
Motivation
Human dynamics of tasks execution

Social complex networks and the influence on the decision making process
Controlling self-organized criticality

Main conclusion

Decision making in complex systems

D. O. Cajueiro1,2

1Department of Economics, Universidade de Braśılia.
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Big picture

Complex (social) systems are particularly challenging:

The number of variables is very large

The relevant variables are often unknown and hard to measure

The time scales which the variables evolve are not well
separated from each other

There is just one realization

The observer participates in the system and modifies the
environment (for instance, the Lucas’s critique in
macroeconomic and public policy)

Nonlinear network dependence (representative agent
assumption does not work)
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Big picture

The existence of feedback

The rules of the game and the agents are evolving over time

The dynamics of information flow is fundamental

The existence of large degree of randomness and
heterogeneity, memory and anticipation

The systems are highly non-stationary

The existence of incentive problems, Helbing, D. and Balietti, S. From Social Simulation to
Integrative System Design. Forthcoming in European Physical
Journal Special Topics, 2011., Johnson, N. F., Jefferies, P. and Hui, P. M. Financial Market
Complexity: What Physics Can Tell Us About Market Behaviour.
Oxford University Press, 2003.
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Arguments that will guide this presentation are based on:

Optimization

Control
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Big picture
Why does optimization play a role here?

Although there are several principles behind agents decisions,
in some sense we believe that social agents try to maximize
some measure of satisfaction.
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Big picture
How about control?

Human beings always have tried to interfere in nature or
social systems in order to improve their adaptation.

Intervention in complex systems is possible:

Seminal example: Chaos control methodology (Ott, Grebogi
and Yorke, 1990)
New examples: Controlling by deletion (Motter, 2004) and
controlling self-organized criticality (Cajueiro and Andrade,
2010)

D. O. Cajueiro Decision making in complex systems



Motivation
Human dynamics of tasks execution

Social complex networks and the influence on the decision making process
Controlling self-organized criticality

Main conclusion

Big picture
How about control?

, E. Ott, C. Grebogi and J. A. Yorke. Controlling chaos.
Physical Review Letters 64, p. 1196-1199, 1990. [ISI 3078], A. E. Motter. Cascade control and defence in complex
networks. Physical Review Letters 93, p. 098701, 2004. [ISI 132], D. O. Cajueiro and R. F. S. Andrade. Controlling
self-organized criticality in Abelian Sandpiles. Physical Review E
81, p. 015102, 2010. [ISI 3]

D. O. Cajueiro Decision making in complex systems



Motivation
Human dynamics of tasks execution

Social complex networks and the influence on the decision making process
Controlling self-organized criticality

Main conclusion

Talk

Human dynamics of tasks execution

Social complex networks and the influence on the decision
making process

Are complex networks likely to arise in social interactions?
Flow of information in complex networks
Enforcing social behavior in complex networks
Navigation in complex networks

Controlling self-organized criticality
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Queueing theory
Motivation

Queueing theory involves the mathematical study of queues or
waiting lines
The formation of waiting lines is occurs whenever the current
demand for a service exceeds the current capacity to provide
that service
These decisions are often difficult since one cannot accurately
predict when units will arrive to seek service or how much
time will be required to provide that service
Providing too much service would involve excessive costs
Not providing enough service capacity would cause the waiting
line to become excessively long at times
Excessive waiting also is costly in some sense, whether it be a
social cost, the cost of lost customers...
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Queueing theory
Standard modeling

The basic process assumed by most queuing models are the
following:

Customers requiring service are generated over time by an
input source
The customers enter the queuing system and join a queue. At
certain times a member of the queue is selected for service by
some rule known as the service discipline (Ex. FIFO)
The required service is then performed for the customer by
the service mechanism, after which the customer leaves the
queueing system
The time required to receive service is called waiting time and
the time between consecutive arrivals is referred to as the
interarrival time
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Queueing theory
Examples

