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The Fermi-Pasta-Ulam (FPU)N -Degree-of-Freedomβ− Model

The FPU β− model is a one–dimensional lattice of nonlinear oscillators described by the
Hamiltonian

H =
1

2

N
∑

j=1

ẋ2
j +

N
∑

j=0

(

1

2
(xj+1 − xj)

2 +
1

4
β(xj+1 − xj)

4

)

= E (1)

E being its total energy. We want to understand its dynamics globally, as the value of β > 0

increases away from the linear case β = 0. We shall impose fixed boundary conditions:

x0(t) = xN+1(t) = 0, ∀t (2)

We focus on Simple Periodic Orbits (SPOs), where all variables oscillate in or out of phase

and return to their initial state after only one maximum and one minimum in their oscillation,

i.e. all characteristic frequencies are equal . Examples of such SPOs are:
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(a) The SPO1 mode , with N odd,

x̂2j(t) = 0, x̂2j−1(t) = −x̂2j+1(t) ≡ x̂(t), j = 1, . . . ,
N − 1

2
. (3)

(b) The SPO2 mode , with N = 5 + 3m, m = 0, 1, 2, . . . particles,

x3j(t) = 0, j = 1, 2, 3 . . . ,
N − 2

3
, (4)

xj(t) = −xj+1(t) = x̂(t), j = 1, 4, 7, . . . , N − 1. (5)

In the next slide, we show what these solutions look like for some small particle chains.
These solutions are exact continuations of the q = (N + 1)/2 and q = 2(N + 1)/3 linear
normal modes of the FPU chain described by the equations:

Qq =

√

2

N + 1

N
∑

i=1

qi sin
qiπ

N + 1
, Pq = Q̇q (6)
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Figure 1: The SPO1 mode corresponding to every other particle being stationary and the
SPO2 mode, with one stationary particle every other two.
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with energies and frequencies

Eq =
1

2

[

P 2
q + Ωq

2Q2
q

]

, Ωq = 2 sin
qπ

2(N + 1)
(7)

What is of central importance here is to understand the paradox of the so–called FPU
recurrences : As is well-known, Fermi, Pasta and Ulam (1956) observed numerically that, for
β > 0 small, when the energy is placed initially in the q = 1 linear mode, very few other
modes (7) become excited and all energy returns periodically to the q=1 mode. This is
paradoxical, since it precludes the energy equipartition and ergodicity, expected by statistical
mechanics generically from all nonlinear systems.

As a consequence of a theorem by Lyapunov, it is known that the linear modes of the FPU β

– model can be continued as SPOs of the β 6= 0 nonlinear system. Viewing the low
q = 1, 2, 3, .. modes as SPOs and using linear stability analysis, Flach et al. (2005) report
an approximate formula for their destabilization energy , given by

Ec

N
≈

π2

6βN(N + 1)
(8)
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Remarkably enough, this energy threshold for the destabilization of the low q = 1, 2, 3..

modes coincides with the “weak” chaos threshold shown by de Luca and Lichtenberg (1995)
to lead to the breakup of the FPU recurrences through the interaction of low order
resonances.
What is particularly interesting in the investigations of Flach et al. (2005) is their observation
that FPU orbits obtained by exciting the above linear modes, when viewed in Fourier
q–space , exhibit exponential localization reminiscent of discrete breathers in configuration
space. Thus, they called these FPU solutions q–breathers and conjectured that their
localization properties are somehow responsible for the FPU recurrences. They also
suggested that their destabilization formula for the corresponding SPOs (8) is important due
to its coincidence with the result by de Luca and Lichtenberg.

The main questions we wish to pose here are:
1) How exactly does the destabilization of these nonlinear modes and their q–localization
properties affect the global properties of the motion?

2) How can we use the dynamics in the vicinity of these solutions to give a more complete
interpretation of the paradox of the FPU recurrences?
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Linear Stability of SPOs, Local and Global Chaos

Let us consider first our SPO1 and SPO2 orbits which have been chosen because their
stability analysis can be performed exactly: For example, for the SPO1 mode, the equations
of motion collapse to a single second order ODE:

¨̂x(t) = −2x̂(t) − 2βx̂3(t) (9)

whose solution is well–known in terms of Jacobi elliptic functions with modulus κ2,

x̂(t) = C cn(λt, κ2) (10)

Linearizing about this solution xj = x̂j + yj , by keeping up to linear terms in yj , we get the
variational equations

ÿj = (1 + 3βx̂2)(yj−1 − 2yj + yj+1), j = 1, . . . , N (11)

These separate into N uncoupled Lamé equations

z̈j(t) + 4(1 + 3βx̂2)sin2

(

πj

2(N + 1)

)

zj(t) = 0, j = 1, . . . , N (12)
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where the zj variations are simple linear combinations of the yj ’s.

