dickison, PRE 72)

Harris criterion for CP:

Local fluctuation in λ (temperature-like variable) is ~v
In a block of length b, summed fluctuation is ~bd/2 v, by 
central limit theorem

Treat this as equivalent to a uniform variation over block,
 ~vb-d/2

Under a block transformation (Kadanoff) v → v' = vbyb-d/2

Note: y = 1/ν⊥ 

Then disorder is relevant if dν⊥ < 2

Effect of disorder on the contact process



  

By the Harris criterion, quenched disorder is expected to be 
relevant for contact process/directed percolation
(For recent perspective: T Vojta and M Dickison, PRE 72)

What about diffusing disorder? 

Model:  Contact process with mobile vacancies (CPMV)

Vacancies are permanently inactive but diffuse at rate D, 
exchanging positions with the other sites, which host a basic 
contact process (Individuals with permanent immunity)  

A fraction v of sites are vacancies

Nondiluted sites may be active or inactive

Effect of disorder on the contact process  



  

Typical evolution near critical point.  Red: active; black: vacancies
v=0.1, D=1, λ = 4.1

time

 CP with mobile vacancies: simulation in one dimension



  

Related model: CP with diffusive background (Evron et al., arXiv:0808-0592)
“good” (large λ) and  “bad” (small λ) sites instead of vacancies

In principle both models should have the same continuum description:

∂
t
 ρ =  Da∇2ρ + (a+ γφ)ρ – bρ2 + η(x,t)

∂
t
 φ =  ∇2φ + ∇•ξ(x,t)   

ρ: order parameter density; φ: density of nondiluted (or “good”) sites

η and ξ are suitable noise terms.

SKIP THIS PAG
E!



  

Mobile disorder is relevant for finite D
 
Consider a correlated region in the CP, with characteristic size ξ 
and duration τ

If fluctuations in the vacancy density on this spatial scale relax on 
a time scale  τφ « τ, then the CP will be subject, effectively, to a 
disorder that is uncorrelated in time, which is irrelevant

But fluctuations in φ relax via diffusion, so τφ  ~ ξ2

In the neighborhood of the critical point, ξ ~ |λ -  λc|- ν⊥     

and τ  ~ ξz, so that τφ  ~ τ2/z

This suggests that diffusing disorder is relevant for z < 2, provided 
that quenched disorder is relevant  

In directed percolation these conditions are satisfied in d < 4 
space dimensions



  

CP with mobile vacancies: limiting situations

D = 0: In one-dimension, this corresponds to a CP on finite strips, 
which must always fall in the absorbing state.  
Thus for any v > 0, λ

c
 → ∞ as D → 0.

In two or more dimensions, the CP with fixed vacancies is active
(for suff. large λ ) if nondiluted sites percolate (v < 1-pc).
Thus λ

c
 → ∞ as D → 0 for v > 1-pc

D→ ∞: In one dimension, diffusing vacancies do not change 
order of active and inactive (nondiluted) sites
Thus D → ∞ is not a mean-field limit
Instead it represents a regular CP with λ

eff
 = (1-v)λ, so one expects

 λ
c
 → λ

c,pure
/ (1-v) , with DP scaling, in this limit

In two or more dimensions D → ∞ should correspond to a mean-
field limit



  

Studies of CPMV in one dimension 

(RD, J Stat Mech (2009) P08016)

Determine λ
c
 and scaling properties as functions of vacancy fraction 

v and diffusion rate D

Three kinds of simulation: 

   conventional (stationary regime)
 
   quasistationary

   spreading

A “first look”: moderate dilution (v=0.1), vary D



  

Monte Carlo simulations

Rings of L = 100, 200,...,1600 sites - all nondiluted sites initially active

Determine (1) fraction ρ(t) of active sites
                  (2) moment ratio m(t) =  < ρ2 >/ ρ2 in averages over surviving   
                        realizations
                  (3) mean lifetime τ from the decay of the survival probability,

                  Ps(t) ~ exp[-t/τ] 

In large (pure) systems at critical point, ρ and m approach their
quasistationary (QS) values via

ρ(t) ~ t-δ      and      m(t) -1 ~ t1/z

Finite-size scaling: at the critical point, ρQS ~ L-β/ν⊥, 

τ ~ Lz         and       m → mc      (a universal quantity)



  

Phase boundary, v=0.1

d

λc

D→∞



  

       Anomalous behavior: m(t) and ρ (t) cannot be collapsed



  

Summary of Results for v=0.1

Critical exponents z, δ,  β/ν⊥ , and moment ratio mc appear to vary 
continuously with vacancy diffusion rate d, and approach DP-class
values as d increases

Spreading simulations confirm scaling of survival probability, P∼ t-δ
but other quantities show anomalous scaling

The lifetime τ grows more slowly than a power law at the critical point, 
for small D

Summing up, static scaling is observed, but certain aspects of time-
dependent behavior are anomalous.



  

A second look: CPMV at the Critical Vacancy Density

For fixed diffusion rate D, critical reproduction rate λc grows with 
vacancy density v and diverges at vc(D)



  

     Critical vacancy density line in the v-D plane (simulation)

               For v < 0.38, λc diverges only when D → 0



  

Simulation with λ = ∞ :  allow only isolated active sites to become inactive (at 
a rate of unity), and activate any nondiluted site the instant it gains an active 
neighbor

Typical evolution
starting from a single
active site

D=1, v=0.515

Simpler scaling behavior at vc than for smaller v



  

The hyperscaling relation                       is satisfied to within uncertainty 

These results suggest that critical exponents are independent of D along 
the critical line vc 

Critical properties along the critical vacancy density line 

Similar results are found for v=0.4, 0.5, and 0.6



  

Contact process with mobile vacancies - Summary

Simple scaling behavior at critical vacancy density, with clearly 
non-DP critical exponents, possible connection to DEP

For smaller v, apparently variable exponents: Is this a crossover
between DP and a new fixed point?

Future work:
 Map out vc(D) and associated exponents with higher precision, verify
 universality along this line of critical points

 Apply exact QSD analysis, series expansions

 Two and three dimensions 

 Investigate other forms of slowly evolving disorder, and effect of mobile 
 vacancies on other classes of absorbing-state phase transitions



  

Contact process with sublattice symmetry breaking
(Marcelo Martins de Oliveira & RD)

Motivation: can the CP exhibit a patterned phase

Model: CP with creation rates λ1 and λ2 at first and second
neighbors, resp.

Basic annihilation rate of unity, enhanced by  µn2  at a
site with n occupied first neighbors 

Mean-field theory: three phases, absorbing, active-symmetric
and active-asymmetric, separated by continuous phase
transitions; re-entrant phase diagram

AS/AA transitions should be Ising-like 



  

CP with sublattice ordering: MFT, µ= 2

Simulation yields a qualitatively similar phase diagram



  
Typical configuration in the AA phase (simulation, µ =0.2)



  

On the line λ1=0, direct transition from ABS to AA phase,
followed by a transition to the AS phase at higher λ2

For µ > 0 this line represents competeing species, with λ2,c = λc,CP

µ  < 0 corresponds to symbiosis,  λ2,c < λc,CP, and transition 
appears to belong to a new universality class  



  

SUMMARY

A number of universality classes for absorbing-state 
phase transitions are now well characterized

Experimental confirmation of DP scaling, and possibly 
of CDP and self-organized criticality

It is likely that many more classes remain to be 
discovered, as one introduces new components, 
symmetries and/or conserved quantities

Relevance of diffusive disorder in the contact process

Possibility of patterned activity
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