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 With this observation we can define an analog of the 
absolute temperature scale in such a manner that it is 
possible to make a thermodynamic interpretation for the 
interaction in the ground-state of quantum systems.  
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• T is the dimensionless interaction parameter. 

• V is positively defined. 

• The energy is a concave function of T. 

• The eigenstates of the Hamiltonian in the absence of 
interaction (T =0) are just the non-interacting states |φi>, 
whose respective energy eigenvalues, Ei(0) are defined 
through the relation  H0|φi> = Ei(0 )| φi>. 



The ground-state |0> can be expanded in terms of the non-
interacting states states |φi> as  

 

 

The coeficients ai(T) = < 0| φi > and pi(T)=|ai(T)|2 

 

For the non-interacting case T = 0 the system has the lowest 

energy E0(0) and pi(0) = i0. If T >0, like a thermal energy, 
the interaction favors other energy levels of the non-
interacting case. 



Only the non-interacting microscopic states are used to 
compute the thermodynamic properties. This enables us to 
define an analog of the absolute temperature scale, called 
ground-state temperature, as Tg = T/k, where k is a constant 

measured in Kelvins-1. 





We can introduce a so-called ground-state thermodynamics, 
defining the ground-state internal energy, ground-state free 
energy and ground-state entropy, respectively, as: 



We can verify that the ground-state thermodynamics 
precisely satisfies the standard thermodynamics relation for 

the Helmholtz free energy  
 

 

 

 

the heat capacity 



Let us study two exact solvable problems based on the 
Hubbard model 

 

 

 

We define                  Tg = U/kt 



1) Two electrons in two sites 





Boltzmann-Gibbs (dashed line) - 2 states (full line). 





The full line represents the case N = 2 and two electrons, while the dotted 
line represents the half-filled band for the one-dimensional case in the 
thermodynamic limit (N) 





We present an approach to solve problems of quantum 
mechanics using concepts of statistical mechanics.  

 

We can consider that taking different ground-state 
temperatures Tg, i.e, different values of the interaction 
parameter, the particles of the system fall into non-
interacting microstates, corresponding to different 
occupation probabilities for these energy levels. 



We found that the functional form of the ground-state 
entropy depends on the particular quantum system.  

 

The ideas presented here can eventually provide a 
mechanism for new approximation methods, such as the 
usage of the geometric average of the quantum states 
probability in the high dimensional limit for the Hubbard 
model.  



We can envisage in further works the study of the 
possibility that many different systems may fall into 
some basic classes of the ground-state entropy. 