Commercial service systems: barber shop, cafeteria line

Transportation service systems: cars waiting at a traffic light,
airplanes waiting to land, cars waiting to park

Business-industrial services systems: maintenance systems,
banking lines

Social service systems: Judicial system, mails being waited to
be answered

Health care systems: hospitals, ambulances
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Queueing theory
Role of exponential distribution

Characteristics of queueing systems are determined by two
statistical properties:

Interarrival times

waiting times

The standard distribution used to model these variables is the
so-called exponential distribution:

P(T ≤ t) = 1− e−αt

P(T > t) = e−αt
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Empirical findings
Stylized facts

Empirical evidence has shown that the dynamics of inter-event
times driven by human actions may not be random and not
well approximated by exponential distributions

These processes are characterized by bursts of rapidly
occurring events separated by long periods of inactivity
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Empirical findings
Examples

Internet activity: Paxson and Floyd (1996)

financial asset activity: Masoliver, Monteiro and Weiss (2003)

E-mail activity: Barabasi (2005)
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Barabasi’s framework

Model of human activity where the distribution of the
inter-event time is a consequence of a decision queue process

The most relevant protocols for driving human dynamics is a
protocol based on the execution of the high priority item (the
others are FIFO and random)

In the protocol based on the execution of the high priority
item, while high priority tasks are executed as soon as they are
added to the list, low priority tasks wait for a long time until
all high priority tasks are executed

He shows numerically that the distribution of inter-event
times follows a power law
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Literature review

Vazquez (2005) and Anteneodo (2009) provide exact results
for Barabasi’s model

Grinstein and Linsker (2006) map the variable length priority
model considered above onto a model of biased diffusion
deriving asymptotic distributions for the inter-event times

Kentsis (2005) and Barabasi and Oliveira (2006) argue that
other mechanisms contribute for the distributions of waiting
times such as deadlines, time dependence of priorities and the
social context of the problem etc

Blanchard and Hongler (2007) relax the assumption that the
priorities of tasks do not change over time and studies
queueing systems where deadlines are assigned to the
incoming tasks
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Our work

, D. O. Cajueiro and W. L. Maldonado Role of optimization in
the human dynamics of task execution. Physical Review E 77, p.
035101, 2008.

We investigate the assumption that people execute tasks on a
protocol that execute firstly the high priority item.

We suppose that people assign priorities to the tasks on their
lists in order to minimize some cost index, i.e., a cost
associated to the fact of not processing a given collection of
tasks in a given time step

We built a discounted stochastic dynamic programming model
with two types of tasks (low and high priority tasks) and a
cost per stage for keeping a number of low and high priority
tasks without processing
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Setup of the problem

There are two queues waiting for a service on a single server

Let g(xL, xH) be the current cost of having state (xL, xH)
which is the state of the system, xL (xH) is the number of
tasks in the low (high) priority queue

The dynamics of these queues are modeled as follows. At each
discrete time step with probability

λρ a new task arrives in the queue formed by high priority
tasks

λ(1− ρ) a new task arrives in the queue formed by low
priority tasks
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Setup of the problem

Within each of the queues the tasks are executed on a FIFO
basis.

With probability µu(xL, xH) the first task of the high priority
queue is executed and with probability µ(1− u(xL, xH)) the
first task of the low priority queue is executed.

We assume here that u(xL, xH) is a state dependent control
variable that the agent will choose in order to minimize the
total cost function
Ju(xL, xH) = Eu

xL,xH
[
∑∞

t=1 α
tg((xL(t), xH(t)))], where Eu

xL,xH
[·]

is the expected value conditioned to the current state (xL, xH)
and the state control variable u and α is the discount factor.

