Switching points in economic series: Asymmetric tendencies and long range correlations

Switching points in economic series: Asymmetric tendencies and long range correlations

M.A. Rivera-Castro, J.G.V. Miranda, E.P. Borges, D.O. Cajueiro, R.F.S. Andrade

Switching points in economic series: Asymmetric tendencies and long range correlations

M.A. Rivera-Castro, J.G.V. Miranda, E.P. Borges, D.O. Cajueiro, R.F.S. Andrade

Physica A 391 170 (2012) Physica A 391 1489 (2012)

INCT-SC - Maio 2012

Outline

- Financial markets
- Switching events in time series
- Asymmetries between positive and negative tendencies
- Local roughness exponents
- Smoothing kernels
- Evaluation of tops and bottoms
- Long range correlations and probability distributionsConclusions

Financial markets

- Financial markets as typical complex systems (CS):
 - □ Large number of agents (degrees of freedom)
 - □ Large amount of information (global fields)
 - □ Different perspectives (local force rules)
 - □ Conflicting interests (agent-agent interaction)
- Forces of different nature
- Small disturbances may result in large effects
- Stochastic nature of system outputs
- Large amount of actual data from market records helps measure, understand, and predict CS

Switching events in time series

- Time series ↔ primary information source
- Market fluctuations ↔ infer dynamical behavior
- Trends ↔ specific features of economic dynamics
 □ Upward trends ("bubbles")
 - □ Downward trends ("financial collapse")
- Change at most different scale times
 - □ Macroscopic bubbles persisting for hundreds of days
 - □ Microscopic bubbles persisting for only seconds

Switching events in time series

- Non-stationary series
- Trends for persistent rise or fall of prices change
- Switching points (SP) concept (Preis and Stanley, PNAS 2011) → change from negative to positive trend
- Typical events in any generic complex system
- How to identify and measure?
- Original definition: SP event identified by a very large value of the return variance

Switching events in time series

- Can other features present in the records be used to detect SP's?
- This presentation: two possible approaches based on previously introduced tools
- Asymmetric detrended fluctuation analysis(A-DFA) (Ramirez, Rodriguez, and Echeverria, Physica A 2009)
- Top-bottom approach with smoothing kernels (Lo, Mamaysky, and Wang, J. Finance 2000)

- Upward trends with distinct time scale (slow) as compared to fast market crashes
- Look for measures to detect asymmetries in raising and decaying trends
- Asymmetric detrended fluctuation analysis(A-DFA)
- Separates fluctuation contributions according to local trend character

- Fluctuations casted into two groups in all different scales → two new scaling exponents (H⁺ and H⁻)
- Symmetric series with respect to the trends \rightarrow $H^+=H^-=H$ (usual roughness or Hurst exponent H)
- Otherwise, A-DFA assigns asymmetric character
- Upward trends with distinct time scale (slow) as compared to fast market crashes

- Series of equidistant increments {x(t)}, t = 1, ..., N.
 y(t) = ∑^t_{j=1} x(j)
- Divide interval [1, N] into a series of M_n boxes of length n labeled by (m,n)
- Evaluate fluctuation $y_s(t) = y(t) p_1(t; (m, n))$
- Evaluate the residue $f(m, n) = \frac{1}{n} \sum_{j \in (m, n)} y_s^2(j)$
- Take the average $F(n) = \left[\frac{1}{M_n} \sum_m f(m, n)\right]^{1/2}$

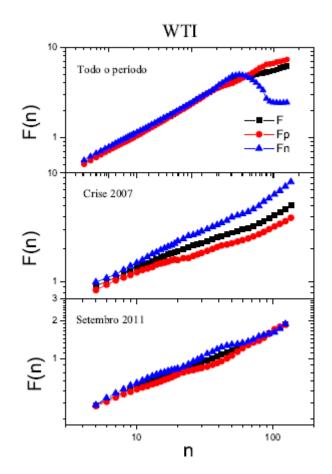
• Check whether $F(n) \sim n^H$

Evaluate also increment fluctuations

•
$$x_s(t) = x(t) - r_1(t; (m, n)), \quad r_1(t) = c t + d$$

- Identify local trend by the sign of c
- Define acordingly two box sets *B*⁺ and *B*⁻
- Two further averages $F^{\pm}(n) = \left[\frac{1}{M^{\pm}n} \sum_{m \in B^{\pm}} f(m, n)\right]^{1/2}$
- Check whether $F^{\pm}(n) \sim n^{H^{\pm}}$