Changing variables to u = λt, this equation takes the form

z′′j (u) + 2
(

1 + 4κ2 − 6κ2sn2(u, κ2)
)

sin2

(

πj

2(N + 1)

)

zj(u) = 0, j = 1, . . . , N (13)

where primes denote differentiation with respect to u. According to Floquet theory, its
solution is bounded (or unbounded) depending on whether the eigenvalues of the
monodromy matrix are on or off the unit circle .

These periodic solutions all experience a first destabilization at energy densities:

Ec

N
∝ N−α, α = 1, or, 2, N → ∞. (14)

More specifically, the first variation zj(u) to become unbounded as κ2 (or, the energy E)
increases is j = N−1

2
and the energy values Ec/N ∝ 1/N at which this happens are

plotted below.
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We have discovered that the energy threshold for the low q orbits, (8), coincides with the
instability threshold of our SPO2 mode. Below we compare formula (22) (dashed line) with
the destabilization threshold for our SPO2 and find excellent agreement.
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Figure 2: The solid curve is the energy Ec/N of the first destabilization of the SPO2 (the
q = 2(N + 1)/3 mode ) for β = 0.0315 obtained from the eigenvalues of the monodromy
matrix and the dashed line is the approximate formula (22)∼ 1/N2.
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Figure 3: Concerning the SPO1 solution of the FPU system, we plot here the energy Ec
N

of
the first destabilization of the (the q = (N + 1)/2 mode ) obtained by the monodromy
eigenvalues. The dashed line is the function ∝ 1

N
. As we shall see in the next figure this

SPO is related to the presence of global chaos in the system.
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Figure: Global chaos is connected with the destabilization of the SPO1 orbit. Note the nested
chaotic regions for initial conditions in the immediate vicinity (≃ 10−5) of the unstable SPO1
orbit, then at (≃ 10−2), where we see a vague resemblance to “figure eight” and a large
scale chaotic region for more distant initial conditions (≃ 0.1) for N = 5 particles, on the
Poincaré surface of section (x1, ẋ1) taken when x3 = 0. In this picture we integrated our
orbits up to tn = 105 in the energy surface E = 7.4.
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q–Breathers, q–Tori and the FPU Paradox

Following, for β > 0 small, one of the first q–modes, say q = 1, as an exact SPO of the FPU
lattice, we find that its main harmonic excites (through nonlinearity), very few other
harmonics, whose amplitudes are exponentially localized in Fourier (q–) space.

This was called by Flach et. al (2005) a q-breather and offers new insight in the
understanding of the problem of energy localization and the long term deviations from
equipartition among the modes, i.e. the origin of the famous paradox of the FPU
recurrences .

The first important property of the q-breathers is that their energy profiles E(q) are
very similar with the profiles of the numerically computed ‘FPU-trajectories’ (where the
energy is initially placed in one of the linear modes). Furthermore, it is intriguing that this
localization persists even for values of the parameters (coupling, energy and N ) for which
the corresponding q-breather periodic solution has become linearly unstable !.

How can we understand these dynamical phenomena in relation to the FPU paradox?
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Previous work by de Luca et al. (1998) and Berchialla et al. (2004, 2005) has shown that
FPU–recurrences also arise if a (low-frequency) part of the spectrum is initially excited.
Thus, long before equipartition, one observes the formation of metastable states coined
‘natural packets’ , exhibiting a kind of internal equipartition among the participating modes.

In our work, we aim to reconcile these two approaches , i.e.: (a) The interpretation based
on the q-breathers and (b) the analysis based on the above metastable states.

Nekhoroshev stability estimates also show that all the FPU-trajectories starting close to a
stable q-breather solution are exponentially stable . This leads to the idea that the
FPU-trajectories could be understood in terms of classes of solutions lying on tori of low
dimension 2 ≤ s << N , being the continuations of the motions resulting from exciting s

modes of the uncoupled case.

