Isotropic-nematic phase transition for rigid rods on lattices
 INCT-SC-1/3/2010

Rajesh Ravindran
Institute of Mathematical Sciences, Chennai, India

Deepak Dhar
Tata Institute of Fundamental Research, Mumbai, India
Jürgen F. Stilck
Instituto de Física-UFF and Instituto Nacional de Ciência e Tecnologia-SC

Outline

- Introduction, simulational results for model on a lattice.

Outline

- Introduction, simulational results for model on a lattice.
- Solution of the model on a four-coordinated Bethe lattice

Outline

- Introduction, simulational results for model on a lattice.
- Solution of the model on a four-coordinated Bethe lattice
- Final discussion and comments

Introduction

Long, rod-like chains with excluded volume interactions only (athermal). Onsager (1949): long-range orientational order at sufficiently high densities of the rods (continuum).

Introduction

Long, rod-like chains with excluded volume interactions only (athermal). Onsager (1949): long-range orientational order at sufficiently high densities of the rods (continuum). Flory (1956): lattice model in mean-field approximation: isotropic-nematic phase transition

Introduction

Long, rod-like chains with excluded volume interactions only (athermal). Onsager (1949): long-range orientational order at sufficiently high densities of the rods (continuum). Flory (1956): lattice model in mean-field approximation: isotropic-nematic phase transition
Zwanzig (1963): hard-rods in continuum, with finite number of orientations.

Introduction

Long, rod-like chains with excluded volume interactions only (athermal). Onsager (1949): long-range orientational order at sufficiently high densities of the rods (continuum). Flory (1956): lattice model in mean-field approximation: isotropic-nematic phase transition
Zwanzig (1963): hard-rods in continuum, with finite number of orientations.
Agreement for continuum case: isotropic-nematic transition for 3d, at sufficiently high densities. In 2d, no spontaneous breaking of continuous symmetry, but high-density phase with power law decay of orientational correlations.

Introduction

Long, rod-like chains with excluded volume interactions only (athermal). Onsager (1949): long-range orientational order at sufficiently high densities of the rods (continuum). Flory (1956): lattice model in mean-field approximation: isotropic-nematic phase transition
Zwanzig (1963): hard-rods in continuum, with finite number of orientations.
Agreement for continuum case: isotropic-nematic transition for 3d, at sufficiently high densities. In 2d, no spontaneous breaking of continuous symmetry, but high-density phase with power law decay of orientational correlations. Situation less clear for rigid k-mers on lattices. Only analytically soluble case: dimers ($k=2$): orientational correlations decay exponentially for $\rho<1$ and with power law for $\rho=1$ (Heilmann and Lieb (1972)).

Introduction

A. Ghosh and D. Dhar (2007): extensive numerical simulations for k-mers on square lattice. General conclusion ($k \leq 7$): for increasing density: isotropic \rightarrow nematic \rightarrow disordered.

Introduction

A. Ghosh and D. Dhar (2007): extensive numerical simulations for k-mers on square lattice. General conclusion ($k \leq 7$): for increasing density: isotropic \rightarrow nematic \rightarrow disordered.

Introduction

A. Ghosh and D. Dhar (2007): extensive numerical simulations for k-mers on square lattice. General conclusion ($k \leq 7$): for increasing density: isotropic \rightarrow nematic \rightarrow disordered.

Difficulties with simulations at high densities. Second transition is studied comparing approximate entropies of the states.

Introduction

Some results of the simulations $\left(Q=\lim _{z_{v} \rightarrow z_{h}^{+}} \lim _{L \rightarrow \infty} \frac{\left\langle n_{v}-n_{h}\right\rangle}{\left\langle n_{v}+n_{h}\right\rangle}\right)$:

Introduction

Some results of the simulations $\left(Q=\lim _{z_{v} \rightarrow z_{h}^{+}} \lim _{L \rightarrow \infty} \frac{\left\langle n_{v}-n_{h}\right\rangle}{\left\langle n_{v}+n_{h}\right\rangle}\right)$:

Fig. 3: (a) The order parameter Q as a finction of densities ρ is shown for different k and L. (b) Distribution of normalized $n_{o}-n_{b}, \hat{n}$, for $k=10, L=120$ is shown for different values of densities

Introduction

Some results of the simulations $\left(Q=\lim _{z_{v} \rightarrow z_{h}^{+}} \lim _{L \rightarrow \infty} \frac{\left\langle n_{v}-n_{h}\right\rangle}{\left\langle n_{v}+n_{h}\right\rangle}\right)$:

Second transition is studied comparing approximate entropies of the states close to full lattice ($\rho=1-\epsilon$):

Solution on BL

Cayley tree with coordination $q=4$. Directions 1 (horizontal) and 2 (vertical).

Solution on BL

Cayley tree with coordination $q=4$. Directions 1 (horizontal) and 2 (vertical).

Solution on BL

Cayley tree with coordination $q=4$. Directions 1 (horizontal) and 2 (vertical).

Grand-canonical formalism: activity of monomer in rod in direction $i: z_{i}$.