D. O. Cajueiro Decision making in complex systems



Motivation
Human dynamics of tasks execution

Social complex networks and the influence on the decision making process
Controlling self-organized criticality

Main conclusion

Solution of the problem
Bellman equation

Due to the principle of optimality and the Banach fixed point
theorem, if the minimum cost function
J(xL, xH) = minu(xL,xH)∈[0,1] Ju(xL, xH) exists, it must be given by
the unique solution of the Bellman equation, that may be written
as

J(xL, xH) = F (xL, xH) + min
u(xL,xH)∈[0,1]

u(xL, xH)G (xL, xH)

where

F (xL, xH) = g(xL, xH) + λρ(1− µ)[αJ(xL, xH + 1)]

+ λ(1− ρ)(1− µ)[αJ(xL + 1, xH)]

+ (1− λ)µ[αJ(xL − 1, xH)]

+ ρλµ[αJ(xL − 1, xH + 1)]

+ (1− ρ)λµ[αJ(xL, xH)]

+ (1− λ)(1− µ)[αJ(xL, xH)]

and

G (xL, xH) =

(1− λ)µ[α(J(xL, xH − 1)− J(xL − 1, xH))]

+ ρλµ[α(J(xL, xH)− J(xL − 1, xH + 1))]

+ (1− ρ)λµ[α(J(xL + 1, xH − 1)− J(xL, xH))]
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Solution of the problem
Bellman equation

G (xL, xH) =

(1− λ)µ[α(J(xL, xH − 1)− J(xL − 1, xH))]

+ ρλµ[α(J(xL, xH)− J(xL − 1, xH + 1))]

+ (1− ρ)λµ[α(J(xL + 1, xH − 1)− J(xL, xH))]
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Results
Linear costs

We assume that g(xL, xH) = hLxL + hHxH , for 0 < hL < hH , i.e.,
the current cost of having one additional high priority task in the
queue is larger than having one additional low priority task in the
queue.
It is easy to show that the cost function is given by

J(xL, xH) = c + cLxL + cHxH

Furthermore,
G (xL, xH) = µ

α

1− α
(hL − hH)

is always negative implying that u(xL, xH) = u = 1 for every state
(xL, xH).

This result is consistent with Barabasi’s results.
D. O. Cajueiro Decision making in complex systems
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Results
Quadratic costs

We assume that g(xL, xH) = hLx
2
L + hHx

2
H , for 0 < hL < hH .

The solution of the Bellman equation depends explicitly on
the signal of the function G (xL, xH)

Three different regions will arise

Region A the domain of (xL, xH) where G (xL, xH) > 0
Region B the domain of (xL, xH) where G (xL, xH) = 0
Region C the domain of (xL, xH) where G (xL, xH) < 0.
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Results
Quadratic costs

We have found that the minimum cost function is given by

J(xL, xH) =


JA(xL, xH) if (xL, xH) ∈ A
JB(xL, xH) if (xL, xH) ∈ B
JC (xL, xH) if (xL, xH) ∈ C

and the optimal control is given by

u(xL, xH) =


0 if (xL, xH) ∈ A

u ∈ [0, 1] if (xL, xH) ∈ B
1 if (xL, xH) ∈ C
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Results
Quadratic costs
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Figura: The regions A, B and C in the plane xL − xH .
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Results
Quadratic costs

Differently from the linear costs case, several types of protocol
are possible.

Region C considers a protocol based on the execution of the
high priority task.

Region A considers a protocol based on the execution of the
low priority task. It occurs in order to avoid that the size of
the queue of the low priority tasks do not increase too much.
“Too much” here is measured by the ratio hL/hH .

