Sistemas Complexos, Associatividade, Processos Mentais e a Simbolização

Roseli S. Wedemann¹ Raul Donangelo^{2,3} Luís Alfredo V. de Carvalho³ ¹State University of Rio de Janeiro ²Universidad de la República - Uruguay ³Federal University of Rio de Janeiro

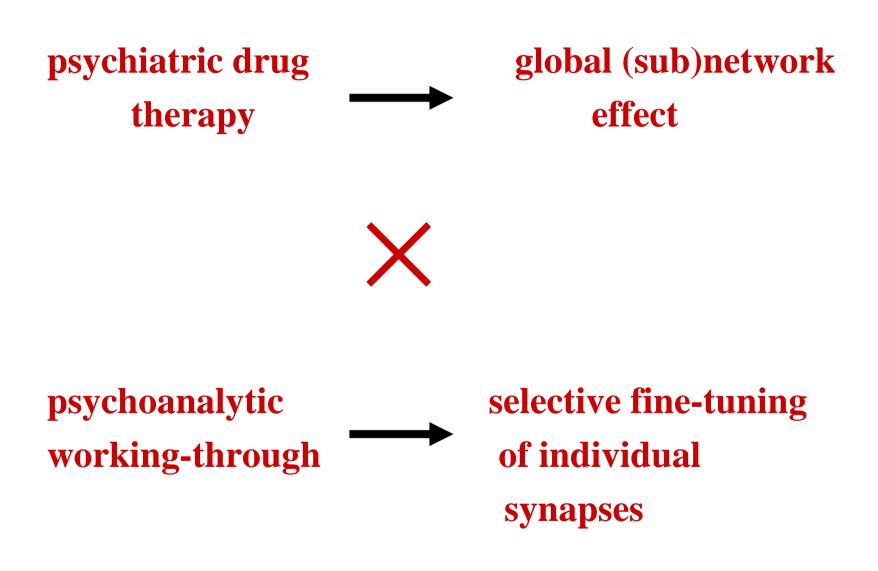
UNIVERSIDAD DE LA REPÚBLICA

Motivation

• Develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes as described by Freud (neurosis, working-through, conscious / unconscious associations).

Neurocomputational Models

• Understand the importance of the capacity for operating on symbols in the psychic aparatus and in therapy.


• Study the topological properties of these models. Concepts and methods from statistical mechanics and complex networks.

Mental Processes

- Creativity: Capacity of broadening attention to a wider range of elements, allowing the discovery of unusual associations of ideas (associationists).
- Delusions: Statements made in inappropriate contexts. Total and unquestionable certainty implies incorrigibility. A detachment from *reality* (Freud).
- Disorganized Thought: Excessively heterogeneous ideas are associated. Subject's discourse becomes incoherent and unintelligible.

- In schizophrenia, disorganized thought, delusions and hallucinations are considered positive psychotic symptoms and respond well to neuroleptic treatment.
- Psychodynamical theories correlate creativity, psychopathology and unconsciousness. Aspects such as broader, distant or looser association making and unfocusing of attention are common in describing creativity, psychotic thinking and schizophrenia.

• Neuroses: Repressions and traumas causing a compulsion to repeat painful (neurotic) symptoms.

"Once before I ventured to tell you that you nourish a deeply rooted faith in undetermined psychical events and in free will, but that is quite unscientific and must yield to the demand of a determinism whose rule extends over mental life."

Freud, *Introductory Lectures on Psycho-Analysis* Standard Edition, W. W. Norton and Co, 1966, first German Edition in 1917

Assumptions

- Mental states result from the global cooperation of the distributed neural cell activity in the brain. A global emergent state generates a bodily response, an *act*.
- Memory is encoded in the architecture of the neural net of the brain. Information is recorded by reconfiguring the net, learning.
- Memory traces are retrieved through an associative memory mechanism.
- Each brain state represents only one mental state. Each symbol is associated to only one meaning.

Freud and Neuroses

- Traumatic or repressed memories are knowledge which is present in the subject, but which is momentarily or permanently inaccessible to his consciousness: unconscious knowledge.
- Neurotic patients systematically repeat symptoms in the form of ideas and impulses: compulsion to repeat, related to the repressed memories.
- Neurotics have obtained relief and cure from strong neurotic symptoms through a mechanism called working-through: constructing conscious knowledge of the repressed and understanding and changing the compulsion to repeat through transference creativity.

