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The origins of FPU problem

Consider a system governed by the Hamiltonian

H(L, ¢) = Ho(I) + eHy(L, 0)

where I = (Iy,...,Iy) are the action variables and ¢ = (¢1,...,d)r) are the

phase variables. If € = 0 the system is integrable, there are M independent
first integrals (the actions I;) and the motion evolves on M-dimensional tori.

In a seminal work, Acta Math. 13,1 (1890) H. Poincaré showed that generally
a system with € # 0 does not possess analytic first integrals other than energy.

In 1923, in ‘Dimostrazione che in generale un sistema meccaitignale e quasi
Ergodicd, Phys. Zeitschrift 24, 261 (1923), Fermi provéad following statement:

for generic perturbations Hy and M > 2, there cannot exist, on the 2M — 1 di-
mensional constant-energy surface, even a single smooth” surface of dimension
2M — 2 that is analytical in the variables (I, ¢) and e. From this result, Fermi
argued that generic (non-integrable) Hamiltonian systems are ergodic.



STUDIES OF NON LINEAR PROBLEMS

E, FErMI, |, PASTA, and S. ULAM
Document LA~1040 (May 1635},

ABSTRACT.

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonfinear terms has been studied on the Los Alamos computer MaNIAC L The
nonfinear terms considered are quadratic, cublc, and broken linear types. The results are
analyzed into Fourier components and plotted as a function of time,

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom,

The last few examples were calculated in 1953, After the untimely death of Professor
E, Fermi 1n November, 1954, the calculations were continued in Los Alamos,



The model

E. Fermi, J. Pasta, S. Ulam, M. Tsingou

(T. Dauxois, Physics Today 61, 2008 on the role of M. Tsingou).
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The Hamiltonian: H(xy, -« ,ZN,pP1," - .PN) = §z:ﬁ;‘f+ E V(rjsr1 —x5)
i=1 F=1

In the original studyiN=32, all masses and the harmonic constants have e¢equal to 1

Thismodel can be interpreted as a one-dimensional crystal, i.e. a chain of equal particles
with nearest-neighbours nonlinear interactions and fixed ends.

The linearized system can be transformed into a system of uncoupled linear oscillators
(normal modes)
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The “FPU paradox”

Classical equilibrium mechanics: the statistical properties of an isolated

system at a given energy E are described by the microcanonical measure or
equivalently by the Gibbs measure in the whole phase space for T=T(E).
Equipartition theorem. In the harmonic limit

<E >p=E/N=e, k=1... N

where € = E/N is the specific energy

The result does not change qualitatively for a slightly anharmonic system and for
a small temperature T, because the anharmonic corrections do vanish in the limit

a,f—=0o0rT—0 (ie.,e—0)

Dynamical dichotomy

Harmonic case. The system is integrable: N integrals.

Anharmonic case. for @ # 0 or § # (0 No integrals: the system is expected,

to be ergodic, no matter how small the perturbation could be.



The relaxation time

f-M—-= R dynamical variable on the phase space M

< f >E microcanonical expectation value

lgther, gt - M — M flow induced by the equations of motion

f(t,x) “time average” of fwith initial datum reM

.t
ft,z) = %/{; flg°z)ds

Ergodicity of the microcanonical distrubution:

fltbr) = < f>p as t— o
J. Von Neumann (PNAS, 18, 263 (1932))

Relaxation time: the time 7 such that, for t>7 , the time-average essentially coincides
with the phase average.

One would expect that 7=71(a,B,E) andalso r [ aDﬁgo > 00



The FPU results

What are the relaxation times for the time averages FE(¢,2) for initial data

far from equilibrium?
FPU considered the datum FEy =F, E, =0for k=2,--- N

Expected result: the energy would soon spread over all other modes. Instead....
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N = 32 (with o = 1/4, 3 = 0) the energy, instead of flowing to all the 32 modes,

of low-frequency modes, namely modes 1 up to 5
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Time-averaged harmonic energies E versus time.
FPU paradox: instead of a slow relaxation to the final equilibrium state, there is a rather quick
relaxation to some “nonstandard” state, in which the energy is shared within a packet of
Low-frequency modes (partial thermalization).
Ulam wrote: “The results of the calculations...were interesting and quite surprising to Fermi. He
expressed to me the opinion that they really constituted a little discovery in providing intimations
that the precalent beliefs in the universality of mixing and thermalization in nonlinear systems

may not be always justified”

For fixed initial conditions: Xhtl =z (i) =0, Vi

Flach et al (PRL 2005-), g-breathers, Giorgilli and Muraro (Boll. UMI, 2006)
Bountis et al, low g-dimensional tori (PRE, 2010)



Zabusky and Kruskal (1965)

ZK, Phys. Rew. Lett. 15, 240 (1965)

The Korteweg-de Vries equation: u; + utl; + Uzpe =0 u = u(z, 1)
Model of a continuous nonlinear string interpolating the FPU chain.