Region B does not determine a protocol. It can be a random
protocol (mixed strategy) or simply a protocol such the one
considered in region C or region A. Figure 1 shows the
geometry of these regions in the plane xL − xH .
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Results
Quadratic costs

It is not difficult to show that the expected value of the state
obeys the following dynamics

Et [x(t + 1)] = Et

[
xL(t + 1)
xH(t + 1)

]
=

[
xL(t)
xH(t)

]
+

[
λ(1− ρ)− µ(1− u(xL(t), xH(t)))

λρ− µu(xL(t), xH(t))

]
which has infinite fixed points if and only if λ = µ and
u(xL, xH) = u = ρ.
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Results
Quadratic costs

Consider only the most interesting situation which is the
fixed-length-queue, i.e., λ = µ.
Assuming that λ = µ, uB = ρ+ ϵ and ϵ > 0 and let e = (1,−1)′,
then the expected value of the system is governed by

Et [x(t + 1)] = x(t) + λϵe if it is in region B

Et [x(t + 1)] = x(t)− λρe if it is in region A

if the state is in region C , the expected state will certainly
come to region B and not come back to this region
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Therefore:

The dynamics takes place in the line passing by x(0) and
following the direction e.

If the expected state is in region B it goes into the direction
of region A and viceversa.

This dynamics is equivalent to the one dimensional system

y(t + 1) =

{
y(t) + t+ if y(t) ≤ 0
y(t)− t− if y(t) > 0

defined on the interval (−t−, t+], where t+ = λϵ and t− = λρ
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Results
Quadratic costs
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Figura: The evolution of y(t) for y0 = −0.2, λ = 0.5, ρ = 0.5 and
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Results
Quadratic costs

We can conclude that the stochastic process that defines the
length of each queue is not stationary.
The dynamics of the expected value of the length of the
queue exhibits a complex behavior: infinitely many cycles or a
ω-limit set being a dense subset in the interval. The intuition
behind that complex dynamics is quite reasonable.
In the region close to the frontier xH = (hL/hH)xL + δ that
separate A and B, we can observe the following: if the
expected state is in A, its dynamics moves toward region B,
since the priority is of L .
Once the expected state is in B, the dynamics takes it back to
the region A, since in this case in average the priority is of H
(due to the condition uB = ρ+ ϵ and ϵ > 0).
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Results
Quadratic costs

Because the frequency of tasks arriving is equal to that of
attending them, a cyclical or complex dynamics emerges close
to the referred frontier.
Figure above shows the case where this system is a limit cycle.
A similar situation involving regions B and C arises in the
case of ϵ > 0 and ρ = uB + ϵ. In these situations, the protocol
is ruled by the protocols considered in regions A and B in the
former case and by the protocols considered in regions B and
C in the later case.
For λ ̸= µ, either the expected value goes to infinite,
converges to 0, to axis xL = 0 or to axis xH = 0, following
different routes. Furthermore, different kinds of protocols are
possible.
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Final Remarks

In the human dynamics of the tasks execution decisions the
priority of one task is not always defined as being the most
important current task.

The dynamics of the work executions depends on the
cumulated tasks of short run priorities, the importance of each
kind of task and the intertemporal discount factor.

We have found that the dynamics of the expected state of the
system may be complex, exhibiting cycles of any order or with
limit set being a dense subset of the interval depending on the
parameter values of the model.
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Final Remarks

It is worth noting that complex dynamics in the solution of
dynamic programming problems are usually obtained for low
discount factors [Montrucchio and Sorger (1996)]. However,
in our quadratic case, complex dynamics arises for discount
factors of any size.
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Are complex networks likely to arise in social interactions?

, Cajueiro, D. O. Agent preferences and the topology of
networks. Physical Review E, v. 72, p. 047104, 2005.

Agents choose their neighbors in order to maximize their
satisfactions (or needs)

We can define utility functions as functions that present a
tradeoff between benefits and costs of making connections
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Are complex networks likely to arise in social interactions?

Small world networks: Two types of connections arise (a)
connections between close (low cost) agents that bring some
benefit; (b) connections between distant (high cost) agents
that bring huge benefits.

Scale-free networks: Either more connected nodes present
smaller costs or higher benefits.

