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g-moments and the g-Fourier transform

Let @ € R and f be a probability density function (p.d.f.) such
that

volf] = /OO [F()]9 dx < 0.

—00

We can define an escort p.d.f., namely fo(x) = [f(x)]?/vo[f].

Using this p.d.f. we can construct the @-moments, I'I((g)[f]:

I_I((g) :/ x"fo(x)dx (neN),

— 00

being the unnormalized ones, u(g)[f]:

W= [ 1% o




The g-Fourier transform (g-FT) of any non-negative measurable

function f is defined by

i€x[f(x)]9—1
FIIFI(E) = / eI 6 (1<),
SUpp

where el represents the principal value of [1+ (1 — q)ix]*/(1=9).
Let g, = ng — (n—1). It was proven [1] that the nth unnormalized
gn-moment of a p.d.f. f is related to F4[f] by the equation

d"F,[f1(§) g)
den

=i H{[1+J — )]} ) [f].

j=1

[1] C. Tsallis, A.R. Plastino and R.F. Alvarez-Estrada, J. Math. Phys. 50

(2009) 043303.
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g-Gaussian

Let g < 3 and 8 > 0. We define a g-Gaussian as a mapping
x — Gg (x) such that

VB s
GQﬁ(X) = quqﬁ )

where Cj is a constant that can be obtained from the
normalization condition

o
/ Ggp(x)dx =1.
— 0o
The g-FT of a g-Gaussian with ¢ > 1 is a g;-Gaussian with
g1 = (qg+1)/(3— q). This implies that the ¢g-FT is invertible on

the space of g-Gaussians [2].

[2] S. Umarov, C. Tsallis and S. Steinberg, Milan J. Math. 76 (2008) 307.



Hilhorst example

Being A>0,1<qg<2, and a(q) = (2 —q)/[2(g — 1)], we define
the mapping x — fg a(x) such that

[1 — A|x|?()]1/(a=2)
fa.alx) = Co{l+4 (g —1)x?[1 — A|x|2e(q)]-1/e(9)}1/(a—1)

if A< |x|~/RA@] and fq,a = 0 otherwise. This mapping can be
considered as a p.d.f. since f; 4(x) > 0 and

/ fg.A(x) dx = 1.

We can easily notice that f; o(x) = Gg,1(x). However, by no means
it is trivial to notice that Fy[fy a](§) = Fq[Gq,1](§). It follows from
this fact that the g-FT is not invertible on the space of p.d.f's [3].

[3] H.J. Hilhorst, J. Stat. Mech. (2010) P10023.

5/12



0.28

0.27

Flf1aal(Do0.26

0.25

T B R e

Figure: The dependence on A of Fg[fi.4 4](1) for diferent values of q. We
can notice that Fg4[fi 4 4](1) depends monotonically on A for any q # 1.4.
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Figure: The dependence on A of the quantity vq[fi.4 a] for diferent
values of Q. We can notice that vg[fi 4 4] depends monotonically on A
for any Q # 1. So, if we knew the g-FT of f;4 4 and the value of
vQ[fi.a,4] for some Q # 1, we would be able to determine the parameter
A, and, consequently, the p.d.f. fi 4 A.
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Figure: The dependence on A of the 4th unnormalized Q-moment of
fi.4,a for diferent values of Q. We can notice that ug)[ﬁ,47;\] depends
monotonically on A for any Q # 2.6 (2.6 =4-(1.4) — 3).



g-generalization of the inverse Fourier transform

Let f be a non-negative measurable piecewise continuous function.
For each y € supp f, we define f)(x) = f(x + y). Then,

Falf 16, y) = / Fx -+ y)e eI g
supp )

Using the change of variables z = x 4 y, we have that

/ FalfM)(&.y) dé = / / F(2)elE M@ gz ge |
—o0 —oo Jsupp f

Assuming that f is such that we are allowed to permute the
integral signs, we have that

21
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where

2-q [* .
5q(x):7"/_ e de| (1< q<2)

is called the 04 distribution. It results that d4(x) = d(x) for a
certain family of functions [4-7]. Then, if f belongs to this family,
the following property of the g-FT is obtained [8]:

f(y) = [2 —7 [ Ri)(ey) df} e

1<qg<2),
R KL NS ( )

where v = 2 if y is an interior point of suppf, and y=1if y is a
boundary point of suppf.

When g — 1, the Eq. above yields the expression of the inverse
Fourier transform.

[4] M. Jauregui and C. Tsallis, J. Math. Phys. 51 (2010) 063304.
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Figure: The Hilhorst function f5/4 1(x). The dots were obtained

numerically using the last equation since F5/4[f5(/y£ 1) could not be

obtained analytically. We used v = 2 for all the points within the interval
(-1,1), and y =1 for x = +1.
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Conclusions

It is possible to determine a p.d.f. f from the knowledge of its
g-FT and the value of vg[f] for some Q # 1. When Q =1, this
extra information becomes trivial since v4[f] = 1.

If we know the g-FT of an arbitrary translation of a p.d.f. f, then
we can determine it using the equation

2-q [ ) 1/(2—q)
fly)=|—— FqlfVY d

)= |22 [ Rl o

This is a remarkable property of the g-FT, which can make it be
useful in engineering and other applied areas.
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