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Introduction

Long, rod-like chains with excluded volume interactions only
(athermal). Onsager (1949): long-range orientational order
at sufficiently high densities of the rods (continuum).
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Long, rod-like chains with excluded volume interactions
only (athermal). Onsager (1949): long-range orientational
order at sufficiently high densities of the rods (continuum).
Flory (1956): lattice model in mean-field approximation:
isotropic-nematic phase transition
Zwanzig (1963): hard-rods in continuum, with finite number
of orientations.
Agreement for continuum case: isotropic-nematic transition
for 3d, at sufficiently high densities. In 2d, no spontaneous
breaking of continuous symmetry, but high-density phase
with power law decay of orientational correlations.
Situation less clear for rigid k-mers on lattices. Only
analytically soluble case: dimers (k = 2): orientational
correlations decay exponentially for ρ < 1 and with power
law for ρ = 1 (Heilmann and Lieb (1972)).
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Introduction

A. Ghosh and D. Dhar (2007): extensive numerical
simulations for k-mers on square lattice. General
conclusion (k ≤ 7): for increasing density: isotropic →

nematic → disordered.
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Introduction

A. Ghosh and D. Dhar (2007): extensive numerical
simulations for k-mers on square lattice. General
conclusion (k ≤ 7): for increasing density: isotropic →

nematic → disordered.

Difficulties with simulations at high densities. Second
transition is studied comparing approximate entropies of the
states.
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Some results of the
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limL→∞
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Introduction

Some results of the
simulations(Q = limzv→z+

h
limL→∞

<nv−nh>
<nv+nh>) :

Second transition is studied comparing approximate
entropies of the states close to full lattice (ρ = 1 − ǫ):

– p. 5



Solution on BL

Cayley tree with coordination q = 4. Directions 1 (horizontal)
and 2 (vertical).
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Solution on BL

Cayley tree with coordination q = 4. Directions 1 (horizontal)
and 2 (vertical).

Grand-canonical formalism: activity of monomer in rod in
direction i: zi.
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Solution on BL

Recursion relations:

g′1,0 = (g1,0 + z1g1,k−1)g
2
2,0 + z2g1,0

k−1∑

j=0

g2,jg2,k−j−1,

g′2,0 = (g2,0 + z1g2,k−1)g
2
1,0 + z1g2,0

k−1∑

j=0

g1,jg1,k−j−1,

g′1,j = z1g1,j−1g
2
2,0,

g′2,j = z2g2,j−1g
2
1,0
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g′1,0 = (g1,0 + z1g1,k−1)g
2
2,0 + z2g1,0

k−1∑

j=0

g2,jg2,k−j−1,

g′2,0 = (g2,0 + z1g2,k−1)g
2
1,0 + z1g2,0

k−1∑

j=0

g1,jg1,k−j−1,

g′1,j = z1g1,j−1g
2
2,0,

g′2,j = z2g2,j−1g
2
1,0

Ratios of ppf:

Ri,j =
gi,j

gi,0
,
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Solution on BL

In general, recursion relations converge to a simple fixed
point upon iteration (thermodynamic limit). At fixed point
Ri,j = αj

i , where:

α1[1 + z1α
k−1
1 + kz2α

k−1
2 ] = z1,

α2[1 + z2α
k−1
2 + kz1α

k−1
1 ] = z2.

– p. 9



Solution on BL

In general, recursion relations converge to a simple fixed
point upon iteration (thermodynamic limit). At fixed point
Ri,j = αj

i , where:

α1[1 + z1α
k−1
1 + kz2α

k−1
2 ] = z1,

α2[1 + z2α
k−1
2 + kz1α

k−1
1 ] = z2.