Due to the homogeneity, regular (determinist homogeneity)
and random (random homogeneity) are not expected.
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How the flow of information influence the decision making
process?
A solution based on the MG framework

, D. O. Cajueiro and R. S. De Camargo. Minority game with
local interactions due to the presence of herding behavior. Physics
Letters A v. 355, p. 280-284, 2006., B. A. Mello, V. M. C. S. Souza, D. O. Cajueiro and R. F. S.
Andrade. Network evolution based on minority game with herding
behavior European Physical Journal B v. 76, p. 147-156, 2010.

Main principle: Agents herd more informed agents.

Main result: The volatility of the system (usually) increases in
the presence of herding behavior.
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Enforcing behavior in complex networks

, D. O. Cajueiro. Enforcing social behavior in an Ising model
with complex neighborhoods. Physica A 390, p. 1695-1703, 2011.

How should one proceed if this one wants to influence
individual behavior in a networked population?
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Enforcing behavior in complex networks
Is this useful?

This may be useful for instance to marketing companies
interested in political marketing, diffusion of new products or
changing habits of consumers in favor of a given company.

This can also be useful to interested governments that intend
to fight against habits such as smoking and drug consumption
or to reduce criminality in a neighborhood of a city.
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Enforcing behavior in complex networks
Related literature

There are some works [Baik and Kim Int. Rev. Law Econ. 21
(2001) 271-285; Ferrer Eur. Econ. Rev. 54 (2010) 163-180]
that study punishment for criminal behavior of a small group
of individuals that interact in very simple neighborhoods. ,
We work in a population explicitly modeled by a variation of
the Ising model and we work with complex neighborhoods of
many agents.

There have been some attempts to characterize how consumer
networks are formed [Kiss and Bichler Decis. Support Syst.

46 (2008) 233-253] , We provide a nice justification for the
importance of these works.
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Enforcing behavior in complex networks
Framework

, S. N. Durlauf. PNAS 96, 10582-10584, 1999.

Our system is formed of N agents (or N groups of agents with
the same relevant characteristics).

Each of them shares one of the two opposite behaviors,
denoted by σi = ±1 (for instance, smoke or not smoke), for
i = 1, · · · ,N.
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Enforcing behavior in complex networks
Framework

The decision of each agent towards one of these opinions
depends on three different ingredients:

Agent’s ability to support his own opinion.
A given external influence towards one of the opinions (such as
current media).
The effect of the other agents’ decision in this agent’s
decision. This setup is standard in the literature of social
interactions and opinion formation., We include the possibility that an external interested party

(such as government or a marketing company) is able to control
part of the external influence that an agent is submitted.
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Enforcing behavior in complex networks
Framework

We assume here (without lack of generality) that the opinion in
favor of this desired behavior is +1. We also assume that the
opinion of agent i changes from σi to σ̃i , from one period to the
next one, according to

σ̃i =


σi with probability pui

−σi with probability 1− pui
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Enforcing behavior in complex networks
Framework

where

pui =
exp(−βI ui )

exp(−βI ui ) + exp(βI ui )
,

β = 1/T is the inverse of the social temperature, a measure of the
degree of randomness of the agents, and

I ui = −xi − σi (hi + ui )−
N∑
j=1
j ̸=i

rjiσjσi = Ii − σiui

is the so-called social impact exerted on every individual. If Ii > 0
then the individual is inclined to change his opinion. On the other
hand, if Ii < 0, the opposite happens.
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Enforcing behavior in complex networks
Optimal policy

We are looking for the optimal level of enforcement ui that
the interested party should introduce in the system in order to
influence the behavior of an individual i of the population.

We assume that the interested party will choose the
aggressive campaign in order to maximize the probability of
the agents in the next period performing the desired behavior.

We assume that the cost with the enforcement law is
constrained to K , i.e.,

∑N
i=1 ui = K .
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Enforcing behavior in complex networks
Optimal policy

We show that the optimal policy u⋆ and µ⋆ that solve this problem
is given by

u⋆i =
Ii
σi

+
K

N
− I/σ, for i = 1, · · · ,N

where I/σ = 1
N

∑N
k=1

Ik
σk
.
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Enforcing behavior in complex networks
Optimal policy

For the optimal policy, one gets

p̃u
⋆

i = exp [β(K/N − I/σ)]/2 cosh [β(K/N − I/σ)].