Thus, generalizing the concept of q-breathers, we call ‘q-tori’ the solutions on such
low-dimensional tori and demonstrate i) their existence, and ii) the validity of energy
localization laws analogous to those found for the q-breathers.
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Our analytical theory of the q-tori uses of the Poincaré - Lindstedt method and yields
scaling laws for the energy profile E(q) of a trajectory lying on a q-torus. Numerically, we also
find that for FPU trajectories (which start on the linear normal modes) energy localization
persists for long times even when there are indications that the q-torus is unstable .

As a numerical criterion for the stability of q-tori we use the recently developed method of
‘Generalized Alignment Indices’ (GALI, Skokos et al. 2006). Through the GALI method,
we find that low-dimensional tori destabilize at approximately the same parameter values
where the q-breathers turn unstable.

We have obtained analytical results on the existence and scaling laws of the ‘q-tori’,
starting with the proof of a proposition which establishes which set of modes are excited
recursively at the k−th order of the Poincare Linstedt theory. We then focus on the ‘q-tori’,
corresponding to lowest order excitations of a set of adjacent modes q0,i = i, i = 1, . . . , s,
whose energy profile E(q) is calculated analytically and tested against numerical integration
(see Figs. 1 and 2 below).
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Let us use an example with N = 8 particles, whose solutions lie on a two-dimensional
torus representing the continuation, for β 6= 0, of the quasi-periodic solution of the
uncoupled (β = 0) system Q1(t) = A1 cosΩ1t, Q2 = A2 cosΩ2t, for a suitable choice of A1

and A2.

Following the Poincaré - Lindstedt method we look for solutions Qq(t), q = 1, . . . , 8

expanded as series in the parameter σ = β/2(N + 1), namely

Qq(t) = Q
(0)
q (t) + σQ

(1)
q (t) + σ2Q

(2)
q (t) + . . . , q = 1, . . . 8 . (15)

For the motion to be quasi-periodic on a two–torus and represent a continuation of the

unperturbed solutions Q1 and Q2, the functions Q
(r)
q (t) must, at any order r, be

trigonometric polynomials involving only two frequencies, ω1 and ω2, which are small
corrections of the normal mode frequencies Ω1, Ω2 and are given as series in powers of σ,
namely:

ωq = Ωq + σω
(1)
q + σ2ω

(2)
q + . . . , q = 1, 2 . (16)

so that secular terms (of the form t sin ωqt etc.) in the solutions Qq(t) are eliminated.
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Figure 4: Comparison of numerical (points) versus analytical (solid line) solutions, using the
Poincaré - Lindstedt series up to order O(σ2), for the temporal evolution of the modes (a)
q = 1, (b) q = 3, and (c) q = 7, when A1 = 1, A2 = 0.5, and N = 8, β = 0.1. The temporal
evolution of the indices GALI2 to GALI6, up to a time t = 106 is shown in (d).
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Figure 5: This shows the existence of a 4-torus with N = 16, β = 0.1, when 4 modes are
initially excited. The temporal evolution Qq(t) is shown for the modes (a)q = 1, (b)q = 5,
(c)q = 13. The GALIk, k = 2, 3, 4 indices, are seen to stabilize at t ≥ 105, while for k ≥ 5

the indices continue to decrease by power laws.
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Scaling Laws of the Harmonic Energies

Figure 6 shows the average harmonic energy of each of the modes over a time span
T = 106 for the case of the q-torus of Figure 4, shown in Fig. 6a, and the torus of Fig. 5
shown in Fig. 6b respectively. The numerical result compares excellently with the analytical
result obtained via the Poincaré - Lindstedt method. The line of red circles shows a
‘stepwise’ estimate of the localization profile in groups of modes excited at the consecutive
orders of the recursive scheme, as will be explained below.

The average harmonic energies of all modes of the group k = 1 are given by

E
(1)
q =

122ω2
1(q(1))2A6

0

((q(1))3− | ±q3
i1

± q3
i2

± q3
i3

|)2
. (17)

A theoretical estimate of this type is shown by the blue triangles in Fig. 6, for the orbits lying
on q-tori. Namely, in Fig. 6a we see clearly that the decrease of the average energy takes
place by abrupt steps , with three groups formed at nearby energies, namely the groups of
modes 1,2, then 3 to 6, and then 7,8, i.e., as expected by the recursive scheme and
reproduced very well by the numerical calculations (empty circles). The phenomenon is also
seen in Fig. 6b, where the grouping of the modes is (1 to 4), (5 to 12), (13 to 16).
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Figure 6: The average harmonic energy Eq of the q-th mode as a function of q, after 106

periods for (a) the 2-torus and (b) 4-torus solutions corresponding to the initial conditions as
in Figs. 4 and 5, shown numerically by empty circles. The stars indicate Eq via the analytical
solutions Qq(t) of the Poincaré -Lindstedt series, see Eq.(17). The blue triangles are based
on theoretical estimates of the amplitudes of the leading terms of the series. The red circles
show a theoretical estimate based on the average energy of each group, see Eq.(20) below.
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A Theoretical Estimate of the Energy Profile