• Example of the WTI oil price series

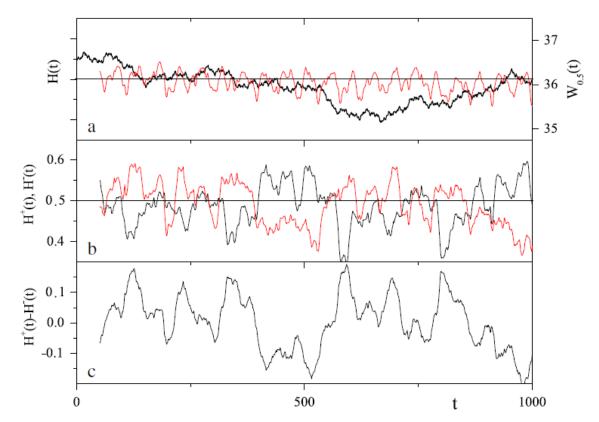


Local A-DFA

- Combines changes to detect trend asymmetry with local dependency of the exponent *H(t)*
- Replace N by window width L+1
- Evaluate H(t), H⁺(t), and H⁻(t) taking L/2 points to the left and L/2 to the right of point t
- Existence of a width limit for event localization
- Validity of $F^{\pm}(n) \sim n^{H^{\pm}}$ with n restricted to L/4
- Minimum of 5 points $\rightarrow L \ge 40$

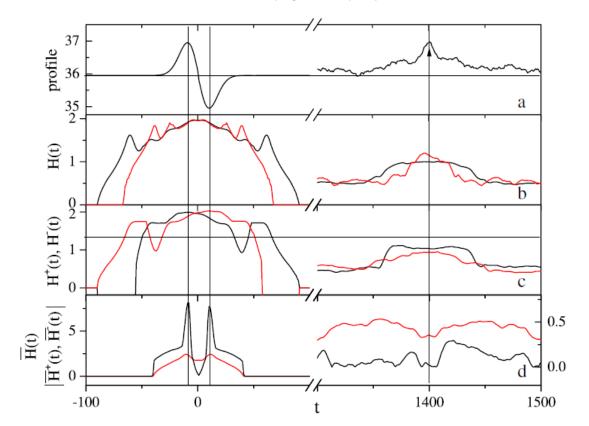
Example for a Weierstrasse function

M.A. Rivera-Castro et al. / Physica A 391 (2012) 170-179



• How precisely $H^+(t)$ and $H^-(t)$ localize SP's ?

MA. Rivera-Castro et al. / Physica A 391 (2012) 170-179

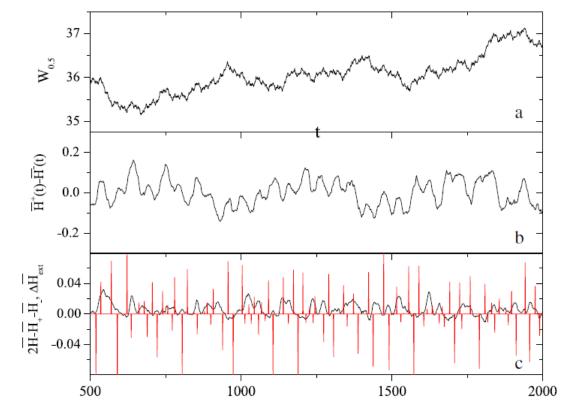


- To coincide extreme of signal and *H* shift the coordinate of *H*(*t*) by ±*L*/2
- To reduce the production of satellite replace the arithmetic by geometric average