Discovery of the theory of Solitons

Theory of infinite-dimensional integrable systems

(inverse scattering transform for the nonlinear Cauchy problem, hierarchies of
infinitely many integrable equations, Lie symmetries, Wahlquist-Estabrook
structures, bi-Hamiltonian geometry, topological quantum field theories,
Frobenius manifolds, Gromov-Witten invartiants, connections with Random
Matrix theory, solitons in optical fibres, etc.)



Integrable hierarchies
of PDEs
(60)

Singularity theory
(K. Saito, 1983)

Topological field
theories
(WDVYV equations)
1990

Witten, Kontsevich
(1992)

Frobenius manifolds
(Dubrovin, 1992)

Manin, Kontsevich (1994)

Gromov-Witten invariants

(1990)




The stochasticity threshold (ST)

Izrailev-Chirikov (1966): the FPU paradox disappears if the initial energy is

sufficiently large. There exists a critical energy E. = E (N )such that one has
quick equipartition if E > E,

What is the theoretical explanation of the ST?

KAM theorem: persistence of quasiperiodic motion under small perturbations

There exist invariant tori that survive the nonlinear perturbation, other ones
that are destroyed.Those that survive have “sufficiently irrational” frequencies
(non-resonance condition) over them the motion continues to be
quasiperiodic. The KAM tori that are not destroyed by the perturbation form
invariant Cantor sets.

The relative measure of the set of the perturbed invariant tori tends to 1 as
the perturbation tends to zero.

Weak KAM approach (Giorgilli et al, Bountis et al.): the resonant motion is
confined in tori of dimension less than N



Other outstanding contributions:

The metastability scenario (1982): the FPU state is a metastable state. (E.
Fucito, M. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo and A.
Vulpiani, J. Phys. 43, 707 (1982).

This state remains undisturbed for extremely long times.

It precipitates towards a catastrophic mechanism” to the “final” equilibrium
state.

Analogy with the theory of Spin glasses (Parisi et al)
Connections with Nekhoroshev theory, etc.

Existence of exact solutions (one-mode solutions) of the full Hamiltonian
(Budinsky and Bountis, Physica D 1983, Poggi and Ruffo, Physica D, 1997)

Reviews: The Fermi-Pasta-Ulam Problem: a status report, G. Gallavotti ed.,
Lect. Notes in Physics 728 (2008)
The FPU problem: the first fifty years, Chaos 15 (2005)



Nonextensive statistical mechanics

®m Nonextensive statistical mechanics: a generalization of
the Boltzmann-Gibbs statistics particularly suitable for
the treatment ot weakly chaotic systems.

m Tsallis entropy (1988)

C. Tsallis, Possible generalization of the Boltzmann—Gibbs statistics 1988 J. Stat.
Phys. 52, Nos. 1/2, 479-487

m 2965 papers http:/ /tsallis.cat.cbpf.br/TEMUCO.pdf




The nonextensive scenario

Sq generalizes the Boltzmann-Gibbs entropv

51 = %E}li Sq = Spa = —k Z p; Inp;

i=1 W
-exponential : - . .
Gexp ¢y 1= 1+ (1- q);ff]l/(l ) Sq = —k:z-pé_ Ing p;
i=1
Sq(A+ B Sq(A S, (B Sq(A) Sq(B
Nonadditivity al !:r ) _ qi_ )+ qi_ )+(1—q) a(4) qi_ )
SYSTEMS ENTROPY Ses |ENTROPY Sq (g<1)
(additive) (nonadditive)
Extenstvity Short-range
interactions, EXTENSIVE NONEXTENSIVE
. S(N weakly entangled
0 < lim —~ < o0 |plocks. etc
N—oo N '
Long-range
interactions (QSS), | NONEXTENSIVE EXTENSIVE
strongly entangled
blocks, etc

(Tsallis, Tirnakli, 2010)



From weak to strong chaos

Perturbation of exact solutions of the FPU system: an alternative way of
thinking!