Let us obtain an estimate for the average harmonic energies E(k) of the modes
q(k) = (2k + 1)s − O(s/N) excited at the kth order of the perturbation theory. The total
energy E is estimated as the sum of all the energies of the modes 1, . . . , s and gives

E ∼ sω2
q(0)A

2
0 ∼

π2s3A2
0

N + 1
.

On the other hand, the energy of each of the modes q(k) can be estimated as

E(k) ∼
1

2
ω2

q(k)

(

β

2(N + 1)

)2k

(A(k))2 ∼
π2s2(Csβ)2kA4k+2

0

22k+1(N + 1)2k+2

which, in terms of the total energy E, yields

E(k) ∼
E

s

(

C2β2(N + 1)2E2

π4s4

)k

. (18)
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The similarity of Eq.(18) with the corresponding equation for q-breathers is obvious, where
according to (Flach et al. 2006)

E(2k+1)q0 ∼ Eq0

(

9β2(N + 1)2E2

64π4q4
0

)k

(19)

where q0 is the unique mode excited at the zeroth order of the perturbation theory. Note that
the integer s plays in Eq.(18) a role similar to that of q0 in Eq.(19). This means that the
energy profile of a q-breather with q0 = s presents the same exponential law as the energy
profile of the s-torus solution.

Another important feature of these solutions is that the profile remains unaltered as N

increases provided that i) a constant fraction M = s/N of the spectrum is initially excited,
i.e. that s increases proportionally to N , and ii) the specific energy ǫ = E/N remains
constant . Indeed, in terms of the specific energy ǫ, (18) becomes independent of N

E(k) ∼
ǫ

M

(

C2β2ǫ2

π4M4

)k

(20)
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In Fig.6, we saw that the theoretical estimate (18) fits nicely the exact profiles for the q-tori
solutions obtained numerically. The key question, now, is:

Does Eq.(18) retain its predictive power in the case of gener ic FPU trajectories which,
by definition, start close to, but not exactly on a q-torus sol ution? .

The answer is partly contained in the results of Figures 7 and 8 below: Figure 7 shows the
energy localization profile in numerical experiments in which β is kept fixed, and N takes the
values N = 16, N = 32 and N = 64.

In all 3 cases the FPU-trajectories are calculated numerically, starting with initial conditions
in which only s = 2 (for N = 16), s = 4 (for N = 32) and s = 8 (for N = 64) modes are
excited at t = 0. These trajectories differ from q-tori solutions in that in the q-tori solutions all
the modes have some excitation initially, while in the case of the FPU trajectories only the s

first modes are excited at t = 0.

ORDER AND CHAOS IN MULTIDIMENSIONAL HAMILTONIAN SYSTEMS – p. 23/44



This is exemplified in Figs.7a,b,c, in which the average energy profiles of the FPU-trajectories
after the time t = 106 exhibit the same ’stepwise’ behavior as predicted by Eq.(18), for an
exact s-torus solution with the same total energy as the examined FPU trajectory.

In particular, the modes of Fig.7a are clearly separated in groups, (1 to 4), (5 to 12) and (13
to 20),etc., as foreseen for an exact 4-torus solution. The energies of all the modes in one
group exhibit a kind of ‘plateau’ at nearly the values predicted by Eq.(18). Similar plateaus
are distinguishable also in Figs.7b,c for an FPU solution close to an 8-torus and a 16-torus
respectively.