Solution on BL

Partial partition functions (ppf) for rooted sub-trees: $g_{i, j}$, with $i=1,2$ and $j=1,2, \ldots, k-1$:

Solution on BL

Partial partition functions (ppf) for rooted sub-trees: $g_{i, j}$, with $i=1,2$ and $j=1,2, \ldots, k-1$:

$\mathrm{g}_{2,0}$

$\mathrm{g}_{2,1} \mathrm{~g}_{2,2} \ldots \mathrm{~g}_{2, \mathrm{k}-1}$

Solution on BL

Partial partition functions (ppf) for rooted sub-trees: $g_{i, j}$, with $i=1,2$ and $j=1,2, \ldots, k-1$:

$\mathrm{g}_{2,0}$

$$
\mathrm{g}_{2,1} \mathrm{~g}_{2,2} \ldots \mathrm{~g}_{2, \mathrm{k}-1}
$$

Recursion relations for ppf: build a subtree with $m+1$ generations connecting 3 subtrees with m generations to new root bond and site.

Solution on BL

Partial partition functions (ppf) for rooted sub-trees: $g_{i, j}$, with $i=1,2$ and $j=1,2, \ldots, k-1$:

$\mathrm{g}_{2,0}$

$$
\mathrm{g}_{2,1} \mathrm{~g}_{2,2} \ldots \mathrm{~g}_{2, \mathrm{k}-1}
$$

Recursion relations for ppf: build a subtree with $m+1$ generations connecting 3 subtrees with m generations to new root bond and site.

Solution on BL

Recursion relations:

$$
\begin{gathered}
g_{1,0}^{\prime}=\left(g_{1,0}+z_{1} g_{1, k-1}\right) g_{2,0}^{2}+z_{2} g_{1,0} \sum_{j=0}^{k-1} g_{2, j} g_{2, k-j-1} \\
g_{2,0}^{\prime}=\left(g_{2,0}+z_{1} g_{2, k-1}\right) g_{1,0}^{2}+z_{1} g_{2,0} \sum_{j=0}^{k-1} g_{1, j} g_{1, k-j-1} \\
g_{1, j}^{\prime}=z_{1} g_{1, j-1} g_{2,0}^{2} \\
g_{2, j}^{\prime}=z_{2} g_{2, j-1} g_{1,0}^{2}
\end{gathered}
$$

Solution on BL

Recursion relations:

$$
\begin{gathered}
g_{1,0}^{\prime}=\left(g_{1,0}+z_{1} g_{1, k-1}\right) g_{2,0}^{2}+z_{2} g_{1,0} \sum_{j=0}^{k-1} g_{2, j} g_{2, k-j-1} \\
g_{2,0}^{\prime}=\left(g_{2,0}+z_{1} g_{2, k-1}\right) g_{1,0}^{2}+z_{1} g_{2,0} \sum_{j=0}^{k-1} g_{1, j} g_{1, k-j-1} \\
g_{1, j}^{\prime}=z_{1} g_{1, j-1} g_{2,0}^{2} \\
g_{2, j}^{\prime}=z_{2} g_{2, j-1} g_{1,0}^{2}
\end{gathered}
$$

Ratios of ppf:

$$
R_{i, j}=\frac{g_{i, j}}{g_{i, 0}},
$$

Solution on BL

In general, recursion relations converge to a simple fixed point upon iteration (thermodynamic limit). At fixed point $R_{i, j}=\alpha_{i}^{j}$, where:

$$
\begin{aligned}
& \alpha_{1}\left[1+z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}\right]=z_{1} \\
& \alpha_{2}\left[1+z_{2} \alpha_{2}^{k-1}+k z_{1} \alpha_{1}^{k-1}\right]=z_{2}
\end{aligned}
$$

Solution on BL

In general, recursion relations converge to a simple fixed point upon iteration (thermodynamic limit). At fixed point $R_{i, j}=\alpha_{i}^{j}$, where:

$$
\begin{aligned}
& \alpha_{1}\left[1+z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}\right]=z_{1} \\
& \alpha_{2}\left[1+z_{2} \alpha_{2}^{k-1}+k z_{1} \alpha_{1}^{k-1}\right]=z_{2}
\end{aligned}
$$

Attaching 4 subtrees to the central site of the tree, we obtain the partition function of the model on the Cayley tree:

$$
\begin{gathered}
\Xi=g_{1,0}^{2} g_{2,0}^{2}+2 z_{1} g_{1, k-1} g_{1,0} g_{2,0}^{2}+2 z_{2} g_{2, k-1} g_{2,0} g_{1,0}^{2} \\
z_{1} g_{2,0}^{2} \sum_{j=1}^{k-2} g_{1, j} g_{1, k-j-1}+z_{2} g_{1,0}^{2} \sum_{j=1}^{k-2} g_{2, j} g_{2, k-j-1} .
\end{gathered}
$$

Solution on BL

We may then obtain the densities of monomers in horizontal and vertical rods at the central site at the fixed point:

$$
\begin{aligned}
\rho_{1} & =\frac{k z_{1} \alpha_{1}^{k-1}}{1+k z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}}, \\
\rho_{2} & =\frac{k z_{2} \alpha_{2}^{k-1}}{1+k z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}} .
\end{aligned}
$$

