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Absorbing state of a Markov process:

Consider a population of organisms, population size N(t)

N evolves via a stochastic dynamics with transitions from N to 
N+1 (reproduction), and to N-1 (death)

N=0 is an absorbing state: if N=0 at some time t, then N(t') = 0 
for all times t' > t

Systems with spatial structure: phase transitions between 
active and absorbing states are possible in infinite-size limit 

Of interest in population dynamics, epidemiology, self-organized 
criticality, condensed-matter physics, social system modelling...

General references: 
J Marro and R Dickman, Nonequilibrium Phase Transitions in Lattice          
Models, (Cambridge University Press, Cambridge, 1999). 
H Hinrichsen,  Adv. Phys. 49 815 (2000).
G Odór, Rev. Mod. Phys. 76,  663 (2004)



  

Principal universality classes of absorbing-state phase transitions:

 Directed percolation (DP) (contact process)

 Parity-conserving  (branching-annihilating random walks)

 Conserved DP* (conserved stochastic sandpile)

 Pair contact process with diffusion (PDPC)

*Experiment: L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008
Transition between reversible and irreversible deformation in sheared colloidal
suspension



  

Contact Process (Harris 1972): a birth-and-death process with 
spatial structure

Lattice of  Ld sites

Each site can be either active (σi = 1) or inactive (σi = 0)
An active site represents an organism

Active sites become inactive at a rate of unity, indep. of neighbors
An inactive site becomes active at a rate of λ times the fraction of 
active neighbors

The state with all sites inactive is absorbing



  

Contact Process: order parameter ρ  is fraction of active sites

Rigorous results: continuous phase transition between active and 
absorbing state for d ≥  1, at some λc (Harris, Grimmet...)

Order parameter:  ρ  ∼   (λ − λc)β

(Mean-field theory: λc = 1, β = 1)

Results for λc, critical exponents: series expansion, simulation, 
analysis of the master equation, ε-expansion

Types of critical behavior: static, dynamic, spread of activity



  

Order parameter in the one-dimensional contact process:
series expansion analysis



  
Spread of activity in contact process (avalanches)

subcritical                         critical                             supercritical



  

Experimental realization of the contact process/directed percolation
(Takeuchi et al, PRL 99 234503 (2007))

Absorbing-state phase transiton between two turbulent regimes in 
electrohydrodynamic convection of liquid crystals in a thin layer



  

Takeuchi et al: order parameter vs control parameter 

Experiments confirm critical exponents of DP in 2 space dimensions,
for example: β = 0.59(4) (expt), β = 0.583(3) (sim) 



  



  

Harris criterion (dν < 2): quenched disorder relevant for
contact process (CP) and directed percolation (DP)
(For recent perspective: T Vojta and M Dickison, PRE 72)

Harris criterion for CP

Local fluctuation in λ is ~v
In a block of length b, summed fluctuation is ~bd/2 v, by 
central limit theorem

Treat this as equivalent to a uniform variation over block,
 ~vb-d/2

Under a block transformation (Kadanoff) v → v' = vbyb-d/2

Note: y = 1/ν⊥ 

Then disorder is relevant if dν⊥ < 2

Effect of disorder on the contact process



  

Harris criterion (dν < 2): quenched disorder relevant for
contact process/directed percolation
(For recent perspective: T Vojta and M Dickison, PRE 72)

What about mobile disorder? Is it irrelevant?
Does it cause Fisher renormalization of critical exponents?
Or something more dramatic?

Model:  Contact process with mobile vacancies (CPMV)

Vacancies are permanently inactive but diffuse at rate D, 
exchanging positions with the other sites, which host a basic 
contact process (Individuals with permanent immunity)  

A fraction v of sites are vacancies

Nondiluted sites may be active or inactive

Effect of disorder on the contact process  



  

Typical evolution near critical point.  Red: active; black: vacancies
v=0.1, D=1, λ = 4.1

time

 CP with mobile vacancies: simulation in one dimension



  

Related model: CP with diffusive background (Evron et al., arXiv:0808-0592)
“good” (large λ) and  “bad” (small λ) sites instead of vacancies

In principle both models should have the same continuum description:

∂
t
 ρ =  Da∇2ρ + (a+ γφ)ρ – bρ2 + η(x,t)

∂
t
 φ =  ∇2φ + ∇•ξ(x,t)   

ρ: order parameter density; φ: density of nondiluted (or “good”) sites

η and ξ are suitable noise terms.



