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Product Rule (PR)

1) Consider a fully connected graph.

2) Select randomly two bonds and occupy the one
which creates the smaller cluster.

Classical Percolation

Product Rule (PR)
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Explosive Percolation Transition is Actually Continuous
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Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem
for ireversible systems [D. Achlioptas, R. M. D’ Souza, and J. Spencer, Science 323, 1453 (2009)] in

Explosive Percolation is Continuous, but with Unusual Finite Size Behavior
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We study four Achlioptas type processes with “explosive” percolation transitions. All transi-
tiope are clearlv coptipnons but their fipjte sjoa sealine fupetiops are pot entire holomorphjc The
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- Continuity of the Explosive Percolation Transition
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The explosive percolation problem on the complete graph is investigated via extensive numerical
simulations. We obtain the cluster-size distribution at the moment when the cluster size hetero-
geneity becomes maximum. The distribution is found to be well described by the power-law form
with the decay exponent v = 2.06(2), followed by a hump. We then use the finite-size scaling
method to make all the distributions at various system sizes up to N = 2%7 collapse perfectly onto a
scaling curve characterized solely by the single exponent 7. We also observe that the instant of that
collapse converges to a well-defined percolation threshold from below as N — co. Based on these
observations, we show that the explosive percolation transition in the model should be continuous,
contrary to the widely-spread belief of its discontinuity.

24 Mar 2011

PACS numbers: 64.60.ah, 64.60.ag, 36.40.F1




Best-of-m Model:
Geometry and Transport Properties

1) Select randomly m bonds and occupy the one which
creates the smaller cluster.
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JSA, Herrmann, Moreira, and Oliveira, Phys. Rev. £ 83, 031133 (2011)



Best-of-m Model:
Geometry and Transport Properties
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Best-of-m Model:
Geometry and Transport Properties
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Exponents depend non-monotonically on m!



Correlated Landscapes

Fractional Brownian Motion




Optimal Paths under strong disorder

1) On a square lattice of size L with fixed BC's at the top and bottom and
periodic BC's in the transversal direction, we assign to each site i a given

“energy” value ¢ given by,
& =explA(p; —1)]

where p is a random variable uniformly distributed in [0,1]. This is
equivalent to choose ¢ from a power-law distribution,

P(s,) ~1/¢,

(now normalizable) with maximum cutoff Emax = eﬂ .

2) The energy of a path is the sum of all energies of its sites. The optimal
path (OP) is defined here as the one among all paths connecting the bottom
to the top of the lattice that has the smallest energy.

3) In the strong disorder limit, optimal paths are self-similar with fractal
dimensions given by Ds*1.22 [Cieplak, Maritan & Banavar, Phys. Rev. Lett.
(1994)]. This path has the same fractal dimension as the watershed.



Optimal Path Crack

JSA, Oliveira, Moreira & Herrmann, PRL 103, 225503 (2009)

1) The Dijkstra algorithm [Dijkstra, Num. Math. (1959)] is used to
calculate the first OP connecting the bottom to the top of the

network:

2) The site in the OP having the highest energy is permanently
blocked (i.e., an irreversible “"micro-crack” is formed);

3) The next OP is calculated, from which the highest energy site is
again removed and so on, and so forth;

4) The process continues iteratively until the system is disrupted,
i.e., we can no longer find any path connecting bottom to top. The
disrupting path also has the same fractal dimension as the
watershed.




Quantitative Results
JSA, Oliveira, Moreira & Herrman, PRL (2009)

> Simulations with 1000 realizations of lattices for each different
size 32<L<512 and distinct values of the disorder parameter p.

> Weak disorder —> clear scaling laws.
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Optimal Path Crack in 3D
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In 3d, watersheds, OPC's and the surface of clusters
generated with the Gaussian model of explosive
percolation, all have the same fractal dimension!
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Bridge Percolation
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A bridge (or anti-red bond)
is a bond which, if occupied,
would create a first spanning
cluster.

Be p; the probability to
occupy a bridge. The weight
of a configuration is then
given by,

p°(L-p) @-p,)°

where O, £ and B are the
number of occupied bonds,
empty bonds and bridges,
respectively.




Bridge Percolation




Bridge Percolation
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Bridge Percolation in 3
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Bridge Percolation in higher dimensions
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Above the upper critical dimension, the set of bridges is densel!



Conclusions

> The backbone of the fracture constituted of OPC's is apparently
(not proved) disorder independent. It is also a self-similar object
with fractal dimension D, *1.22.

> This dimension is (statistically) similar to the ones obtained for
OP's under strong disorder [Schwartz et al., PRE (1998)],
Disordered Polymers [Cieplak et al., PRL (1994)], strands in
Invasion Percolation [Cieplak et al., PRL (1996)], paths on Minimum
Spanning Trees [Dobrin et al., PRL (2001)], and the hulls of
Explosive Percolation clusters [Aradjo & Herrmann, PRL (2010)].

> Watersheds on uncorrelated landscapes and bridge percolation
also exhibit the same fractal dimension, namely, D¢*1.21.

> Exploding percolation clusters generated with the best-of-m
rule can have anomalous transport properties.

Qutlook

> Is the PR rule a first or second order transition?
> Can one formulate a rigorous equivalence between the models?
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