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Motivation

, Why???
Very large energy dissipating events affects living populations
in the environment where they occur.
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Introduction

⇒ Control means...
“Control”can be understood as a series of man-devised
actions to interfere in the processes by which the system
dissipates energy, in such way as to concentrate dissipation in
moderate sized events and reduce the occurrence probability
of very large avalanches.
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Introduction

⇒ What is possible to do?
The difficulties to control large events like earthquakes,
hurricanes, floods and so on, depend both on the magnitude
of the stored energy as well as on the impossibility of
interfering, in appropriate way, in the dynamics of energy
dissipating events.

Under certain limits, other events following SOC statistics are
already subject to human control, e.g., the series of induced
avalanches in restricted hill slides, where the purpose is to
warrant safety for ski riders.

Similar control can reduce crisis caused by the break of large
economic bubbles.
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Main idea

[Cajueiro and Andrade. Controlling self-organized criticality in
sandpile models. Phys. Rev. E 81, 015102(R), 2010.]
The control scheme, devised to avoid large avalanches in a
pre-selected restricted area of the system, is divided into two
different stages:

First stage: The control just learns about the dynamics of the
system and acquires a global estimate of avalanche risk in the
pre-selected area.

Second stage: The control scans the preselected region and
identifies potentially large events whenever the avalanche risk
is high enough. Once a threat is detected, an externally
induced avalanche is triggered.
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The system

We consider the two dimensional system Γ schematically
represented by the array

Γ =




O O O O O O O
O O O O O O O
O O TL T TR O O
O O L X R O O
O O BL B BR O O
O O O O O O O
O O O O O O O




.

where each element of Γ indicated by O, TL, T , TR , L, X , R,
BL, B and BR represents by itself a fixed size square region of
sites, corresponding to smaller arrays of order NR × NR .
Avalanche size control takes place inside region X only.
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Some important definitions

Controlled × uncontrolled avalanches

Internal × external avalanches
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The control scheme: first stage

In the first control stage, one has to estimate the conditional
probability pK/J(t + 1/t) of occurring the addition of mass in
region K ∈ R at time t + 1 assuming mass was added on a
site in region J ∈ R at time t.
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The control scheme: second stage

In the second stage, such estimates lead to the definition of a
threshold value pc that decides whether the control should be
activated whenever a new mass unit is deposited in a given
region of Γ. If at time t, mass is added on the region J ∈ R
and pX/J(t + 1/t) ≥ pc , then the control should be activated,
where

pc = min(pX/TL
(t + 1/t), pX/T (t + 1/t),

pX/TR
(t + 1/t), pX/L(t + 1/t),

pX/R(t + 1/t), pX/BL
(t + 1/t),

pX/B(t + 1/t), pX/BR
(t + 1/t)).
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The control scheme: second stage

Such activation requires to follow any virtual avalanche that
would occur inside the region X if any of the sites in X were
actually chosen at random.

In order to follow the virtual avalanches, we consider an/
internal replica ΓX of the system, i.e., a restricted copy of the
model that describes its dynamics inside the region X , as if it
was isolated from the rest of Γ.

Based on this replica of X , if any added particle in site
(i , j) ∈ X generates a virtual avalanche of size a ≥ ac , the
control “explodes”the corresponding site of Γ.

This means that a real avalanche is triggered by emptying the
site (i , j), which amounts to topple the single unit mass with
50% of probability to the site (i + 1, j) or to the site (i , j + 1).
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Modification of the deposition process

We have changed the nature of the mass deposition process in
order to consider a weighted deposition: if at time t, a
particle was deposited on the site (i , j), the probability to
select the site (k, `) to add the particle at t + 1 is

P[(k, `)/(i , j)] =
A

(δ[(i , j), (k, `)]/B)γ
, (1)

where δ[(i , j), (k, `)] is the Euclidian distance between sites
(i , j) and (k, `), while A and B are constants related to the
normalization of P and to the largest distance between any
two sites on the system.

The correlated deposition rules can be justified by the
existence of a natural time correlation in rain, snow, social
and financial events.
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The selection of a target size

It is necessary to select a target size ac , which is a choice for
the largest natural avalanche that might occur in the system.

Of course ac > 1, otherwise we would have to release down
hill the added mass grain at each time unit.
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The algorithm

for all time: do
Assume that the deposition process is working at a region
J ∈ R;
if pX/J(t + 1/t) ≥ pc then

for all (i , j) ∈ X do
A virtual avalanche is triggered in (i , j) ∈ X using the
replica model of the region X ;
The size of the virtual avalanche s is evaluated;
if s > ac then

A real avalanche is triggered;
end if

end for
end if

end for
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Results
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Final remarks

,Controlling SOC works! However:

The control scheme assumes a perfect model of the reality.
How to design robust control schemes that can work well even
when one does not have a good model of the reality?

How to define controllability and observability in these classes
of controlled systems?
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Final remarks

How to use information of the system such as the mass
cumulated in the system or the data related to the internal
structure to predict the time of the intervention? , In
complex networks, we can do that!

It would be fascinating to reply this kind of methodology in
real systems!

How to choose optimally the sites to be triggered? , For
tiny systems, we can do that!

Analytical results are welcome!!!!!!!!
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