  

Mobile disorder is relevant for finite D
 
Consider a correlated region in the CP, with characteristic size ξ 
and duration τ

If fluctuations in the vacancy density on this spatial scale relax on 
a time scale  τφ « τ, then the CP will be subject, effectively, to a 
disorder that is uncorrelated in time, which is irrelevant

But fluctuations in φ relax via diffusion, so τφ  ~ ξ2

In the neighborhood of the critical point, ξ ~ |λ -  λc|- ν⊥     

and τ  ~ ξz, so that τφ  ~ τ2/z

This suggests that diffusing disorder is relevant for z < 2, provided 
that quenched disorder is relevant  

In directed percolation these conditions are satisfied in d < 4 
space dimensions



  

CP with mobile vacancies: limiting situations

D = 0: In one-dimension, this corresponds to a CP on finite strips, 
which must always fall in the absorbing state.  
Thus for any v > 0, λ

c
 → ∞ as D → 0.

In two or more dimensions, the CP with fixed vacancies is active
(for suff. large λ ) if nondiluted sites percolate (v < 1-pc).
Thus λ

c
 → ∞ as D → 0 for v > 1-pc

D→ ∞: In one dimension, diffusing vacancies do not change 
order of active and inactive (nondiluted) sites
Thus D → ∞ is not a mean-field limit
Instead it represents a regular CP with λ

eff
 = (1-v)λ, so one expects

 λ
c
 → λ

c,pure
/ (1-v) , with DP scaling, in this limit

In two or more dimensions D → ∞ should correspond to a mean-
field limit



  

Studies of CPMV in one dimension 

(RD, J Stat Mech (2009) P08016)

Determine λ
c
 and scaling properties as functions of vacancy fraction 

v and diffusion rate D

Three kinds of simulation: 

   conventional (stationary regime)
 
   quasistationary

   spreading

A “first look”: moderate dilution (v=0.1), vary D



  

Monte Carlo simulations (conventional)

Rings of L = 100, 200,...,1600 sites - all nondiluted sites initially active

Determine (1) fraction ρ(t) of active sites
                  (2) moment ratio m(t) =  < ρ2 >/ ρ2 in averages over surviving   
                        realizations

                  (3) mean lifetime τ from the decay of the survival probability,
                  Ps(t) ~ exp[-t/τ] 

In large (pure) systems at critical point, ρ and m approach their
quasistationary (QS) values via

ρ(t) ~ t-δ      and      m(t) -1 ~ t1/z

Finite-size scaling: at the critical point, ρQS ~ L-β/ν⊥, 

τ ~ Lz         and       m → mc      (a universal quantity)



  

Criteria for determining λc: power-law scaling of ρ with L, convergence 
of moment ratio m to a finite limiting value

ln L

lnLβ/ν⊥ ρ λ=3.920

3.910

3.905

v=0.1, d=2

3.915



  

1/L

m

v=0.1, d=2



  

Phase boundary, v=0.1

d

λc

d → ∞



  

Order parameter: data collapse



  

Anomalous behavior: lifetime grows more slowly than power-law 
at critical point!  (Crossover to smaller z?  Apparent exponent 
for small sizes is 2.4, might expect z=2.)



  

       Anomalous behavior: m(t) and ρ (t) cannot be collapsed



  

Spreading simulations: one active site initially

Determine survival probability P(t), mean number of active sites n(t),
and mean-square spread, R2(t) = 〈 Σj xj(t)

2 〉 / n(t)

Expected scaling behaviors at the critical point (pure CP):

P(t) ∼ t-δ,       n(t) ∼  tη       and      R2 (t) ∼  t2/z

Spreading studies of CPMV confirm power-law scaling of survival 
probability and value of exponent δ 
For v=0.1, D=1, spreading simulations yield δ=0.084(1), 
δ=0.129(1) for D=5

Surprisingly n and R2 grow more slowly than power laws



  Spreading simulation: survival probability, v=0.1, D=2

tδP(t)



  

Mean number of active sites and mean-square spread, v=0.1, D=2 

 Short-time behavior similar to DP.  Possible crossover to much 
smaller η (and larger z) at long times.



