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Abstract

The extension of Boltzmann-Gibbs thermostatistics,
proposed by Tsallis, introduces an additional parame-
ter q to the inverse temperature β. Here, we show that
a previously introduced generalized Metropolis dynam-
ics to evolve spin models is not local and does not obey
the detailed energy balance. In this dynamics, locality
is only retrieved for q = 1, which corresponds to the
standard Metropolis algorithm. We propose a general-
ized master equation, which gives rise to a local gen-
eralized Metropolis dynamics that obeys the detailed
energy balance.

Generalized Metropolois Algorithm

The system equilibrium is described by the generalized
Boltzmann-Gibbs distribution

P1−q(Ei) = [e1−q(−β′Ei)]q
∑Ω
i=1[e1−q(−β′Ei)]q

, (1)

where Ω is the number of accessible states of the system
and β′ = β/ Ω∑

i=1
{[e1−q(−βEi)]q+(1−q)β〈E〉1−q}, where

〈E〉1−q = ∑Ω
i=1EiP1−q(Ei). The function

eα(x) =

(1 + αx)1/α for αx > −1
0 otherwise , (2)

is the generalized exponential [2, 3].
To recover the additive property of the argument,
when multiplying two generalized exponential functions:
eα(a)eα(b) = eα(a⊕α b) [eα(a)/eα(b) = eα(a	α b)] and
eα(a)⊗α eα(b) = eα(a+ b) [eα(a)�α eα(b) = eα(a− b)]
consider the following algebraic operators [4, 5]:

a⊕α b = a + b + αab (3)
a	α b = a− b

1 + αb
(4)

a⊗α b = (aα + bα − 1)1/α (5)
a�α b = (aα − bα + 1)1/α . (6)

However, in equilibrium, the Ising model prescribes an
adapted Metropolis dynamics that considers a generalized
version of exponential function [6, 7]:

w[σ(b)
i → σ

(a)
i ] = P1−q[E(a)]

P1−q[E(b)]
=


e1−q[−β′E(a)]
e1−q[−β′E(b)]



q

. (7)

More precisely, consider the Ising model in a square lattice,
one can show that:

e1−q[−β′E(a)]
e1−q[−β′E(b)]

= e1−q{−β′[E(a) 	1−q E
(b)]} (8)

or:
e1−q[−β′E(a)]
e1−q[−β′E(b)]

6= e1−q{−β′[E(a) − E(b)]} , (9)

where E(a)−E(b) is the energy difference, which depends
only the spins that directly interact with the flipped spin,
violating the detailed energy balance.
In Refs [6, 7], the authors consider (with no explanations)
the equality in Eq. 9, instead of considering Eq. 8. Thus,
the detailed energy balance is violated, since the system
is updated following a local calculation of the generalized
Metropolis algorithm of Eq. 7.

Recovering locality in the generalized Metropolis algorithm

Based on the operators of Eq. 3 to Eq. 6, we propose the following generalized master equation:
dP1−q[E(a)]

dt
= ∑

σ
(b)
i

w[σ(b)
i → σ

(a)
i ]⊗q̃/q Pq[E(b)] 	q̃/q w[σ(a)

i → σ
(b)
i ]⊗q̃/q Pq[E(a)] . (10)

where Pq(E) is given by Eq. 1. Here, it is suitable to call q̃ = 1− q and write the generalized exponentials as a function
of q̃. In equilibrium, dP1−q/dt = 0 and a dynamics governed by Eq 1.
The detailed balance (a sufficient condition to equilibrium) for the generalized master equation is

w[σ(b)
i → σ

(a)
i ]�q̃/q w[σ(a)

i → σ
(b)
i ] = Pq[E(a)]�q̃/q Pq[E(b)] , (11)

which leads to a new generalized Metropolis algorithm:
w(σ(b)

i → σ
(a)
i ) = min

1,
eq̃(−β′E(a))

q �q̃/q
eq̃(−β′E(b))

q
 = min

1,
eq̃(−β′(E(a) − E(b)))

q


= min
1,

eq̃(β′J
σ(a)
ix,iy − σ

(b)
ix,iy

Six,iy)

q (12)

and now the transition probability depends only on energy between the read site and its neighbors, i.e., locality is
retrieved.

Figure : System magnetization versus temperature for q = 1.0, 0.8 and 0.6. Using the dynamics based on Metropolis II, we observe phase
transitions for critical values upper to log(1 +

√
2)/2 as q < 1 differently from previous studies, which are based on Metropolis I.

Conclusion

We have proposed a generalized master equation leading to a generalized Metropolis algorithm. This algorithm is local
and satisfies the detailed energy balance to calculate the time evolution of spins systems. We calculate the critical
temperatures using the generalized Metropolis dynamics. The critical parameters have been obtained using Monte Carlo
simulations in two different ways. Firstly, we show the phase transitions from curves 〈M〉 versus kBT/J , considering
the magnetization averaging, in equilibrium, under different MC steps. We have also studied the Metropolis algorithm
of Refs. [6, 7]. We show that it does not preserve locality neither the detailed energy balance in equilibrium. When the
extensive case is considered, both methods lead to the same expected values.
For a more complete elucidation about existence of phase transitions for q 6= 1, we have performed simulations for
small systems MC simulations, recalculating the whole lattice energy in each simple spin flip, according to Metropolis
I algorithm only to check the variations on the critical behavior of the model. Notice that this does not apply to
Metropolis II algorithm, since it has been designed to work as the standard Metropolis one. Our numerical results show
discontinuities in the magnetization, but no finite size scaling, corroborating the results of Ref. [8], which used the broad
histogram technics to show that no phase transition occurs for q 6= 1 using Metropolis I algorithm.
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