Now, the lower row of Fig.7 shows what happens when the specific energy of
FPU-trajectories is increased by a factor 10 with respect to the panels in the top row: The
sharp plateaus are gradually lost in the profiles of the FPU-trajectories. Despite that,
however, the energy profiles retain their exponential decay with increasing mode number
q, and, more importantly, the slope of the exponential decay law continues to be essentially
predicted by Eq.(18). This indicates that the FPU trajectories of Figs.7d,e,f are still relatively
close to q-tori solutions with the same total energy.
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Figure 7: The average harmonic energy Eq of the q-th mode as a function of q in various
examples of FPU-trajectories, for β = 0.3, in which the s(= N/16) first modes are excited
initially so that the total energy is E = H as indicated in each panel. The specific energy is
constant, i.e. ε = 1.5625 × 10−6 in the top and ε = 1.5625 × 10−5 in the bottom row. The
dashed lines represent the average exponential profile Eq obtained by the assumption that
the FPU trajectories lie close to q-tori governed by (20).

ORDER AND CHAOS IN MULTIDIMENSIONAL HAMILTONIAN SYSTEMS – p. 25/44



When we increase the energy further, the FPU-trajectories deviate from the s-tori solutions
and the energy profiles of the FPU-trajectories also deviate from the energy profiles of the
s-tori. The profiles of the FPU-trajectories are smoother and the groups of modes less
distinct, while retaining the average exponential slope as predicted by Eq.(20). This is
evident in Fig. 8a, in which the energy is increased by a factor 50 with respect to Fig. 7d, for
the same N and β. Also, in Fig. 8a we observe an overall rise of the localization profile at
the high-frequency part of the spectrum. This is shows that the system tends towards
equipartition .

The important point is that exponential localization of the FPU trajectories persists and is
still characterized by Eq.(18). Furthermore, at energies beyond a threshold value, an
interesting phenomenon occurs: For fixed N (see e.g. Figure 8, where N = 64), as the
energy increases, a higher value of s needs to be used in Eq.(18), so that the theoretical
profile yields an exponential slope that agrees with the numerical data. When β = 0.3,
N = 64, this value is E ≈ 0.1 and splits the system in two distinct regimes: One for E < 0.1,
where the numerical data are well fitted by a choice of s = 4 in Eq.(18) and another for
E > 0.1, where Eq.(18) suggests that s increases with the energy, e.g. s = 6 for E = 0.2,
rising to s = 12 for E = 0.5.

ORDER AND CHAOS IN MULTIDIMENSIONAL HAMILTONIAN SYSTEMS – p. 26/44



0 10 20 30 40 50 60
10-35

10-25

10-15

10-5

0 10 20 30 40 50 60
10-15

10-11

10-7

10-3

0 10 20 30 40 50 60

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60

N=64 =0.3
H=0.05 s=4

 

q

Eq

Eq

(a)

 

 

q

N=64 =0.3
H=0.3 s=7

 

(d)

 

 

N=64 =0.3
H=0.1 s=4

 

q

(b)

 

 

 

q

(e)N=64 =0.3
H=0.4 s=10

 

 

 

 

(f)

 

 

N=64 =0.3
H=0.2 s=6

N=64 =0.3
H=0.5 s=12

 

q

q

(c)

 

 

Figure 8: Same as in Fig. 7a but for larger energies, namely (a) E = 0.05, (b) E = 0.1, (c)
E = 0.2, (d) E = 0.3, (e) E = 0.4, (f) E = 0.5. Beyond the threshold E ≃ 0.1, theoretical
profiles of the form (18) yield the correct exponential slope if s is gradually increased from
s = 4 in (a) and (b) to s = 6 in (c), s = 7 in (d), s = 10 in (e), and s = 12 in (f).
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This indicates that the FPU-trajectories are closer to s-tori with a higher value of s (s > 4),
despite the fact that only the 4 first modes are initially excited.

These results are in agrement with the ‘natural packet’ scenario described in Berchialla et al.
(2004), who established numerically the formation of metastable states , in which a packet
of modes is seen to share the total energy. An analogous behavior is suggested by Fig. 8,
where the width of the packet increases beyond M = 1/16 (corresponding to s = 4 for
N = 64), only above a certain energy threshold. Above this threshold it tends to stabilize as
E increases, as seen Fig. 8d,e,f. According to Eq.(18), this implies that in the second regime
the width s depends asymptotically on E as s ∝ E1/2, or, from Eq.(20) M ∝ ε1/2. This
agrees well with estimates on the width of natural packets formed by the β−FPU model as
described in Lichtenberg et al. (2008).
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Stability of the motion near q-tori

The linear stability of q-breathers can be studied by Floquet theory , which demonstrates
that a q-breather is linearly stable as long as

R =
6βEq0 (N + 1)

π2
< 1 − O(1/N2) (21)

This is obtained by analyzing the eigenvalues of the monodromy matrix of the linearized
equations about a q-breather solution constructed by the Poincaré - Lindstedt series. In the
case of q-tori, however, this analysis does not apply. Nevertheless, an approximate
numerical criterion for the stability of q-tori is provided by the GALI indices , see Skokos
et al. (2007). According to this method, if a q-torus becomes unstable beyond a critical
parameter, the deviation vectors of trajectories lying on the torus fall exponentially fast on the
unstable manifold of the q-torus.

