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Introduction

It is well known that laboratory and space plasmas can con-
tain distinct populations of hot and cold electrons [1]. In
two-electron plasmas, electron-acoustic waves (EAWs) with
wave frequency larger than the ion plasma frequency can be
generated [2]. In their classical paper of 1978, Bezzerides,
Forslund and Lindman [3] investigate the nonlinear regime
and analyze the existence of rarefaction waves and shocks in
a two-electron temperature isothermal plasma. The study of
rarefaction waves (and shocks) is important for a variety of
problems in plasma physics, including the so-called current-
free double layers [4].

A double layer (DL) consists of a positive/negative De-
bye sheath, connecting two quasineutral regions of a plasma.
It may be regarded as a BGK equilibrium in some cases, for
which certain conditions must be fulfilled. The strong Lang-
muir DL is the best known of these structures. The current-
free double layer (CFDL) constitutes a different group, for
which there is no trapped ion population. Contrary to the
Langmuir DL, the CFDL is weak, with ϕ < kBTh/e (ϕ is
the potential drop across the layer and Th is the temperature
of the hot electron population). It is worth to mention that in
general the plasma distributions near a DL are strongly non-
Maxwellian [5].

As a preparatory step for a deeper investigation of
CFDLs, we follow the steps of Ref.[3] and analyze the con-
ditions for the existence of rarefaction waves and shocks in
nonthermal plasmas. The dynamics of the plasma is de-
scribed by the fluid equations, with the cold and hot electrons
modeled by the Maxwellian and κ distributions, respectively.
Some preliminary results are presented, and the influence of
the superthermal electrons present in the long tails of the κ
distribution is discussed.

Model equations

We can write the electron number density as

Ne (ϕ) = Nc (ϕ) +Nh (ϕ) , (1)

where

Nc (ϕ) = Nc0e
eϕ/kBTc, (2)

Nh (ϕ) = Nh0

[
1− eϕ

(κ− 3/2) kBTh

]−(κ−1/2)
, (3)

with κ > 3/2. In the above equations Tc is the temperature
of the cold electrons and Nc0 + Nh0 = N0. In the limit κ →
∞ we obtain the Boltzmann distribution (1) also for the hot
electrons .

The ions are assumed to obey the cold hydrodynamic
equations, and the ion and electron densities are related
through Poisson’s equation

∂2

∂z2

(
eϕ

kBTh

)
=

4πe2N0

kBTh
[ne (ϕ) − ni], (4)

where ne(ϕ) = Ne(ϕ)/N0, ni = Ni/N0 and φ = eϕ/kBTh.
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Rarefaction waves and shocks

Introducing the similarity parameter ξ = (z/t)/ch, where
ch = (kBTh/mi)

1/2, and following Ref.[3] we obtain the
equation that governs the electrostatic potential φ, i.e.

dφ

dξ

(
1 +

1

2

dc2s
dφ

)
+ cs = 0, (5)

where

c2s =
dPe
dne
≡ ne (φ){

nc (φ) τ + nh (φ)
(κ−1/2)
(κ−3/2)

[
1− φ

(κ−3/2)

]−1},
(6)

is the square of the normalized speed of sound. In the above
expression τ = Th/Tc and Pe ≡ Pe(φ) is the normalized
pressure, which obeys the relation dPe(φ)/dφ = ne(φ). From
Eq.(5), it is straightforward to see that a necessary condition
for rarefaction shocks to exist is

dc2s
dφ

+ 2 ≤ 0, (7)

with the equality defining the onset of the singularity in the
rarefaction wave. As discussed by Bezzerides, Forslund and
Lindman, when both electron populations are modeled via
Maxwellian distributions, condition (7) reduces to τ ≥ 5 +√
24 ≈ 9.9. This can be seen in Fig.(1), where we plot z =

2 + dc2s/dφ as a function of x = α = Nh0/N0 and y = −φ
for κ = 500 (Maxwellian limit). In (a) we have τ = 10 and
z = 0 (onset of the singularity) for a broad range of α’s. For
τ = 12 we observe that z ≤ 0 also for a broad range of
α’s, with the formation of the shock between two extremes
of φ. However, as κ decreases (Fig.(2), κ = 5), we notice the
singularity starts to appear (for a short range of α’s) only for
τ ≈ 11. As τ increases, we have the formation of the shock
for all the values of α. For longer tails (Fig.(3), κ = 2.5), the
singularity appears for an even larger value of τ (≈ 13) . For

Figure 1: (a) κ = 500 and
τ = 10

Figure 1: (b) κ = 500 and
τ = 12

Figure 2: (a) κ = 5 and
τ = 11

Figure 2: (b) κ = 5 and
τ = 16

Figure 3: (a) κ = 2.5 and
τ = 13

Figure 3: (b) κ = 2.5 and
τ = 16

the same value of τ , we observe that electron nonthermality
seems to “disturb” the formation of the shock: as κ decreases,
the shock does not appear for all the values of α (Figs.(2b)
and (3b)).

Solving Eq.(5) numerically, we can analyze the different
profiles obtained for the electrostatic potential φ. In Fig.(4)
we present the results for κ = 500, α = 0.01 and τ = 9.9

and 20, respectively. In (a) we notice the eminent formation
of the shock, while in (b) it is observed that φ is not a single
valued function of ξ. This discontinuity in the profile of the
electrostatic potential represents the shock formation. For
such a small value of α (= 0.01) and κ = 2.5, the onset of the
singularity appears for τ = 10.2 (Fig.(5a)). As α grows (α =

0.2, Fig.(6)), the shock becomes eminent only for τ = 14.2.
Is is also noticed that the shock starts to appear for smaller
values of ξ as α becomes larger.

Figure 4: (a) κ = 500, α =

0.01 and τ = 9.9

Figure 4: (b) κ = 500, α =

0.01 and τ = 20

Figure 5: (a) κ = 2.5, α =

0.01 and τ = 10.2

Figure 5: (b) κ = 2.5, α =

0.01 and τ = 20

Figure 6: κ = 2.5, α = 0.2 and τ = 14.2

Conclusions

The presented results indicate that electron nonthermality
(represented by the parameter κ) influences the onset of the
singularity in the rarefaction wave and the formation of the
shock. For distributions with longer tails (small κ) the forma-
tion of the shock becomes eminent only for larger values of
τ when compared to the Maxwellian case. It is also noticed
that, for a fixed τ , a decrease in κ implies the disappearance
of the shock for larger values of α.
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