• Define a combination of H(t) values $\overline{H}^{\pm}(t) = H^{\pm}(t + L/2)H^{\pm}(t - L/2)$

• Compute combination of \overline{H} values $\overline{H}^+(t) - \overline{H}^-(t)$, $2\overline{H}^{\pm}(t) - \overline{H}^+(t) - \overline{H}^-(t)$

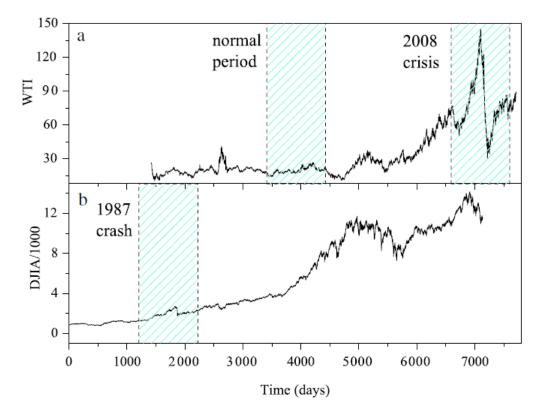
• How precisely $\overline{H}^+(t)$ and $\overline{H}^-(t)$ localize SP's ?



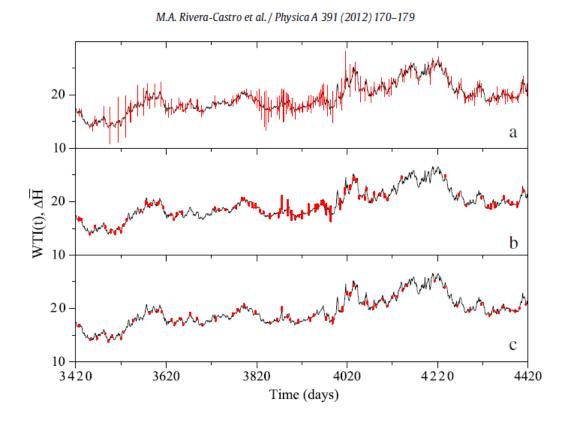
• Peaks are single out by $\Delta \overline{H}_{ext}$

Investigated data sets

M.A. Rivera-Castro et al. / Physica A 391 (2012) 170-179

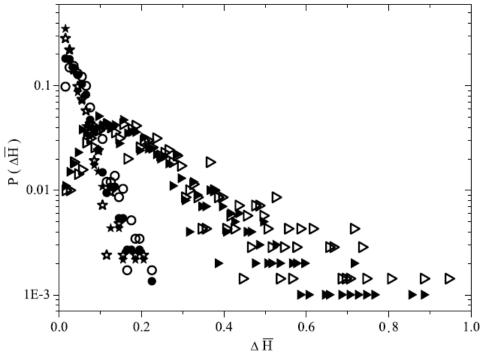


■ Identification of SP's for different values of *L* and threshold values $\Delta \overline{H}_{crit}$



Magnitude probability distribution of SP events

M.A. Rivera-Castro et al. / Physica A 391 (2012) 170-179



Peaks are single out by

- Measures H[±](t) are able to identify SPs in actual and deterministic series
- Sufficiently tunable framework by small number of parameters L, ℓ , and ΔH_c
- Choose two independent length scales under which the system can be analyzed
- Number and magnitude of SPs related by the preselected values of the quoted three parameters,
- More relevant events can be filtered accordingly

• Exponential decay of $P(\Delta \overline{H})$

Tops and bottoms

- Top-bottom (TB) price approach
- Local extreme in price series
- Top price → asset is sold by a too high value
- Bottom price → asset is sold by a too low value
- Identify $TB \leftrightarrow SP$
- Actual local extreme ↔ changes of expectations
- Another attempt to identify SP's and corresponding properties without using volatility

