q-generalization of the inverse Fourier transform

M. Jauregui C. Tsallis

Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems

q-moments and the q-Fourier transform

Let $Q \in \mathbb{R}$ and f be a probability density function (p.d.f.) such that

$$
\nu_{Q}[f]=\int_{-\infty}^{\infty}[f(x)]^{Q} d x<\infty
$$

We can define an escort p.d.f., namely $f_{Q}(x)=[f(x)]^{Q} / \nu_{Q}[f]$. Using this p.d.f. we can construct the Q-moments, $\Pi_{Q}^{(n)}[f]$:

$$
\Pi_{Q}^{(n)}=\int_{-\infty}^{\infty} x^{n} f_{Q}(x) d x \quad(n \in \mathbb{N})
$$

being the unnormalized ones, $\mu_{Q}^{(n)}[f]$:

$$
\mu_{Q}^{(n)}[f]=\int_{-\infty}^{\infty} x^{n}[f(x)]^{Q} d x
$$

The q-Fourier transform (q-FT) of any non-negative measurable function f is defined by

$$
F_{q}[f](\xi)=\int_{\text {supp } f} f(x) e_{q}^{i \xi x[f(x)]^{q-1}} d x \quad(1 \leq q<3)
$$

where $e_{q}^{i x}$ represents the principal value of $[1+(1-q) i x]^{1 /(1-q)}$. Let $q_{n}=n q-(n-1)$. It was proven [1] that the nth unnormalized q_{n}-moment of a p.d.f. f is related to $F_{q}[f]$ by the equation

$$
\left.\frac{d^{n} F_{q}[f](\xi)}{d \xi^{n}}\right|_{\xi=0}=i^{n} \prod_{j=1}^{n-1}\{[1+j(q-1)]\} \mu_{q_{n}}^{(n)}[f]
$$

[1] C. Tsallis, A.R. Plastino and R.F. Alvarez-Estrada, J. Math. Phys. 50 (2009) 043303.

q-Gaussian

Let $q<3$ and $\beta>0$. We define a q-Gaussian as a mapping $x \mapsto G_{q, \beta}(x)$ such that

$$
G_{q, \beta}(x)=\frac{\sqrt{\beta}}{C_{q}} e_{q}^{-\beta x^{2}}
$$

where C_{q} is a constant that can be obtained from the normalization condition

$$
\int_{-\infty}^{\infty} G_{q, \beta}(x) d x=1
$$

The q-FT of a q-Gaussian with $q \geq 1$ is a q_{1}-Gaussian with $q_{1}=(q+1) /(3-q)$. This implies that the q-FT is invertible on the space of q-Gaussians [2].
[2] S. Umarov, C. Tsallis and S. Steinberg, Milan J. Math. 76 (2008) 307.

Hilhorst example

Being $A \geq 0,1<q<2$, and $\alpha(q)=(2-q) /[2(q-1)]$, we define the mapping $x \mapsto f_{q, A}(x)$ such that

$$
f_{q, A}(x)=\frac{\left[1-A|x|^{2 \alpha(q)}\right]^{1 /(q-2)}}{C_{q}\left\{1+(q-1) x^{2}\left[1-A|x|^{2 \alpha(q)}\right]^{-1 / \alpha(q)}\right\}^{1 /(q-1)}}
$$

if $A \leq|x|^{-1 /[2 \alpha(q)]}$, and $f_{q, A}=0$ otherwise. This mapping can be considered as a p.d.f. since $f_{q, A}(x) \geq 0$ and

$$
\int_{-\infty}^{\infty} f_{q, A}(x) d x=1
$$

We can easily notice that $f_{q, 0}(x)=G_{q, 1}(x)$. However, by no means it is trivial to notice that $F_{q}\left[f_{q, A}\right](\xi)=F_{q}\left[G_{q, 1}\right](\xi)$. It follows from this fact that the q-FT is not invertible on the space of p.d.f's [3].
[3] H.J. Hilhorst, J. Stat. Mech. (2010) P10023.

Figure: The dependence on A of $F_{q}\left[f_{1.4, A}\right](1)$ for diferent values of q. We can notice that $F_{q}\left[f_{1,4, A}\right](1)$ depends monotonically on A for any $q \neq 1.4$.

