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Bernstein, Greene and Kruskal [1] showed the existence of an unlimited class of solutions to the

Vlasov equation (BGK solutions) containing stationary potential structures. They proved that

essentially arbitrary one-dimensional potential distributions can be derived, if a suitable number

of particles trapped in potential troughs are added.

In the specific case of double layers (DL), which may be regarded as a BGK equilibrium with

a potential drop φ0 through the layer, some specific conditions must be fulfilled. One condition

is the presence of free and trapped (or reflected) electrons and ions; a DL with only one type of

trapped particle is exceptional, so usually all four classes of particles are required. Double layers

are found in a wide variety of plasma environments, from discharge tubes to space plasmas, and
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are especially common in current-carrying plasmas.

In the present work we investigate the existence of stationary potential structures in non-

thermal plasmas. Our model is based on nonthermal distribution functions, since the plasma

distributions near a DL, for example, are usually strongly non-Maxwellian. Here the free and

trapped electron populations are modeled by the family of κ distributions, which has been proven

to be appropriate for modeling non-Maxwellian plasmas. Some preliminary results are shown and

discussed.

Theory

Let us consider a Vlasov plasma of electrons and ions. As the intensity of the linear waves in

such a plasma is increased, nonlinear effects become important. Here we discuss the BGK modes,

named after Bernstein, Greene and Kruskal [1]. There are many practical applications of BGK

modes, such as the nonlinear stage of a Landau damped Langmuir wave and the theory of DLs.

We already know that any distribution that is a function only of the constants of motion of the

individual particles is a solution of the Vlasov equation. Here we are interested only in equilibrium
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solutions that do not depend explicitly on time. A BGKmode involves an equilibrium distribution

function in the presence of a spatially varying electrostatic potential, which is produced self-

consistently by the distribution function through Poisson’s equation. Then for each particle

species the Vlasov equation is (1D)

[

v
∂

∂z
−

qj
mj

dϕ

dz

∂

∂v

]

fj(z, v) = 0, (1)

where v ≡ vz and j = e, i. The potential ϕ(z) must be determined self-consistently through

Poisson’s equation

d2ϕ

dz2
= 4πe

[
∫ ∞

−∞
fe(z, v)dv −

∫ ∞

−∞
fi(z, v)dv

]

. (2)

If the ion and electron velocities are large enough, none of them are trapped in the electrostatic

potential wells. We can also consider the case where some of the electrons and/or ions are

trapped. It turns out that almost any potential ϕ(z) can be constructed by choosing appropriate

distributions of trapped/untrapped electrons and trapped/untrapped ions.

3



Here we assume fixed ions and consider the case of trapped and untrapped electrons modeled

by two different κ distributions. Working in the wave frame, the Vlasov equation (1) is solved by

• Free electrons - E = u2 − φ ≥ 0

fκf(u) = Aκ











1 +

[

σ
√

(u2 − φ) + uD

]2

(κ− 3/2)











−κ

(3)

• Trapped electrons - E = u2 − φ < 0

fκt(u) = Aκ

{

1 +
β
(

u2 − φ
)

+ u2D
(κ− 3/2)

}−κ

(4)

where σ = sgn(u), u = v/vT , φ = eϕ/kBT and Aκ = N0Γ(κ)

[π(κ−3/2)]
1/2

vTΓ(κ−1/2)
. uD is the phase

velocity of the structure (electron hole) in the laboratory frame and β is the trapping parameter,

which is introduced to allow the description of different states of trapped particles: β = 0

represents an electron distribution which is flat in the trapped region, and β < 0 describes a
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situation in which there is a deficit of trapped particles [2].

Figure 1: Electron distribution function for β = −3 and κ = 2 (electron hole in red)
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Preliminary Results

First, we determine the normalized density ne(φ) given by

ne(φ) =
Aκ (κ− 3/2)κ

N0
[I1 (φ) + I2 (φ) + I3 (φ)] , (5)

where

I1 (φ) =

∫ −
√
φ

−∞

{

(κ− 3/2) +
[

−
√

(u2 − φ) + uD

]2
}−κ

du, (6)

I2 (φ) =

∫

√
φ

−
√
φ

[

(κ− 3/2) + β
(

u2 − φ
)

+ u2D
]−κ

du, (7)

I3 (φ) =

∫ ∞

√
φ

{

(κ− 3/2) +
[

√

(u2 − φ) + uD

]2
}−κ

du. (8)

In Figs. (2) and (3) we show the influence of the parameters κ and β in the normalized electron

density.
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Figure 2: ne (φ) for β = 0 and κ = 1.6(red), 2.5(green)

and 4.8(yellow)

Figure 3: ne (φ) for β = −3 and κ = 1.6(red), 2.5(green)

and 4.8(yellow)

Next Step

We now will proceed to determine the normalized electrostatic potential φ given by
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d2φ

dζ2
= 2[ne (φ)− 1], (9)

where ζ = ωpez/vt. We intend to analyze the influence of various parameters on the behaviour

of φ. We also will consider the case of trapped and untrapped ions and the possible electrostatic

structures associated to them.
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