In practice, the exact dimension of the torus is unknown. However, if one starts in its vicinity,
the trajectories are weakly chaotic and hence all GALI indices start to fall exponentially ,
after a transient time. Thus, to check torus instability, it suffices to calculate the time
evolution of the lowest index, GALI2.
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Figure 9: (a) The energy Ec at which the GALI2 index of a FPU-trajectory started by
exciting the modes q = 1, q = 2 loses its constancy, as a function of β, for N = 64. The solid
line is a power-law yielding Ec = Aβ−1, with A = 0.148 for N = 64. (b) The upper curve
shows the dependence of the fitting constant A on N when the critical energy Ec is
determined as in (a), for different values of N . The lower and middle curves correspond to a
similar calculation of A vs. N for q-breather solutions (q0 = 1) and for FPU trajectories
started by exciting initially only the q = 1 mode. In both cases A varies with N as N−1. The
dashed lines in both panels represent the law of Eq.(21).
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Figure 10:(a) Time evolution of the GALI2 index up to t = 107 for an FPU trajectory started
by the q = 1 and q = 2 modes for N = 32, β = 0.1, with total energy E = 2 > Ec = 1.6. (b)
Energy localization profile of the FPU trajectory of (a) at t = 107. (c) Same as in (a) for
N = 64, E = 1.323. (d) Same as in (b) for the trajectory of (c).
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The most important remark concerning the linear stability of q-breathers or q-tori is that the
exponential localization of FPU trajectories persists even after the associated q-breathers or
q-tori have been identified as linearly unstable by the GALI criterion. This behavior is
exemplified in Figure 10, where panels (a) and (c) show the time evolution of the GALI2

index for two FPU trajectories started in the vicinity of 2-tori of the N = 32 and N = 128

systems, when β = 0.1 and tmax = 107.

In both cases the energy satisfies E > Ec, thus the exponential fall-off of the GALI2 index
is already observed at t = 107. However, a simple visual inspection of Figs. 10b,d clearly
shows that the exponential localization of the energy persists in the Fourier space of both
systems. In fact, we have found that exponential localization is found to persist for energies
much larger than Ec, but for timescales which become smaller as E increases.
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Nekhoroshev Stability

Clearly, linear stability does not suffice to explain the persistence of exponential
localization of the FPU trajectories for very long times. Thus, we now investigate the long
term stability of FPU trajectories in the spirit of the Nekhoroshev theory. In particular, we
implement a scheme proposed by Giorgilli (1988), which employs the approximate integrals
of the system determined as polynomial series in the canonical variables. In the case of
simple polynomial Hamiltonians like H = H2 + H4 this algorithm simplifies considerably the
calculations concerning the asymptotic properties of the series.

Approximate integrals of motion

If we define the complex conjugate canonical variables (qj , pj) via the inverse of the linear
canonical transformation

Qj =
qj + ipj
√

2Ωj

, Pj =
iqj + pj
√

2/Ωj

, (22)

the Hamiltonian of the β− FPU chain takes the following form
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H = H2 + H4 =
N

∑

j=1

iΩjpjqj +
β

8(N + 1)

×

N
∑

q,l,m,n=1

Cq,l,m,n(ΩqΩlΩmΩn)1/2(qq + ipq)(ql + ipl)(qm + ipm)(qn + ipn) ,(23)

If β = 0, all Ej = iΩjpjqj are exact integrals of motion. We thus construct approximate
integrals of motion for to the β 6= 0 case, using the series

Φj = Φ
(2)
j + Φ

(4)
j + ... (24)

where Φ
(r)
j is an rth degree polynomial in the variables (q1, . . . , qN , p1, . . . , pN ), and

Φ
(2)
j ≡ Ej = iΩjpjqj . Since the series (24) represents an integral of the motion its Poisson

bracket with the Hamiltonian should vanish.
This condition can be satisfied formally , if an appropriate choice is made for the terms