Solution on BL

We may then obtain the densities of monomers in horizontal and vertical rods at the central site at the fixed point:

$$
\begin{aligned}
& \rho_{1}=\frac{k z_{1} \alpha_{1}^{k-1}}{1+k z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}}, \\
& \rho_{2}=\frac{k z_{2} \alpha_{2}^{k-1}}{1+k z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}} .
\end{aligned}
$$

The bulk free energy is obtained using an ansatz proposed by Gujrati (1995). The result is:

$$
\phi_{b}=\ln \left(1+k z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}\right)-\ln \left(1+z_{1} \alpha_{1}^{k-1}+k z_{2} \alpha_{2}^{k-1}\right)-
$$

$$
\ln \left(1+k z_{1} \alpha_{1}^{k-1}+z_{2} \alpha_{2}^{k-1}\right) .
$$

Solution on BL

The stability of the fixed point may be studied using the Jacobian of the recursion relations a $2(k-1) \times 2(k-1)$ matrix, which may also be expressed in terms of the variables α_{1} and α_{2}.

Solution on BL

The stability of the fixed point may be studied using the Jacobian of the recursion relations a $2(k-1) \times 2(k-1)$ matrix, which may also be expressed in terms of the variables α_{1} and α_{2}.
Fixed point equations for $z_{1}=z_{2}=z$ always have the symmetric solution $\alpha_{1}=\alpha_{2}=\alpha$ where α is the single positive root of the equation:

$$
(k+1) \alpha^{k+1}-\frac{1}{\alpha}+\frac{1}{z}=0 .
$$

Solution on BL

The stability of the fixed point may be studied using the Jacobian of the recursion relations a $2(k-1) \times 2(k-1)$ matrix, which may also be expressed in terms of the variables α_{1} and α_{2}.
Fixed point equations for $z_{1}=z_{2}=z$ always have the symmetric solution $\alpha_{1}=\alpha_{2}=\alpha$ where α is the single positive root of the equation:

$$
(k+1) \alpha^{k+1}-\frac{1}{\alpha}+\frac{1}{z}=0 .
$$

For $k \geq 4$ we have also a non-symmetric solution for $z>z_{c}=\frac{(k-1)^{2-2 / k}}{k(k-3)}$. At this activity $\alpha=\alpha_{c}=(k-1)^{2 / k}$ and $\rho_{c}=\frac{2}{k-1}$.

Solution on BL

The stability of the fixed point may be studied using the Jacobian of the recursion relations a $2(k-1) \times 2(k-1)$ matrix, which may also be expressed in terms of the variables α_{1} and α_{2}.
Fixed point equations for $z_{1}=z_{2}=z$ always have the symmetric solution $\alpha_{1}=\alpha_{2}=\alpha$ where α is the single positive root of the equation:

$$
(k+1) \alpha^{k+1}-\frac{1}{\alpha}+\frac{1}{z}=0 .
$$

For $k \geq 4$ we have also a non-symmetric solution for $z>z_{c}=\frac{(k-1)^{2-2 / k}}{k(k-3)}$. At this activity $\alpha=\alpha_{c}=(k-1)^{2 / k}$ and $\rho_{c}=\frac{2}{k-1}$. Isotropic phase is stable for $z<z_{c}$ and unstable for $z>z_{c}$. Nematic phase has reverse behavior.

Solution on BL

Nematic order parameter as a function of the activity for tetramers:

Solution on BL

Nematic order parameter as a function of the monomer density $\rho=\rho_{1}+\rho_{2}$ for tetramers:

$$
\mathrm{k}=4
$$

Solution on BL

Nematic order parameter as a function of $\Delta z=z_{1}-z_{2}$ for fixed values of $z=\left(z_{1}+z_{2}\right) / 2$:

Comments

- Approximation, as expected, underestimates ρ_{c} : on square lattice $\rho_{c} \approx 0.4$ for $k=10$, while on the Bethe lattice $\rho_{c}=2 / 9 \approx 0.22$.

Comments

- Approximation, as expected, underestimates ρ_{c} : on square lattice $\rho_{c} \approx 0.4$ for $k=10$, while on the Bethe lattice $\rho_{c}=2 / 9 \approx 0.22$.
- Second transition not found. May be present on a Husimi lattice solution.

Comments

- Approximation, as expected, underestimates ρ_{c} : on square lattice $\rho_{c} \approx 0.4$ for $k=10$, while on the Bethe lattice $\rho_{c}=2 / 9 \approx 0.22$.
- Second transition not found. May be present on a Husimi lattice solution.
- Lowest value of k for which there is a transition still an open question.

Comments

- Approximation, as expected, underestimates ρ_{c} : on square lattice $\rho_{c} \approx 0.4$ for $k=10$, while on the Bethe lattice $\rho_{c}=2 / 9 \approx 0.22$.
- Second transition not found. May be present on a Husimi lattice solution.
- Lowest value of k for which there is a transition still an open question.
- At $z \rightarrow \infty(\rho \rightarrow 1)$ eigenvalue of the Jacobian associated to fixed point becomes equal to 1. Limiting cycle (period 2) is stable.