N . N
. . 1 1 2 4
FPU ,:'_J] H}-’Ht(:lll H = E Zl I)é.g + 5 Zl (-’f-'a'.+1 — :1:;;.) + I Z (-’I«'-i+1 — :1:.3‘)

with periodic conditions TN+l = T and 4= 0.

Normal coordinates

N N
_ . 1 o 2mig 270
Q-i = Z S-ij :1:3- R = Z Séjpj with S—i = N (5111 ?L\rJ + cos ?\rj)
j=1 =1 VIV 4 4

the harmonic energy of the mode 7 is

1o 2.2 2 _ 2

Eé. — E (R -+ Wy Qa) Wy = 4 sm .'\.‘r'

For 5 = 0, all normal modes oscillate independently and their energies F; are
constant of the motion. In the anharmonic case (7 # 0), the normal modes
are instead coupled, and the variables ) have no longer simple sinusoidal

oscillations.



Strong stochasticity threshold

M. Pettini and M. Landolfi, Relazation properties and ergodicity breaking in nonlinear
Hamiltonian dynamics 1990 Phys. Rev. A 41, T68-783

M. Pettini and M. Cerruti—Sola, Strong stochasticity threshold in nonlinear large
Hamiltonian systems: Effect on mizing times 1991 Phys. Rev. A 44, 975-087

H. Kantz, Vanishing stability thresholds in the thermodynamic limit of nonintegrable
conservative systems 1989 Physica D 39, 322-335

Strong stochasticity threshold (SST): the energy density threshold that characterizes
the transition of the dynamics from weak to strong chaos during the relaxation of
the system towards ergodicity and equipartition.

There exist nonlinear one-mode exact solutions of the FPU beta system

N N N : :
n = v s N EJ.?\'T. Ej\r
4 3 2 3 4

Idea: to study the transition from weak to strong chaos (SST) by performing a

numerical analysis of a suitable observable evolving according to an
exact solution (N/2)



Exact solutions

In the anharmonic case the normal modes are coupled. The differential equation for the

k-mode is -
. 2 MWy -
0=~ 00 5% E 0;0,;0;C:0:0,0; (k=1.....] N—1)
2N ij.l
where O iy AS TR TY YL AN VAV RV AL FAVES S

being A;=(—1)" for k=mN. if m 1s a positive integer, and A ;=0 otherwise.
the equation of motion for the excited mode amplitude O, 1s

w 2 Mwi-(??’.‘?’.‘?‘.‘?’.‘ 3
Qﬁ: _w?’.‘Q”_ 2-1'.\\.?' QH‘

If we assume that at time /=0 Q,#0 and P,=0. the solution of Eq.

0,(t)=A cu({,t.k)

| 8,4° s o
Q n— Wy \1 + 5;?“12' k= % with 0,= :uwg(- =a=mn-"'21?l*l .
R 2(1+6,47)

This solution is periodic with period T,=4K(k)/(},

4rd
wP’.‘QV.‘(—F}.‘J‘Fi‘P’.‘ I

1/ .
The energy of the mode is E ”:E‘t Pi+ miQi+ RN ‘



Dynamical observables

Let us introduce the observables 1; = x; + 2;_1

. . . 1 :
the variable 2; 1s related to the modal variable QN/Q by ai(t) = (—1)'Qnpalt)

Introduce an universal indicator of stochasticity

T
p=7

0

i.e. the ratio between the second and the first moment of a given probability distribution
(when they are defined and the first moment is different from zero).

a) The distribution is normal, i.e. described by the Gauss function
a

f(6) = = exp (=aC)
theoretical value p = 3 = \/;

1
1

C . . Cqe . . : - A2 2N\ T2

b) The distribution is a Tsallis distribution: fl§)=a (l — (1= q)b%¢ )
with a and ¢ dependent on e,
1)

l<qg<3
\/q—l ﬁ)




In this case we have proved that, for 1 < ¢ < 5/3, plg) =v7 — . (2_q)

In the specific example of the FPU [ system. 6 is the mean value of the moduli

o {oq
& =i — (i)

numerically obtained and o the standard deviation:

,_ Sl [xe
M

Stability threshold for the N /2 solution: &, = 3 +O(N™)

N2
where M is the number of values of &. What one expects is that for € <
¢, when the system is stable, p(e) should remain approximately constant.
Instead it should change abruptly for € > . when the mmode starts to
exchange energy with the others modes. For larger and larger values of €.
when an equipartition state has been reasonably reached, the parameter p
should assume again a constant value, characteristic of the distribution of
the &;. For intermediate values of €. a transition between weak and strong
chaos should be observed.