Therefore, the optimal policy equalizes the probabilities p̃ui , for
i = 1, · · · ,N, for both types of agents.

The intuition behind this policy is simple:

If an individual is strongly inclined to the desired decision, the
interested party does not need to worry about him.
The interested party may even reduce the resources directed to
him.
This happens because he has a high self-support parameter in
favor of the desired action, the field has a strong positive effect
on him or his peers strongly affect his behavior towards the
desired decision.
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Enforcing behavior in complex networks
Complex neighborhoods

How do complex neighborhoods affect the optimal enforcement
law u⋆?

We show that distribution of the enforcement laws depends
strongly on the topology of the complex neighborhood.
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Enforcing behavior in complex networks
Complex neighborhoods
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Figura: Probability distribution of the absolute values of the optimal
enforcement law u⋆ for computer generated networks.D. O. Cajueiro Decision making in complex systems
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Enforcing behavior in complex networks
How may one identify the role of each individual in the network?

We show that the Lagrange multipliers associated to an
associated optimization problem can be used to identify the
role of each individual in the network.
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Enforcing behavior in complex networks
How may one identify the role of each individual in the network?

An example: Solve the problem maxu1,u2,u3u1 + 2u2 + 3u3 subject
to u1 + u2 + u3 = 1 and u1 ≥ 0, u2 ≥ 0, u3 ≥ 0

It is easy to show that the solution of this problem is given by
(u1, u2, u3, λ1, λ2, λ3, µ) = (0, 0, 1, 2, 1, 0, 3).

Note that if we could have u1 = δ1 < 0 and u2 = δ2 < 0, we
would be able to increase the maximum of the function
u1 + 2u2 + 3u3 by −2δ1 − δ2 units.

The effect of reducing the value of u1 by −δ1 units is larger
than the effect of reducing the value of u2 by −δ2 units.

Therefore, individual 1 is a better resource provider than
individual 2. Thus, λ1 > λ2.
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Navigation in complex networks
What is that?

A walk consists of stepping from node to node of the complex
network via the links between them.
Examples:

Displacement of a walker in a city

Transmission of information between computers

Internet searching

Accessing a member of an organization
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Navigation in complex networks
Why are people interested in that?

They may identify the ability of communication of two
individuals in the network.

They may investigate how the topology of the network
constraints the communication (displacement) among (of)
agents in the network.

They may create optimal topologies for searching.

They may design techniques to identify the most important
agents in the network.
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Navigation in complex networks
Random walkers X directed walkers

“Random walkers”: a random walker located at a specific
node chooses one of the neighbors of this node based on some
transition matrix in order to continue the walk [Noh and
Rieger. PRL 92, 118701 (2004), Yang. PRE 71,016102
(2005), Costa e Travieso. PRE 75, 016102 (2007)]

“Directed walkers”: each step the walker takes the shortest
path to the target [Sneppen et al.. EPL 69, 853 (2005).
Rosvall et al. PRL 94, 028701 (2005). Rosvall et al. PRE 72,
046117 (2005)]
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Navigation in complex networks
Optimal Navigation in complex networks

,D. O. Cajueiro. Optimal navigation in complex networks.
Physical Review E, 79, 046103, 2009., What drives the behavior of the walker?
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Navigation in complex networks
Optimal Navigation in complex networks

Assume that the sites of a city are represented by a network G
with n nodes V (G ) = {1, 2, · · · , t, · · · , n} where t is a special
node called target.