  

Summary of Results for v=0.1

Critical exponents z, δ,  β/ν⊥ , and moment ratio mc appear to vary 
continuously with vacancy diffusion rate d, and approach DP-class
values as d increases

Spreading simulations confirm scaling of survival probability, P∼ t-δ
but other quantities show anomalous scaling

The lifetime τ grows more slowly than a power law at the critical point, 
for small D

Summing up, static scaling is observed, but certain aspects of time-
dependent behavior are anomalous.



  

 D      λc              β/ν⊥          m             z            δ
0.5  4.375(2)      0 .175(3)   1.076(2)     2 .65(4)    0 .076(2)

1.0  4.099(1)      0 .191(3)   1.085(2)     2 .49(1)    0 .085(2)

2.0  3.915(1)      0 .205(3)   1.096(3)     2 .36(5)    0 .101(4)

5.0  3.7746(10)  0 .235(4)   1.123(4)     1 .92(2)    0 .135(3)

CP   3 .2979        0 .2521     1 .1736     1 .5808       0 .1598

SIMULATION RESULTS: v=0.1

The critical exponents violate the scaling relation   

- stronger violation for larger D; seem to approach DP values as D 
grows

*These exponents are also quite different from those of the DEP with 
equal diffusion rates



  

A second look: CPMV at the Critical Vacancy Density

For fixed diffusion rate D, critical reproduction rate λc grows with 
vacancy density v and diverges at vc(D)



  

     Critical vacancy density line in the v-D plane (simulation)

               For v < 0.38, λc diverges only when D → 0



  

Simulation with λ = ∞ :  allow only isolated active sites to become inactive (at 
a rate of unity), and activate any nondiluted site the instant it gains an active 
neighbor

Typical evolution
starting from a single
active site

D=1, v=0.515

Simpler scaling behavior at vc than for smaller v



  

At critical vacancy density, P, n and R2 all follow power laws



  

Collapse of m(t) 



  

The hyperscaling relation                       is satisfied to within uncertainty 

These results suggest that critical exponents are independent of D along 
the critical line vc 

Critical properties along the critical vacancy density line 

Similar results are found for v=0.4, 0.5, and 0.6



  

Does the CP with mobile vacancies belong to the diffusive 
epidemic process (DEP) class?

The continuum description proposed for CPMV corresponds to 
that suggested for DEP by Kree, Schaub and Schmittmann.  
There is reasonable agreement for values of some critical 
exponents, but more precise results are needed.

The conclusions of this study differ from those of Evron et al.,
who find δ = δDP, with anomalous scaling away from critical 
Point.  These authors study a weaker form of disorder

Ongoing studies: 

Characterize more precisely the critical behavior along the line vc,
and the critical exponents of the DEP continuum theory



  

For equal diffusion rates, the A and B particles in DEP correspond 
to nondiluted sites in CPMBV  (φ ↔ ρΑ + ρΒ) 



  

Critical Parameters of Diffusive Epidemic Process in 1d

Compare values for DA = DB with CPMBV at critical vacancy 
density

CPMBV:         0.18(2)         1.97(4)                      1.084(10)



  

The conclusions of this study differ from those of Evron et al.,
who find δ = δDP, with anomalous scaling away from critical 
point.  These authors study a weaker form of disorder

Ongoing studies: 

Characterize more precisely the critical behavior along the line vc,
and the critical exponents of the DEP continuum theory

CPMBV in two dimensions (Rajesh Ravindran)



  

Contact process with mobile vacancies - Summary

Simple scaling behavior at critical vacancy density, with clearly 
non-DP critical exponents, possible connection to DEP

For smaller v, apparently variable exponents: Is this a crossover
between DP and a new fixed point?

Future work:
 Map out vc(D) and associated exponents with higher precision, verify
 universality along this line of critical points

 Apply exact QSD analysis, series expansions

 Two and three dimensions 

 Investigate other forms of slowly evolving disorder, and effect of mobile 
 vacancies on other classes of absorbing-state phase transitions

Thanks to: Thomas Vojta, Jose Hoyos, Rajesh Ravindran, and Miguel
Muñoz
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