
Correção exata para os coeficientes empíricosCorreção exata para os coeficientes empíricos

de de tendência e de difusão tendência e de difusão ::

COMPLEXIDADE EM ECONOMIA

Instituto Nacional de Ciência e Tecnologia – Sistemas Complexos

de de tendência e de difusão tendência e de difusão ::

aplicação aplicação a séries temporais financeirasa séries temporais financeiras

CBPF,  Rio de Janeiro

1-5  março de 2010 

RosaneRosane RieraRiera FreireFreire

PUCPUC--RioRio



arbitrary low 

temperatures

T  → 0

thermodynamic 

limit 

N  → ∞

Accessibility of Mathematical Limits

asymptotic long time 

behavior

n , t  → ∞

N  → ∞

arbitrary  small 

time intervals 

∆t  → 0



INTRODUCTION

The dynamics of many complex systems exhibits an interplay of processes 
with different spatio-temporal scales :

large-scale slow modes  - deterministic forcing

&

small-scale  fast modes - stochastic forcing

Modeling fluctuating  phenomena

as a Ito-Stochastic differential equation:

where Wt is a standardized Wiener process:
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INTRODUCTION

The time evolution of the Probability Density Function ( PDF) 

P(x,t) ≡ P(Xt= x , t) 

can be described by the associated Fokker-Planck Equation:
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For ideal  time series Xt , the coefficients

can be perfectly reconstructed by:
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This limit can be directly estimated from

the finite-time conditional moments: xX

k

ttk
t

XX
k

xD
=+ >−<= ][

!

1
),(

~
ττ

τ



CHARACTERIZATION OF DRIFT AND DIFFUSION COEFFICIENTS : MOTIVATION

Prusseit &Lenhertz, PRL 98, 138103 (2007)

stochastic qualifiers of brain dynamics: 

discrimination of physiological and pathological activities

Electroencephalographic recordings: 
normal (left) epileptic (right)



CHARACTERIZATION OF DRIFT AND DIFFUSION COEFFICIENTS: MOTIVATION

Ivanova & Ackerman, J. Geophys. Res. 114 , D06113 (2009)

Earth climate-atmosphere components interplay  for meteorological predictions:

slow large scale synoptic conditions  & small fast scale iced crystal production

in cirrus clouds

reflectivity measurements of cirrus clouds



A.A.G.Cortines, C.Anteneodo & R.Riera , EPJB 65, 289 (2008) 

stock index dynamics worldwide – price formation driven by: 

slow varying large-scale aggregated information & unforeseen fast private information

CHARACTERIZATION OF DRIFT AND DIFFUSION COEFFICIENTS: MOTIVATION

German index DAX at weekly timescales



EMPIRICAL ACCESS TO  THE TRUE DRIFT AND DIFFUSION COEFFICIENTS

However, due to the finite sampling rate of real data Xt ,

one access only the finite-τ estimation

which may significantly differ from the true limit.

To achieve  
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some authors have proposed extrapolation  schemes: 



The error in the finite-τ coefficients can  be derived from
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in its integrated form :

METHODOLOGY: ITO-TAYLOR EXPANSION

tt

Let us consider the stochastic Ito-expansion for a given function F(Xt ):
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By applying Ito formula to the functions D1(Xt’) and √2D2(Xt’) : 
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METHODOLOGY: ITO-TAYLOR EXPANSION

After iterated applications of Ito formula  one gets an expression 
in terms of multiple stochastic integrals: 

k

k

k
IDDcXX

tt α
α

ατ ),( 21∑=−+



Inserting a simpler notation: D1(Xt’) ≡ A(t’)  and √2D2(Xt’) ≡ B(t’) 

METHODOLOGY: ITO-TAYLOR EXPANSION
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METHODOLOGY: ITO-TAYLOR EXPANSION

Using the operator definitions:  
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METHODOLOGY: ITO-TAYLOR EXPANSION

Truncating the expansion, the operations in  t’’  are performed in  t , 
leading to:  



METHODOLOGY: ITO-TAYLOR EXPANSION

Defining the multiple stochastic integrals:  
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METHODOLOGY: ITO-TAYLOR EXPANSION
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Therefore,  for the first conditional moment one has:
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For the second conditional moment one has:
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LINEAR-DRIFT AND QUADRATIC-DIFFUSION COEFFICIENTS
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We consider a representative class of diffusion models described by:

By inserting  the expressions
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the resulting expressions preserve the linear and quadratic x-dependence:
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ARBITRARY-ORDER CORRECTIONS

Hence, we are led

to the theoretical relation

between finite-τ coefficients 

and the true ones:

R. Riera & C. Anteneodo PRE 80, 031103 (2009)

and the true ones:

Our results generalizes previous ones in literature:
Sura & Barsugli , Phys. Lett. A 305, 304 (2002)
Ragwitz & Kant , Phys. Rev. Lett. 87, 254501 (2001)
Gottschall & Peinke , NJP 10, 083034 (2008)



ARBITRARY-ORDER CORRECTIONS

Summing the series we find the exact finite-τ expressions:

Defining:



KEY-NOTES

� There is a invariant relation among   

has finite variance for ( a1- b2)>0 : 

� The stationary PDF

� There is a invariant relation among   
estimated and true parameters:

representing the uphold of data variance under changes of sampling intervals.

leading to

� Normalized data only implies the rescaling:



EXACT FINITE-τ EXPRESSIONS

Summarizing, for normalized data one gets:

~~~
bab −=with the constraints:

Extracting the true parameters from the finite-τ estimates:

012

~~~
bab −=

012 bab −=with the constraints:



KEY-NOTES

� The relevant quantities are τa1, τb0 and  τb2

meaning  the invariance of laws on the chosen temporal units

In what follows we fix the time scale τ =1.

Other choices only implies the rescaling: 



O-U Processes:

FITNESS OF LOW-ORDER APPROXIMATIONS

Numerical computation for artificial series 

Theoretical results for different orders of 
truncation (darker colors for higher orders);

The infinite order ( exact) is in thick black lines

The zero order ( true values) is in dashed lines



General Processes:

FITNESS OF LOW-ORDER APPROXIMATIONS



FITNESS OF LOW-ORDER APPROXIMATIONS

Consider the series expansion for  ã1 truncated at order n.

By inversion of the series we obtain the n-th order correction for a1 

from the finite -τ  estimate  ã1.

The order necessary to achieve the true value within 5% error The order necessary to achieve the true value within 5% error 
increases as



FITNESS OF LOW-ORDER APPROXIMATIONS

Conclusions:

� the value of a1  sets the rate of convergence of  D1 and D2 

� convergence is slower as a1 increases 

� one should be careful when applying  low-order finite- τ� one should be careful when applying  low-order finite- τ
corrections for diffusion models

� our results provide a criterion up to which order n , or, 
up to  which value of τ the approximation is reliable

� order larger than 2 is required to attain the true value 
(within 5% error) when  ã1 > 0.5



CORRECT ESTIMATES OF  DRIFT AND DIFFUSION COEFFICIENTS

For real time series Xt , the coefficients can be perfectly reconstructed :
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A.A.G.Cortines, C.Anteneodo & R.Riera , in preparation



HIGHER-ORDER COEFFICIENTS

Markovian processes are governed by the Kramers-Moyal expansion:

For consistency, diffusion processes requires vanishing D for k≥3.
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For consistency, diffusion processes requires vanishing Dk for k≥3.

Pawula theorem simplifies our task: we only need to check D4

However the estimates of these coefficients also presents finite- τ effects

It is necessary to check if the observed deviations of D4 are due to 
the  inite sampling  rate  of real data



EXTRA CHECKS

The outcomes of an artificial time series generated  with  the inferred true  
parameter (●) reproduces  the  empirical results (○) of IBOVESPA,
confirming that the observed deviations are due to the finite sampling  rate.



EXTRA CHECKS

�Excellent agreement  between the linear autocorrelation of returns

predicted  by the theoretical model                                  (full line) 

and the  empirical results (●).

�Linear autocorrelation  consistent with finite- τ parameter 

(dashed line)  overestimates the empirical results
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EXACT CORRETIONS FOR FINITE-τ LINEAR D1 AND QUADRATIC D2

Conclusions:

� we presented the exact corrections that one should apply to 
the empirical finite-τ coefficients to find the true hidden ones

� for the exemplary financial  time series , the coefficients � for the exemplary financial  time series , the coefficients 
D1 and D2 can be perfectly reconstructed

� as a test of consistency  of the  diffusion modeling,  one 
should check if the non-null character of D4 is due to the  
finite sampling  rate.


