

The mystery of bacteria diversity

Marcelo Lobato Martins* and H. S. Silva,
Departamento de Física, Universidade Federal de Viçosa
*National Institute of Science and Technology for Complex Systems

1- Introduction

- ➤ Microorganisms are engaged in an endless arms race → a diversity of antimicrobial compounds are produced by most species.
- These substances include bacteriocins (protein antibiotics).
- ➤ Such allelopathic compounds are mediators of intra- and interspecific interactions → relevant factors in maintening microbial diversity.

- ➤ Bacteriocins actively secreted from a bacterial cell (microcins) are significantly more common than those released as a result of cell lysis (colicins).
- ➤ Bacteriocin resistance occurs when mutations eliminate or alter the cell surface receptors to which a particular bacteriocin binds.
- ➤ The main question: can a stable bacterial community be established through allelopathic interactions?

2- Model

- ✓ The population consists of N different, competing bacterial strains.
- ✓ Each strain secretes specific microcins that can kill other strains. Also, each strain is immune to its own microcin.
- ✓ Mitotic cell division → mutations: the two resulting cells can transform into one of its "nearest-neighbors" strains.

✓ Mutators can evolve resistance to their competitors' microcins.

change the edges of the interspecific interaction network.

✓ Population dynamics:

$$\vec{u}(t+1) = (A-B)\vec{u}(t)$$
(a_{ij})=average number of (b_i)=aver

 (a_{ij}) =average number of offspring of the strain i produced per generation by a bacterium of the strain j.

(*b_i*)=average fraction of individuals of the strain *i* dead per generation

$$\vec{m}(t+1) = (1-\gamma)\vec{m}(t) + \beta \vec{u}(t+1)$$
Microcins' decay rates

Microcins' synthesis rates

$$A = 2 \begin{pmatrix} p_{1}(1 - \sum_{j \neq 1} v_{1j}) & p_{2}v_{21} & \cdots & p_{N}v_{N1} \\ p_{1}v_{12} & p_{2}(1 - \sum_{j \neq 2} v_{2j}) & \cdots & p_{N}v_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1}v_{1N} & p_{2}v_{2N} & \cdots & p_{N}(1 - \sum_{j \neq N} v_{Nj}) \end{pmatrix}$$

$$p_{i} = \begin{cases} p, se \sum_{j \neq i} \xi_{ij} m_{j} \leq \theta_{i} \\ p \exp \left\{-a_{i} \left[\left(\sum_{j \neq i} \xi_{ij} m_{j}\right) - \theta_{i}\right]\right\}, otherwise. \end{cases}$$

$$b_{i} = \begin{cases} q, se \sum_{j \neq i} \xi_{ij} m_{j} \leq \theta_{i} \\ 1 - (1 - q) \exp \left\{ -d_{i} \left[\left(\sum_{j \neq i} \xi_{ij} m_{j} \right) - \theta_{i} \right] \right\}, otherwise. \end{cases}$$

where:

$$p = \exp\left(\frac{1}{K}\sum u_i\right); \quad q = 1 - p \quad \text{e} \quad \xi_{ij} = \begin{cases} 1, & \text{if strains } i \text{ and } j \text{ int } eract \\ 0, & \text{otherwise.} \end{cases}$$

 ξ_{ii} =1 (0) with probability λ (1- λ) \rightarrow random interspecific interaction

network.

3- Results

➤ N=2: the classical invasion problem

1
 2

network

➤ N=3: the emergence of defensive alliances

✓ allelopathic invasion

✓ defensive alliance

$$u_1(0)=u_2(0)=u_3(0)=10$$

$$u_1(0)=u_2(0)=10 \text{ e } u_3(0)=10$$

Strain 3 invades with P_{inv}=1.

The alliance fails.

 P_{inv3} =80%; P_{inv2} =15% Two-strains coexistence: P=5%.

✓ the effect of space:

The deffensive alliance is successful

✓ Rock-Paper-Scissor

> N>3: decreasing diversity

✓ Diversity in the spatially explicit model

4- Conclusions

- In random allelopathic networks, the diversity of bacteria decreases with the size of the pool of strains.
- ➤ Spatial dispersion of bacterial strains contributes to increase community diversity, but it is not sufficient.
- ➤ A self-assembly mechanism driven by correlated mutations is currently under investigation on the quest for stability and diversity.