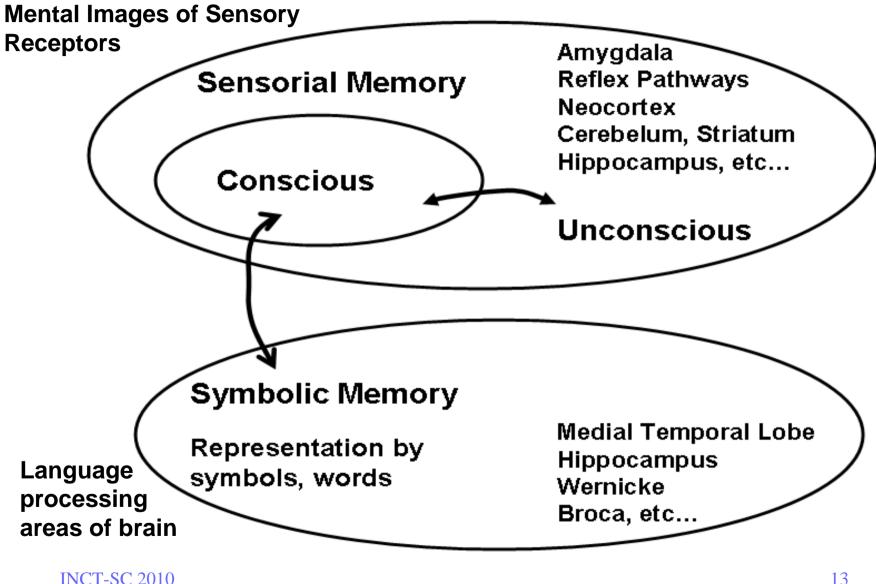
Freely talking, analyzing dreams, etc...

Functional Model for Neuroses

Neuroses manifest themselves as an associative memory process: network returns a stored pattern, when it is shown another input pattern sufficiently similar to the stored one.

Compulsion to repeat: neurotic symptom is acted when the subject is presented with a stimulus which resembles, at least partially, a repressed or traumatic memory trace, \hat{S} . stimulus \rightarrow net stabilizes on \rightarrow neurotic act \hat{S} Neurotic behavior: the act isn't a result of the stimulus as a new situation, but a response to \hat{S} .

 Psychoanalytic working-through:


 linguistic, symbolic
 reinforcing synapses

 associative process,
 among memory traces

 language
 in brain (also declarative

 memory, consciousness)

Conscious / Unconscious Processes

- A trace in sensorial memory may "become conscious" if associated to a pattern in symbolic memory.
- Symbolic memory areas associated with language → we can associate a word (symbol) such as "red" to the visual sensation of seeing a red object.
- Access to symbolic memory represents Freud's concept of conscious / unconscious mental processes (preconscious) and role of language in psychoanalysis. Importance of representation, symbolization in mental phenomena.
- Similar to ideas and models obtained from neurophysiology and cognition (Changeux¹, Edelman², Baars³).
- ¹J. P. Changeux, *The molecular biology of consciousness investigated with genetically modified mice*, Phil. Trans. R. Soc. B, 2006 361, 2239.
- ²G. M. Edelman, *Wider than the Sky, a Revolutionary View of Consciousness,* Penguin Books, London, 2005.
- ³ B. J. Baars, In the Theatre of Consciousness: Global Workspace Theory, A Rigorous Scientific Theory of Consciousness. *Journal of Consciousness Studies*, **4**, No. 4, 1997, pp. 292.309

Computational Model

We developed Algorithm Neuroses¹ to ilustrate these ideas.

Memory simulated by Boltzmann Machine (**BM**): Pattern retrieval on net is achieved by a simulated annealing (**SA**) process, where temperature *T* is gradually lowered by an annealing schedule α .

Psychoanalytic working-through is simulated based on Hebbian learning mechanism.

¹ R. S. Wedemann, R. Donangelo, L. A. V. Carvalho, Lecture Notes in Computer Science, Vol 2329, pp 236 - 245, 2002.

INCT-SC 2010

Memory functioning: Boltzmann Machine (BM) with complete graph.