Numerical results

m We have used a bilateral symplectic algorithm

m [nitial conditions:

(_;] ( 0 )= fi?q] =+ 0, f_? (0) = Fy =0.

m We integrate the Hamilton equations and

compute the observables
= ailt)+aia(t),  i=1... N

m We follow the system for 1 million periods of
the corresponding linear mode.




The N /2 — mode exact solution

The solution for the modal variable we are studying 1s

Q(t) = Qo en(Qt; k%)

where en is the periodic Jacobi elliptic function with period 1" = aK (k) /€2,
K (k) is the complete elliptic integral of the first kind and, for 7 = 1:

kg_l'\,fl‘f‘ilf—]. ()Q 4

2 VI+de T 12k
One has resonance if the harmonic frequencies & = (wy,wa, ..., wy/g), con-
cerning the harmonic term of the Hamiltonian. satisfy the relation
| N/2

m-w= Z myw; ~ 0

. . . 2 _ g2
where 1 is an array of integers and the w; are given by the formula w; = 4sin” —.
Since we excite the m—mode, we have resonance. in particular, when () =

mw; with integer m > 1 and for some w;. From previous relations one

obtains for the resonance energy density €,.:

| . 4T
€p = 1 (*m“l sin T? — 1)

Stability analysis: Poggi and Ruffo, Physica D 1997,
Cafarella, M. Leo and R. A. Leo, PRE, 2006
M. Leo and R. A. Leo, PRE 2007



The edge of chaos: Liapunov approach

The maximum Liapunov exponent plays a crucial role in the theory of chaos.

E(r)= lim Ax(r)/Ax(0)
Ax(0)—0

If the system has a positive Liapunov exponent, then ¢ diverges as £=¢M'

When the maximal Liapunov exponent vanishes, we get the differential equation

dyldx=any? [y(0)=1: g e R].

Its solution 1s _‘5?={?2‘3x E;E‘[l +(1 —q)x]”“'q}

Conjecture: the vanishing of the maximal Liapunov
exponent is a necessary condition for the Tsallis
distribution to be the correct PDF for a Hamiltonian
system possessing a weakly chaotic regime.

Is it also sufficient?
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Ficure 1. (Color on line). N = 128: p x 10 (red), o x 2
(blue), 6 x 2 (purple) and < 7gq4 > x500 (green) vs the energy
density e.




Ficure 2. (Color on line). N = 128: mode number i as a
function of the corresponding resonance energy density for

4

A (-m4 i’ | The resonance 1s possible for values of 7 such that ¢, > 0.

. ; Ny
For example, for m = 2 one has = {[A-'/GG] -

The first linear mode that goes in resonance with the N /2 mode cortresponds to

i =22, for e = 0.0282




FiGUuRE 3. (Color on line). Numerical (green points) and
Tsallis distribution (red curve) for N = 128 and e = 0.006.




FI1GURE 4. (Color on line). Plot in linear-log scale of Tsallis
(red), Gauss (green) and numerical distributions (blue) for

N = 128 and ¢ = 0.006.
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FiGURE 5. (Color on line). Plot in linear-log scale of Tsallis,
(Gaussian and numerical distribution for N = 128, e = 1 and
e = 5. In both cases the Tsallis and Gaunssian distributions

essentially overlap.




Conclusions and future petrspectives

m  There are three regimes in the evolution of the system, under periodic
conditions.
1) a KAM-like one (regular and recurrent behaviour)

1) weak chaos
ii1) strong chaos and full symmetry breaking

m In the weakly chaotic regime, there is strong numerical evidence that Tsallis
distribution describes the distribution of data. This is perfectly coherent with
the fact that in this region the maximal Liapunov exponent vanishes. We

may conjecture that this is actually an universal behaviour of

Hamiltonian dynamical systems.

m  What happens in the case of fixed initial conditions?

= An interesting problem concerns the metastability scenario for the FPU
problem : after a sufficiently long time, 1s it true that this picture would
collapse into a fully chaotic scenario, dominated by the Boltzmann

distribution?




... qui finisce la commedia!

Grazie!