Φ
(r)
j , since the Poisson bracket condition {Φ

(2)
j + Φ

(4)
j + ..., H2 + H4} = 0 splits into an

infinite number of equations of the form
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{Φ
(r−2)
j , H4} + {Φ

(r)
j , H2} = 0, r = 4, 6, ... (25)

Eq.(25) can be solved for the unknown function Φ
(r)
j provided that the function Φ

(r−2)
j is

known from the previous step. This scheme is complete since we have set Φ
(2)
j = iΩjpjqj ,

equal to the harmonic energy of the j-th mode. The solution of (25) is particularly simple in
the canonical variables (q, p).
Given the definition of H2 and H4 via the two sums on the r.h.s. of (23), and using the
compact notations

qmpn ≡ qm1
1 qm2

2 . . . q
mN
N pn1

1 pn2
2 . . . p

mN
N

m ≡ (m1, m2, . . . , mN ), m ≡ m1 + m2 + . . . + mN

(similarly for n), the Poisson bracket {Φ(r−2)
j , H4}, takes the form of a polynomial of r-th

degree:

{Φ
(r−2)
j , H4} =

r
∑

m,n=1,m+n=r

h
(r)
m,nqmpn . (26)
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Using the above definition of H2, the solution of (25) for the unknown function Φ
(r)
k is readily

obtained as:

Φ
(r)
j = −

∑

m,n=1,m+n=r

h
(r)
m,nqmpn

(m − n) · Ω
. (27)

To proceed, the frequencies Ω≡ (Ω1, Ω2, . . . ΩN ), given by Eq.(7) must be completely
non-resonant, i.e., no integer vector M 6= (0, 0, . . . , 0) exists such that M · Ω = 0 (this is
generally true except for some special N values like N = 2k). Thus, the solution of (27) is
secured at all orders, since no ‘kernel’ monomials satisfying m = n appear in (26).
Despite its formal consistency, it is well known that the procedure outlined above yields a
divergent series due to the accumulation of small divisors . Here we shall explore the
non-resonant behavior of the full spectrum. The diophantine character of the linear
frequencies Ωi can be demonstrated numerically. A diophantine condition means that the
small divisors satisfy an inequality of the form

|l · Ω| ≥
γ

|l|τ
for all l ∈ Z

N , |l| 6= 0 (28)

with γ = const, τ = O(N).
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For each curve defined by:

amin(r) = min{|l · Ω|, for all l ∈ Z
N |l| = r} (29)

the ordinate gives the absolutely minimum divisor amin(r) as a function of r which, by the
method of construction of formal integrals, coincides with the order at which this minimum
divisor appears in the series for the first time. We find that the minimal divisors exhibit a
power-law behavior amin(r) ∼ r−τ , where τ for each curve is determined by numerical
experiments.

Within the limits of the small maximum value of N for which the calculation can be explicitly
carried out, we find that the diophantine exponents τ show a clear tendency to increase
linearly with N , by a relation of the form τ ∼ 0.7N within the range of available data. Thus, in
all heuristic considerations below we set τ ∼ N .

Nekhoroshev stability of FPU-trajectories with exponenti al localization

Estimates of the long-term stability of the FPU trajectories now follow directly from the
asymptotic properties of the series (24).
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To obtain them, it suffices to demonstrate that, for a suitable choice of r, the truncated series

Φj,r = Φ
(2)
j + Φ

(4)
j + . . . + Φ

(r)
j (30)

represents an approximate integral of motion, for times exponentially long in the inverse of a
small parameter. In our case, it is possible to demonstrate the approximate constancy of (30)
for FPU-trajectories exhibiting exponential localization, at the optimal order r = ropt ∼ 1/ε,
where the variations of Φj,r become exponentially small in the inverse of the specific energy
ε.
More precisely, the time derivative of the quantity (30) is given by

dΦj,r

dt
= Rj,r ≡

{

Φ
(r)
j , H4

}

. (31)

The quantity Rj,r is called the remainder function of Φj,r at the normalization order r.
Consider the family of FPU-trajectories started in the vicinity of the q-breather solutions with
q0 varying as q0 = 1, 2, . . . in systems with N = 2q0µ particles respectively, where µ is a
constant satisfying µ ∈ N, µ >> 1. These q0 -breathers represent physically equivalent
solutions in systems of progressively higher N .
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The exact q0 -breathers are periodic with a frequency Ωq0 , which, in view of the adopted
dependence of q0 on N , are independent of N . On the other hand, an FPU-trajectory started
in the vicinity of a q0−breather need not be periodic, but we may assume that only the modes
j = (2k + 1)q0, k = 0, 1, 2, . . . effectively participate in it. It can be shown that the size of the
remainder function for such FPU-trajectories, as a function of r, can be estimated by

||Rr|| ∼ B∗((r − 2)!)
µ+1
2 ε(µ+1)r/2 , (32)

where the constant B∗ depends only on β. Eq.(32) yields essentially the magnitude of time
variations of the approximate integrals truncated at order r.