Tops and bottoms

- Combine this observation with return intervals approach in financial fluctuations (Wang, Yamasaki, Havlin, and Stanley, Phys. Rev. E 2006)
- Return interval → time interval between two consecutive volatilities above a given threshold
- Investigate properties of TB-return and TB-interval
- TB-return → absolute value of the difference between consecutive T/B prices or B/T prices
- TB-interval → time interval between consecutive
 T/B or B/T events

Tops and bottoms

- T/B events in financial time series → important pieces of information for several investors
- Patterns of technical analysis based on T/B relative positions
- TB returns and TB intervals strongly related
- TB return ↔ maximal amount of money an investor can make/loose in a given TB interval when the price of the asset rises/falls
- Memory effects with different behaviors correlated with the probability distribution patterns

- T/B in smooth continuous functions \rightarrow easy task
- T/B in financial time series \rightarrow awkward task
- Adopt procedure by Lo et al. (2000) → procedure for smoothing series and T/B search
- Sign of the slope of the smoothed curve
- Lo et al. seems to be the first one to use smoothing method in the analysis of financial series.

- Assume the price series of an asset is $p(t) = y(t) + \varepsilon(t),$
- $y(t) \rightarrow$ nonlinear fixed smooth function
- $\varepsilon(t) \rightarrow$ white noise sequence
- Assume the estimator

$$\widehat{y}(t) = \frac{1}{T} \sum_{s=1}^{T} \omega_s(t) p(s)$$

- Weights ω_s : larger when *s* is close to *t*
- Choice of weights → defines the width and form of neighborhood where the average is evaluated

- Gaussian kernel with width h
- Consider

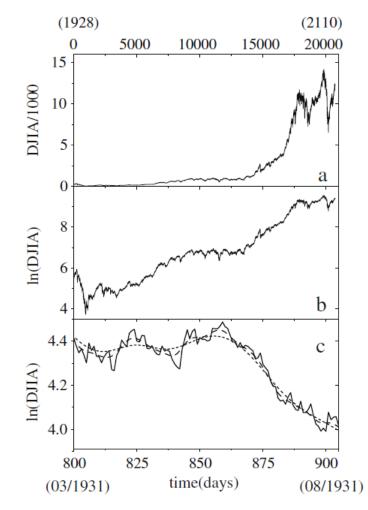
$$\omega_{sh}(t) \equiv K_h(t-s)/g_h(t),$$

with $g_h(t) = \frac{1}{T} \sum_{u=1}^T K_h(t-u),$
and $K_h(t) = \frac{1}{h\sqrt{2\pi}} e^{-t^2/2h^2}$

Finally obtain

$$\widehat{y}(t) = \frac{\sum_{u=1}^{T} K_h(t-u)p(s)}{\sum_{u=1}^{T} K_h(t-u)}$$

DJIA in the 1928–2010 interval



- Search for long range correlation in probability distribution and correlation function
- $p_h^R(x)$: distribution of TB log-return with $x = |\hat{y}_h^M - \hat{y}_h^m|, \hat{y}_h^M$ and \hat{y}_h^m two consecutive extreme values of the smoothed ln(DJIA) series
- $p_h^{I}(x)$: distribution of TB interval with \hat{y}_h^{M} and \hat{y}_h^{m} time corresponding to two consecutive extreme values of the smoothed ln(DJIA) series

Integrated probability distribution

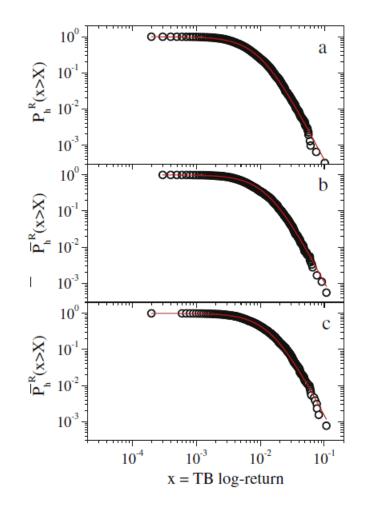
$$P_h(x > X) = \int_X^\infty p_h(x) dx$$
$$\overline{P}_h(x > X) = \frac{1}{X} \int_X^\infty p_h(x) dx$$