Figure: The dependence on A of the quantity $\nu_{Q}\left[f_{1.4, A}\right]$ for diferent values of Q. We can notice that $\nu_{Q}\left[f_{1.4, A}\right]$ depends monotonically on A for any $Q \neq 1$. So, if we knew the q-FT of $f_{1.4, A}$ and the value of $\nu_{Q}\left[f_{1.4, A}\right]$ for some $Q \neq 1$, we would be able to determine the parameter A, and, consequently, the p.d.f. $f_{1.4, A}$.

Figure: The dependence on A of the 4th unnormalized Q-moment of $f_{1.4, A}$ for diferent values of Q. We can notice that $\mu_{Q}^{(4)}\left[f_{1.4, A}\right]$ depends monotonically on A for any $Q \neq 2.6(2.6=4 \cdot(1.4)-3)$.

q-generalization of the inverse Fourier transform

Let f be a non-negative measurable piecewise continuous function. For each $y \in \operatorname{supp} f$, we define $f^{(y)}(x)=f(x+y)$. Then,

$$
F_{q}\left[f^{(y)}\right](\xi, y)=\int_{\text {supp } f(y)} f(x+y) e_{q}^{i \xi \times[f(x+y)]^{q-1}} d x
$$

Using the change of variables $z=x+y$, we have that

$$
\int_{-\infty}^{\infty} F_{q}\left[f^{(y)}\right](\xi, y) d \xi=\int_{-\infty}^{\infty} \int_{\text {supp } f} f(z) e_{q}^{i \xi(z-y)[f(z)]^{q-1}} d z d \xi
$$

Assuming that f is such that we are allowed to permute the integral signs, we have that

$$
\int_{-\infty}^{\infty} F_{q}\left[f^{(y)}\right](\xi, y) d \xi=\frac{2-q}{2 \pi} \int_{\text {supp } f} f(z) \delta_{q}\left(\xi(z-y)[f(z)]^{q-1}\right) d z
$$

where

$$
\delta_{q}(x)=\frac{2-q}{2 \pi} \int_{-\infty}^{\infty} e_{q}^{i \xi x} d \xi
$$

$$
(1 \leq q<2)
$$

is called the δ_{q} distribution. It results that $\delta_{q}(x)=\delta(x)$ for a certain family of functions [4-7]. Then, if f belongs to this family, the following property of the q-FT is obtained [8]:

$$
f(y)=\left[\frac{2-q}{\gamma \pi} \int_{-\infty}^{\infty} F_{q}\left[f^{(y)}\right](\xi, y) d \xi\right]^{1 /(2-q)} \quad(1 \leq q<2),
$$

where $\gamma=2$ if y is an interior point of supp f, and $\gamma=1$ if y is a boundary point of supp f.
When $q \rightarrow 1$, the Eq. above yields the expression of the inverse Fourier transform.
[4] M. Jauregui and C. Tsallis, J. Math. Phys. 51 (2010) 063304.

Figure: The Hilhorst function $f_{5 / 4,1}(x)$. The dots were obtained numerically using the last equation since $F_{5 / 4}\left[f_{5 / 4,1}^{(y)}\right]$ could not be obtained analytically. We used $\gamma=2$ for all the points within the interval $(-1,1)$, and $\gamma=1$ for $x= \pm 1$.

Conclusions

It is possible to determine a p.d.f. f from the knowledge of its $q-\mathrm{FT}$ and the value of $\nu_{Q}[f]$ for some $Q \neq 1$. When $Q=1$, this extra information becomes trivial since $\nu_{1}[f]=1$.
If we know the q-FT of an arbitrary translation of a p.d.f. f, then we can determine it using the equation

$$
f(y)=\left[\frac{2-q}{\gamma \pi} \int_{-\infty}^{\infty} F_{q}\left[f^{(y)}\right](\xi, y) d \xi\right]^{1 /(2-q)}
$$

This is a remarkable property of the q-FT, which can make it be useful in engineering and other applied areas.
[5] A. Chevreuil, A. Plastino and C. Vignat, J. Math. Phys. 51 (2010) 093502.
[6] M. Mamode, J. Math. Phys. 51 (2010) 123509.
[7] A. Plastino and M.C. Rocca, arXiv:1012.1223 [math-ph]
[8] M. Jauregui and C. Tsallis, Phys. Lett. A (2011), in press, 1010.6275
[cond-mat.stat-mech]