One clearly sees the asymptotic character of the formal integral series from this equation. In
particular, despite the heuristic character of estimate (32), we clearly recognize that such an
estimate results from the partial control of the accumulation of small divisors due to the
particular profile of the energy localization (19), which crucially affects the estimate (32).
Of course, the compensation of small divisors thus produced is not complete and therefore
the series is asymptotic. Nevertheless, the dependence of all estimates on N is removed.
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The optimal order of truncation is found by taking the logarithm of (32) and using Stirling’s
formula log n! ≈ n log n − n, as well as r − 2 ≈ r for r large. We thus find:

log(||Rr||) ∼ logB∗ +
µ + 1

2
[r (log r − 1) + r log ε]

The optimal normalization order is estimated as the value of r where d log ||Rr||/dr ∼ 0, i.e.

ropt ∼
1

ε
. (33)

The optimal value of the remainder is then

||Ropt|| ∼ exp

(

−
µ + 1

2ε

)

(34)

i.e. the time variations of the integrals Φj,opt are exponentially small in 1/ε. Finally, the
choice q0 = µ/2N was selected so that the underlying q-breathers have the same
localization profile as the q-tori with constant fraction M = s/N . Thus, the generalization of
the result to FPU-trajectories started close to the q-tori is straightforward.
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Conclusions

1) We introduced the concept of q-tori in FPU lattices, which represent a generalization of
the concept of q-breathers. The q-tori have low dimensionality s << N , and arise from the
continuation of motions with s independent frequencies of the unperturbed problem.

2) We presented analytical and numerical evidence demonstrating that the complete
explanation of the paradox of the FPU recurrences is based not only on the q-breathers
analysis of Flach at al. (2005), but also on the existence and localization of q-tori of low
dimensionality , forming exponentially stable “natural packets".

3) We obtained an estimate for the average harmonic energies E(k) of the modes excited at
the kth order of the perturbation theory, in terms of the total energy E

E(k) ∼
E

s

(

C2β2(N + 1)2E2

π4s4

)k

. (35)

which is similar with the estimate for q-breathers (Flach et al. 2006), with s replaced by q0.

ORDER AND CHAOS IN MULTIDIMENSIONAL HAMILTONIAN SYSTEMS – p. 41/44



4) We showed that exponential localization of the energy occurs also in the case of the
q–tori describing the “natural packets" discussed by other authors and thus completed the
explanation of the FPU paradox inspired by the concept of q–breathers.

5) We calculated FPU solutions lying on q-tori by employing the method of
Poincaré-Lindstedt series. Based on estimates of the leading terms of these series, we
provided a theoretical law yielding the average exponential localization of the energy in
Fourier space for solutions on q-tori. The most important outcome of this analysis is that, if
the fraction s/N is kept constant, the localization profile depends on the specific energy
ε = E/N of the system, and thus it turns out to be independent of N .

6) We explored numerically the relevance of q-tori of dimension s to FPU-trajectories close to
them, started by exciting s modes only. The localization laws found theoretically for q-tori
describe well the localization of energy in Fourier space for the FPU-trajectories as well. We
then gave numerical evidence of the existence of a critical energy above which the slope of
the localization profile tends to stabilize and equipartition is expected to occur.
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7) We examined the stability of q-tori using a numerical criterion provided by the GALI
indices and provided numerical evidence demonstrating that the localization in Fourier space
persists for values of the energy well above the value at which the underlying q-tori turn from
stable to unstable.

8) Finally, we obtained a result on the Nekhoroshev stability of FPU trajectories having
initially an exponentially localized profile, similar to their neighboring q-breathers or q-tori. In
particular, we demonstrated how this particular choice of profile can be exploited to remove
the bad dependence of the estimates of Nekhoroshev stability on N . This implies that the
stability time should be exponentially long in 1/ε, and substantiates the importance of the
metastability scenario in interpreting the famous paradox of the FPU recurrences.
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