In each node, a traveler has to choose between making the
next step of his walk randomly at a cost CN or using the link
that will certainly approximate him to the target t with cost
CN +CI , where CN is the constant cost of one step navigation
and CI is the constant cost of asking people for the correct
direction.
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Navigation in complex networks
Optimal Navigation in complex networks

We assume that the traveler makes the decision in order to
minimize the cost of the trajectory given by

J(i) = min
π∈Π

Eπ

 ∑
k∈P(i ,t)

g(k, u(k))/i


where P(i , t) is the path from node i to the target t, the
expectance Eπ[·/i ] is conditional to the policy π and to the
node i , π = {u(1), u(2), · · · , u(t), · · · , u(n)} is an admissible
policy that belongs to the set of admissible policies Π and
u(k) is the admissible control that belongs to the set of
admissible controls U(k) = {0, 1}, ∀k.
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Navigation in complex networks
Optimal Navigation in complex networks

This problem can be solved numerically using dynamic
programming. The convergence is ensured by the Banach
Fixed Point Theorem.
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Navigation in complex networks
Optimal Navigation in complex networks

We show that two extreme regimes arise (depending on the
cost of information) – one dominated by directed walkers and
the other by random walkers.
We show that the critical point of the transition from one
regime to the other is a function of the connectivity and the
size of the network.
We show that this approach can be used to generalize several
concepts presented in the literature concerning random
navigation and direct navigation.
We show that the investigation of the extreme regimes
dominated by random walkers and directed walkers is not
sufficient to correctly assess the characteristics of navigation
in complex networks.
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Navigation in complex networks
Optimal navigation and the centrality of the nodes

,D. O. Cajueiro. Optimal navigation for characterizing the role
of the nodes in complex networks. Physica A, v. 389, p.
1945-1954, 2010.

We use the approach of optimal navigation to evaluate the
centrality of a node and to characterize its role in a network.

We show that the centrality measures inherited from the
approach of optimal navigation may be considered if one
desires to evaluate the centrality of the nodes using other
pieces of information beyond the geometric properties of the
network.
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Navigation in complex networks
Optimal navigation and the centrality of the nodes

Evaluating the correlations between these inherited measures
and classical measures of centralities such as the degree of a
node and the characteristic path length of a node, we have
found that: (1) in some cases the centrality of the nodes may
be explained by the other measures of centrality; (2) in other
cases, we have found non-trivial results.
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Navigation in complex networks
Learning path in complex networks, D. O. Cajueiro and R. F. S. Andrade. Learning paths in

complex networks Europhysics Letters 87, 58004, 2009.

The approach has been partially motivated by recent progress
in characterizing navigation problems in networks, having as
extreme situations the completely ignorant (random) walker
and the rich directed walker, which can pay for information
that will guide to the target node along the shortest path.
A learning framework based on a first-visit Monte Carlo
algorithm is implemented, together with four independent
measures that characterize the learning process: Average path
length (and normalized), velocity of learning (and normalized)
The results indicate that the navigation difficulty and learning
velocity are strongly related to the network topology.
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Controlling self-organized criticality. Why?

Although self-organized systems organize by themselves in a
state of lower energy, this reorganization is very costly for
society.

SOC reorganization generates avalanches of all sizes with
power-law like distributions.
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How do we intend to do it?

“Control”can be understood as an interference in the
processes by which the system dissipates energy.

We intend to avoid large avalanches generating avalanches of
small and moderate size.
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What cannot be done?

We cannot shake the planet. Therefore, it is not possible to
control earthquakes.
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What can we do?

We can induce avalanches in restricted hill slides in order to
warrant safety for ski riders.

We can enforce behavior in self-organized driven (population)
systems such as highway traffic.
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What can we do?

We can ensure portfolios using some kind of stop loss strategy.

We can reduce crises caused by the break of large economic
bubbles:

The Fed has no explicit mandate under the law to try to contain a
stock-market bubble. Indirectly we had the authority to do so, if we
believed stock prices were creating inflationary pressures. (...) All
the same, we agreed that trying to avoid a bubble was consistent
with our mission, and that it was our duty to take the chance. (...)
Then we met again on March 25 and raised short-term rates by
0.25 percent (...). Alan Greenspan – The age of turbulence.
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Other related questions

Are there control schemes behind the self-organized critical
avalanches that take place in the brain?

