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q-moments and the q-Fourier transform

Let Q ∈ R and f be a probability density function (p.d.f.) such
that

νQ [f ] =

∫

∞

−∞

[f (x)]Q dx < ∞ .

We can define an escort p.d.f., namely fQ(x) = [f (x)]Q/νQ [f ].

Using this p.d.f. we can construct the Q-moments, Π
(n)
Q [f ]:

Π
(n)
Q =

∫

∞

−∞

xnfQ(x) dx (n ∈ N) ,

being the unnormalized ones, µ
(n)
Q [f ]:

µ
(n)
Q [f ] =

∫

∞

−∞

xn[f (x)]Q dx .
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The q-Fourier transform (q-FT) of any non-negative measurable
function f is defined by

Fq[f ](ξ) =

∫

supp f

f (x)e
iξx [f (x)]q−1

q dx (1 ≤ q < 3) ,

where e ix
q represents the principal value of [1 + (1 − q)ix ]1/(1−q).

Let qn = nq − (n − 1). It was proven [1] that the nth unnormalized
qn-moment of a p.d.f. f is related to Fq[f ] by the equation

dnFq[f ](ξ)

dξn

∣

∣

∣

∣

ξ=0

= in
n−1
∏

j=1

{[1 + j(q − 1)]} µ
(n)
qn [f ] .

[1] C. Tsallis, A.R. Plastino and R.F. Alvarez-Estrada, J. Math. Phys. 50

(2009) 043303.
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q-Gaussian

Let q < 3 and β > 0. We define a q-Gaussian as a mapping
x 7→ Gq,β(x) such that

Gq,β(x) =

√
β

Cq
e−βx2

q ,

where Cq is a constant that can be obtained from the
normalization condition

∫

∞

−∞

Gq,β(x) dx = 1 .

The q-FT of a q-Gaussian with q ≥ 1 is a q1-Gaussian with
q1 = (q + 1)/(3 − q). This implies that the q-FT is invertible on
the space of q-Gaussians [2].

[2] S. Umarov, C. Tsallis and S. Steinberg, Milan J. Math. 76 (2008) 307.
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Hilhorst example

Being A ≥ 0, 1 < q < 2, and α(q) = (2 − q)/[2(q − 1)], we define
the mapping x 7→ fq,A(x) such that

fq,A(x) =
[1 − A|x |2α(q)]1/(q−2)

Cq{1 + (q − 1)x2[1 − A|x |2α(q)]−1/α(q)}1/(q−1)

if A ≤ |x |−1/[2α(q)], and fq,A = 0 otherwise. This mapping can be
considered as a p.d.f. since fq,A(x) ≥ 0 and

∫

∞

−∞

fq,A(x) dx = 1.

We can easily notice that fq,0(x) = Gq,1(x). However, by no means
it is trivial to notice that Fq[fq,A](ξ) = Fq[Gq,1](ξ). It follows from
this fact that the q-FT is not invertible on the space of p.d.f’s [3].

[3] H.J. Hilhorst, J. Stat. Mech. (2010) P10023.
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Figure: The dependence on A of Fq[f1.4,A](1) for diferent values of q. We
can notice that Fq[f1.4,A](1) depends monotonically on A for any q 6= 1.4.
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Figure: The dependence on A of the quantity νQ [f1.4,A] for diferent
values of Q. We can notice that νQ [f1.4,A] depends monotonically on A

for any Q 6= 1. So, if we knew the q-FT of f1.4,A and the value of
νQ [f1.4,A] for some Q 6= 1, we would be able to determine the parameter
A, and, consequently, the p.d.f. f1.4,A.
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Figure: The dependence on A of the 4th unnormalized Q-moment of

f1.4,A for diferent values of Q. We can notice that µ
(4)
Q [f1.4,A] depends

monotonically on A for any Q 6= 2.6 (2.6 = 4 · (1.4) − 3).
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q-generalization of the inverse Fourier transform

Let f be a non-negative measurable piecewise continuous function.
For each y ∈ supp f , we define f (y)(x) = f (x + y). Then,

Fq[f
(y)](ξ, y) =

∫

supp f (y)

f (x + y)e
iξx [f (x+y)]q−1

q dx .

Using the change of variables z = x + y , we have that

∫

∞

−∞

Fq[f
(y)](ξ, y) dξ =

∫

∞

−∞

∫

supp f

f (z)e
iξ(z−y)[f (z)]q−1

q dz dξ .

Assuming that f is such that we are allowed to permute the
integral signs, we have that

∫

∞

−∞

Fq[f (y)](ξ, y) dξ =
2 − q

2π

∫

supp f

f (z)δq(ξ(z−y)[f (z)]q−1) dz ,
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where

δq(x) =
2 − q

2π

∫

∞

−∞

e iξx
q dξ (1 ≤ q < 2)

is called the δq distribution. It results that δq(x) = δ(x) for a
certain family of functions [4-7]. Then, if f belongs to this family,
the following property of the q-FT is obtained [8]:

f (y) =

[

2 − q

γπ

∫

∞

−∞

Fq[f
(y)](ξ, y) dξ

]1/(2−q)

(1 ≤ q < 2) ,

where γ = 2 if y is an interior point of supp f , and γ = 1 if y is a
boundary point of supp f .
When q → 1, the Eq. above yields the expression of the inverse
Fourier transform.

[4] M. Jauregui and C. Tsallis, J. Math. Phys. 51 (2010) 063304.
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Figure: The Hilhorst function f5/4,1(x). The dots were obtained

numerically using the last equation since F5/4[f
(y)
5/4,1] could not be

obtained analytically. We used γ = 2 for all the points within the interval
(−1, 1), and γ = 1 for x = ±1.
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Conclusions

It is possible to determine a p.d.f. f from the knowledge of its
q-FT and the value of νQ [f ] for some Q 6= 1. When Q = 1, this
extra information becomes trivial since ν1[f ] = 1.
If we know the q-FT of an arbitrary translation of a p.d.f. f , then
we can determine it using the equation

f (y) =

[

2 − q

γπ

∫

∞

−∞

Fq[f
(y)](ξ, y) dξ

]1/(2−q)

.

This is a remarkable property of the q-FT, which can make it be
useful in engineering and other applied areas.
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