Generalized *q*-exponential functions $\exp_q(x) = [1 + (1 - q)x]_+^{1/(1-q)}$

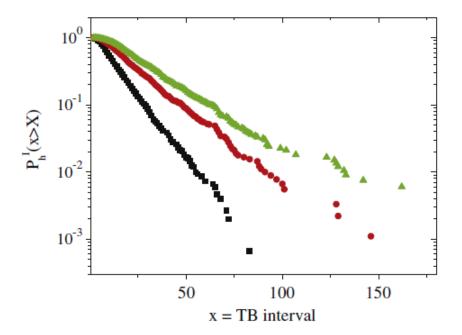
- DJIA 1928-2010
- Integrated probability distribution
- TB log-returns
- *h* = 3, 5, 7
- Circles: data points
- Solid lines: *q*-Gaussian function ~ $\exp_q(-\beta x^2)$
- q = 1.8, independent of h
- Fits the whole interval



- Intra-day NEI series sampled at 5 min interval
- Integrated probability distribution
- TB log-returns
- *h* = 3, 5, 7
- Circles: data points
- Solid lines: *q*-Gaussian function ~ $\exp_q(-\beta x^2)$
- q = 1.5, independent of h



- Integrated probability distribution
- TB interval
- *h* = 3, 5, 7
- Functional dependence not clear



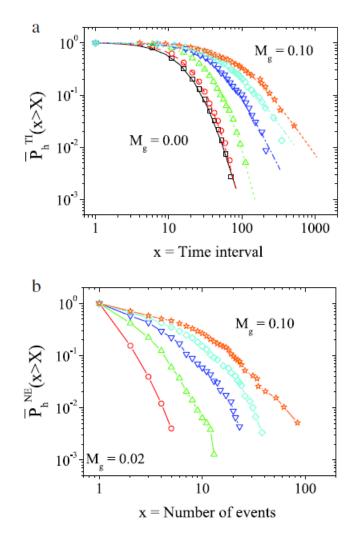
M.A. Rivera-Castro et al. / Physica A 391 (2012) 1489-1496

- Threshold magnitude M_g influences distribution of TB intervals
- Closer analysis to functional dependence
- M_g ∈ [0,0.10]
- Evaluate distribution wrt two distinct variables
- x = Time interval: starts from previous results with very rapid decay
- x = Number of events: starts from a single point

■ *h*=3

- *x* = Time interval
- $\exp_q(x)$, where q depends on M_g
 - □ Exponent starts at 5 and decays to 1.25 with M_g
- x = Number of events
- No clear functional dependence

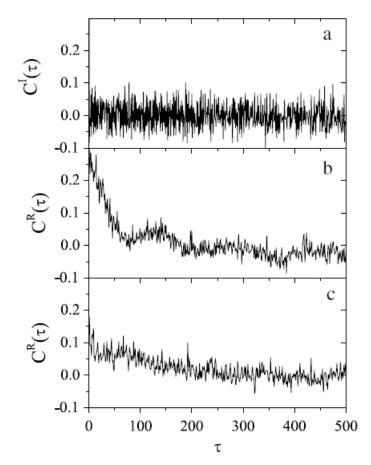
M.A. Rivera-Castro et al. / Physica A 391 (2012) 1489–1496



Fluctuation correlation function

$$C(\tau) = \frac{1}{T} \frac{1}{A} \sum_{e=1}^{T} (x(e) - \bar{x})(x(e + \tau) - \bar{x})$$
$$A = \sum_{e=1}^{T} (x(e) - \bar{x})^2$$

- Fluctuation correlation function
- TB log-return and TB intervals with distinct properties
- Long range correlation ↔ exp_q(x) dependency with q≠1
- NEI and DJIA with different *q* and characteristic decaying time



Conclusions

- Two new approaches to detect SP's
- Characterization of statistical distribution of events
- Different measures express SP's in particular form of the distribution
- Actual numerical values of distribution parameters reflect series properties

Thanks for the attention!!!