N nodes with states S_i in $\{-1, 1\}$, synaptic weights $\omega_{ij} = \omega_{ji}$ Energy: $E(\{S_i\}) = -\frac{1}{2} \sum_{ij} \omega_{ij} S_i S_j$

Network state distribution function is **Boltzmann-Gibbs (BG)**:

$$P_{BG} \left(\{ S_i \} \right) = \frac{\exp \left[\frac{-E\left(\{ S_i \} \right)}{T} \right]}{\sum_{\{S_i\}} \exp \left[\frac{-E\left(\{ S_i \} \right)}{T} \right]}$$

T is network temperature

INCT-SC 2010

Real memory is not a complete graph.

We developed Hierarquical Clustering Algorithm^{1,2} to generate a clustered hierarchical topology in memories, based on biological mechanisms: neural growth factors and Hebbian learning.

- ¹R. S. Wedemann, R. Donangelo, and L. A. V. Carvalho, Chaos 19, 015116, 2009.
- ²R. S. Wedemann, L. A. V. Carvalho, and R. Donangelo, Neurocomputing, 2008, doi:10.1016/j.neucom.2008.02.023

Modeling structure of the topology of each memory

In many animals, brain cells have a structure called¹ on-center / off-surround. Cooperation / Competition

¹H. Hartline, F. Ratcliff, "Inhibitory Interactions of Receptor Units in the Eye of Limulus", Journal of General Physiology, 40, 351-376, 1957. INCT-SC 2010

- A signaling network is established to control development and plasticity of neuronal circuits.
- Competition is controlled by environmental stimulation
 this is the way environment represents itself in the brain.
- Formation of neuronal organizations (biological circuits) called maps.

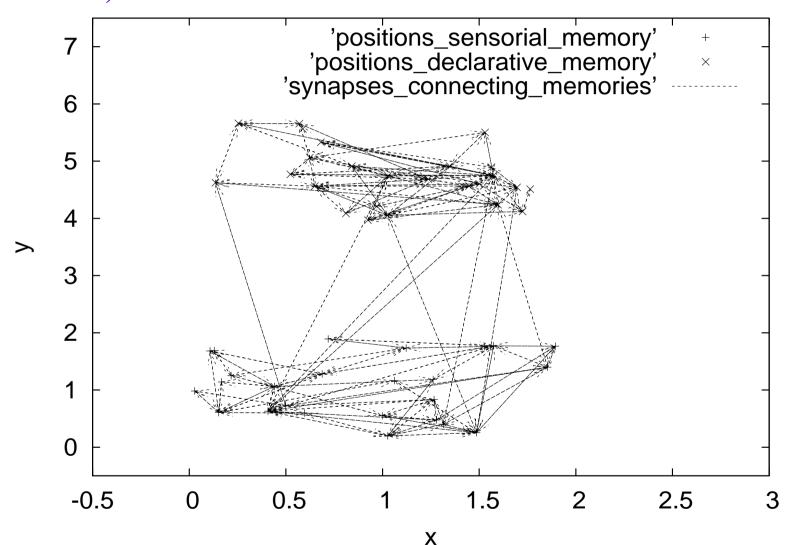
- Hebbian learning: synaptic growth among two neurons (or two regions representing memory traces) is promoted by simultaneous stimulation of the pair.
- Establish synapses among clusters (long range synapses) reflecting associations among representations, within and among memories.

→ LANGUAGE.

We don't know this distribution.

Started with random and study to find something better...

• If long range synapse connects neurons in different memories, multiply by $\lambda \in (0, 1]$. Neurotic network.


- Regulates synaptic *plasticity*, by strengthening synapses within a cluster and reducing synaptic strength between clusters (disconnects clusters).
- A kind of *preferential attachment* with conservation of total synaptic weights.

— Complex Networks

• Neurons that have received stronger sensorial stimulation (are more strongly connected), will stimulate their neighborhoods and promote still stronger connections. Agreement with the known microscopic biological mechanisms.

- System is small. Simulations are slow in current processors.
 — Purpose is to illustrate basic concepts and mechanisms at semantic level.
- Short range microscopic mechanisms are scalable.
 Mapping to biological substratum.
- Parallelization of algorithms for larger systems. Future work.

Network Topology with Long Range Synapses: $N = 50, \sigma = 0.58$

INCT-SC 2010

ERROR: invalidrestore OFFENDING COMMAND: restore

STACK:

-savelevel--savelevel--dictionary-