Attaching 4 subtrees to the central site of the tree, we
obtain the partition function of the model on the Cayley tree:

Ξ = g2
1,0g

2
2,0 + 2z1g1,k−1g1,0g

2
2,0 + 2z2g2,k−1g2,0g

2
1,0

z1g
2
2,0

k−2∑

j=1

g1,jg1,k−j−1 + z2g
2
1,0

k−2∑

j=1

g2,jg2,k−j−1.
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Solution on BL

We may then obtain the densities of monomers in horizontal
and vertical rods at the central site at the fixed point:

ρ1 =
kz1α

k−1
1

1 + kz1α
k−1
1 + kz2α

k−1
2

,

ρ2 =
kz2α

k−1
2

1 + kz1α
k−1
1 + kz2α

k−1
2

.
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Solution on BL

We may then obtain the densities of monomers in horizontal
and vertical rods at the central site at the fixed point:

ρ1 =
kz1α

k−1
1

1 + kz1α
k−1
1 + kz2α

k−1
2

,

ρ2 =
kz2α

k−1
2

1 + kz1α
k−1
1 + kz2α

k−1
2

.

The bulk free energy is obtained using an ansatz proposed
by Gujrati (1995). The result is:

φb = ln(1 + kz1α
k−1
1 + kz2α

k−1
2 ) − ln(1 + z1α

k−1
1 + kz2α

k−1
2 )−

ln(1 + kz1α
k−1
1 + z2α

k−1
2 ).

– p. 10



Solution on BL

The stability of the fixed point may be studied using the
Jacobian of the recursion relations a 2(k − 1) × 2(k − 1)
matrix, which may also be expressed in terms of the
variables α1 and α2.
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1

α
+

1

z
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For k ≥ 4 we have also a non-symmetric solution for

z > zc = (k−1)2−2/k

k(k−3) . At this activity α = αc = (k − 1)2/k and

ρc = 2
k−1 .
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Solution on BL

The stability of the fixed point may be studied using the
Jacobian of the recursion relations a 2(k − 1) × 2(k − 1)
matrix, which may also be expressed in terms of the
variables α1 and α2.
Fixed point equations for z1 = z2 = z always have the
symmetric solution α1 = α2 = α where α is the single
positive root of the equation:

(k + 1)αk+1
−

1

α
+

1

z
= 0.

For k ≥ 4 we have also a non-symmetric solution for

z > zc = (k−1)2−2/k

k(k−3) . At this activity α = αc = (k − 1)2/k and

ρc = 2
k−1 . Isotropic phase is stable for z < zc and unstable

for z > zc. Nematic phase has reverse behavior.
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Solution on BL

Nematic order parameter as a function of the activity for
tetramers:

0 0,2 0,4 0,6 0,8
1/z

0

0,2

0,4

0,6

0,8

ρ 1−ρ
2

k=4
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Solution on BL

Nematic order parameter as a function of the monomer
density ρ = ρ1 + ρ2 for tetramers:

0,6 0,7 0,8 0,9 1
ρ

0

0,2

0,4

0,6

0,8

ρ 1−ρ
2

k=4
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Solution on BL

Nematic order parameter as a function of ∆z = z1 − z2 for
fixed values of z = (z1 + z2)/2:

-0,04 -0,02 0 0,02 0,04
∆z

-0,4

-0,2

0

0,2

0,4

ρ 1−ρ
2

z=1.25
z=z

c
=1.299038...

z=1.35

k=4
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Comments

Approximation, as expected, underestimates ρc: on
square lattice ρc ≈ 0.4 for k = 10, while on the Bethe
lattice ρc = 2/9 ≈ 0.22.
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Comments

Approximation, as expected, underestimates ρc: on
square lattice ρc ≈ 0.4 for k = 10, while on the Bethe
lattice ρc = 2/9 ≈ 0.22.

Second transition not found. May be present on a
Husimi lattice solution.

Lowest value of k for which there is a transition still an
open question.

At z → ∞ (ρ → 1) eigenvalue of the Jacobian
associated to fixed point becomes equal to 1. Limiting
cycle (period 2) is stable.
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