Is it possible to control economic fluctuations?

How about fluctuations that arise in economic and business
chains?

How may one efficiently control self-organized driven systems?
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Some useful definitions

Controlled avalanches: avalanches generated by the control
system

Uncontrolled avalanches: usual avalanches caused by the
natural deposition process
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Controlling SOC in two-dimensional squares

, Cajueiro and Andrade. Controlling self-organized criticality in
sandpile models. Phys. Rev. E 81, 015102(R), 2010.

The main assumption is that we have a replica model of the
system /.

Using the replica model of the system, the control scans the
system and identifies potentially large events whenever the
avalanche risk is high enough.

Once a threat is detected, an externally induced avalanche is
triggered. [There is a threshold to decide whenever a
controlled avalanche should be generated!]
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Results
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How far from optimal are these heuristics to control SOC?

, Cajueiro and Andrade. A dynamical programming approach for
controlling the directed abelian Dhar-Ramaswamy model.
Forthcoming in Physical Review E (2010)

We try to minimize a combined cost index that includes the
cost of avalanches and the cost of intervention.

When large avalanches take place in the system, the system is
strongly penalized.

We solve this problem using a dynamical programming
approach (for tiny systems /).

We show that the heuristics that are being considered are
close to the optimal rules ,.
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Controlling self-organized criticality in complex networks

, Cajueiro and Andrade. Controlling self-organized criticality in
complex networks. Forthcoming in European Physical Journal B
(2010).

In each node of a complex network, there is a demand for
limited recourses.

Since the resources are limited, if the demand exceeds a given
threshold in a node, an avalanche happens, i.e., the provider
of the resource in this node is closed and the demand is
guided to the neighbors of this node.

Being a system that exhibit self-organized criticality, it is clear
that a local avalanche in one node may trigger avalanches in
the node’s neighbors, transforming small avalanches into large
avalanches.
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Controlling self-organized criticality in complex networks

Besides, large avalanches are undesired in the system, since it
may destabilize several providers of resources simultaneously.

Therefore, one way of avoiding this kind of phenomenon is,
before it happens in one node with full mass, to close for an
instant of time the provider of the resource in the node and to
move the demand to the node’s neighbors.

Instantaneous closures can avoid big avalanches.
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Control scheme

We choose the percentage of highest degree nodes of the
network that will be controlled.

To be controlled here means that if a node is close to become
critical, the control system triggers an explosion on this node.

This means that a real controlled avalanche is triggered by
emptying the node and the mass available in this site goes
randomly to some of the neighbors of this node.

When it is the case, first we trigger an avalanche in the
highest degree node, then we trigger in the second highest
degree node and so on.
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Results (Free scale networks)
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Controlling SOC works, but

The spatial nature of the problem of controlling self-organized
makes the problem very difficult and challenging.

It is very difficult to deal with the “coupled nonlinear
difference equations” that describe the SOC behavior.

Pure optimization principles with perfect knowledge of the
system (until now) only work for tiny systems (based on
numerical solutions and the Banach fixed point theorem).
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Research agenda

Analytical results are welcome!

Some interesting applications or connections with real
problems (such as the problem of insurance portfolio) are also
welcome.

It is also interesting to test these ideas em real SOC systems
such as rice piles.
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Main conclusion

Research agenda

The focus of the work until now is on variations of sandpiles
models, where the interesting variable is the size of
avalanches. What can be done in the other, for instance,
self-organized driven systems.

Is it possible to build a control system based on some kind of
optimization principle that could be in some sense reduce the
concentration of mass in the network.

How to define controllability for this class of controlled
systems?
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Main conclusion

Interesting issues can arise if we put together ingredients of
Complex systems, optimization theory and control theory.
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