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Abstract – In 1910 Einstein published a work on a crucial aspect of his understanding of the
Boltzmann entropy. He essentially argued that the likelihood function of any system composed by
two probabilistically independent subsystems ought to be factorizable into the likelihood functions
of each of the subsystems. Consistently he was satisfied by the fact that the Boltzmann (additive)
entropy fulfills this epistemologically fundamental requirement. We show here that entropies (e.g.,
the q-entropy on which nonextensive statistical mechanics is based) which generalize the BG one
through violation of its well-known additivity can also fulfill the same requirement. This important
fact sheds light on the very foundations of the connection between the micro- and macro-scopic
worlds, and consistently supports that the classical thermodynamical Legendre structure is more
powerful than the role to it reserved by the Boltzmann-Gibbs statistical mechanics.

open  access Copyright c© EPLA, 2015

Published by the EPLA under the terms of the Creative Commons Attribution 3.0 License (CC BY).
Further distribution of this work must maintain attribution to the author(s) and the published article’s
title, journal citation, and DOI.

Einstein presented in 1910 [1] an interesting argument of
why he liked Boltzmann’s connection between the classical
thermodynamic entropy introduced by Clausius and the
probabilities of microscopic configurations. This argument
is based on the factorization of the likelihood function of
independent systems (A and B), namely

W(A + B) = W(A)W(B). (1)

This is a very powerful epistemological reason since it
reflects the basic procedure of all sciences, namely that, in
order to study any given natural, artificial and social sys-
tem, theoretical approaches typically start by focusing on
a certain set of relevant degrees of freedom of the Universe,
and, only at a more evolved stage of the theory, possible
connections with other degrees of freedom are introduced
as well, whenever necessary. In the present paper, we shall
refer to eq. (1), as Einstein likelihood principle (see [2,3]
for related aspects).

The celebrated Boltzmann principle reads

SBG = k lnW, (2)

where W denotes the total amount of microscopic pos-
sibilities assumed equally probable, and k is a conven-
tional constant; we shall from now on use BG, standing for
Boltzmann-Gibbs, instead of just B. From eq. (2) we ob-
tain, through Einstein’s well-known reversal of the Boltz-
mann formula, the likelihood function

W ∝ eSBG/k, (3)

with

SBG = k
W
∑

i=1

pi ln
1

pi

(

W
∑

i=1

pi = 1

)

, (4)

where, for simplicity, we have used the case of discrete
variables (instead of the continuous ones, that were of
course used in the early times of statistical mechanics);
notice that W plays in eqs. (2) and (4) the role of the total
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number of admissible microscopic configurations, whereas,
through the Einstein reversal, W plays in eqs. (1) and (3)
the role of a likelihood function (for example, if we throw
100 coins, what is the probability W of obtaining 52 heads
and 48 tails?). The entropy SBG is additive according to
Penrose’s definition [4]. Indeed, if A and B are probabilis-
tically independent systems (i.e., if pA+B

ij = p+ iApB
j ), we

straightforwardly verify that

SBG(A + B) = SBG(A) + SBG(B), (5)

hence, by replacing this equality into eq. (3), eq. (1) is
satisfied.

Before proceeding, let us stress a point which not rarely
generates confusion. By definition [4], an entropic func-
tional is said additive if, for any independent systems A
and B, the total entropy equals the sum of the entropies
of the parts. In other words, it is a property of the
functional and by no means depends on the system (or
subsystems) to which it may be applied. This is in neat
contrast with entropic extensivity which depends on both
the functional and the system to which it is being applied.
This is why establishing whether a given entropic func-
tional is additive or not is a mathematically trivial task.
Not so for establishing whether a given entropic func-
tional is thermodynamically extensive for a given system:
this can be, and frequently is, mathematically extremely
demanding.

Let us go on now and show a crucial issue, namely
that entropic additivity (that of SBG, as we have
just shown, as well as that of the Renyi entropy
SR

q = k(ln
∑W

i=1 pq
i )/(1 − q), as can be straightforwardly

verified) is sufficient but not necessary for the Einstein
principle (1) to be satisfied. Let us consider the following
generalised functional [5], basis of nonextensive statistical
mechanics [5–8]:

Sq = k
1 −

∑W
i=1 pq

i

q − 1
= k

W
∑

i=1

pi lnq
1

pi
(6)

(

q ∈ R;

W
∑

i=1

pi = 1; S1 = SBG

)

,

with lnq z ≡ z1−q−1
1−q (z > 0; ln1 z = ln z). If A and B are

two probabilistically independent systems (i.e., pA+B
ij =

pA
i pB

j , ∀(i, j)), definition (6) implies

Sq(A + B)

k
=

Sq(A)

k
+

Sq(B)

k

+ (1 − q)
Sq(A)

k

Sq(B)

k
. (7)

Consequently, according to the definition of entropic ad-
ditivity in [4], Sq is additive if q = 1, and nonadditive
otherwise.

If probabilities are all equal, we straightforwardly obtain
from (6)

Sq = k lnq W, (8)

hence eq. (3) is generalised into

W ∝ eSq/k
q , (9)

where ez
q is the inverse function of lnq z (hence, ez

q ≡ [1 +

(1 − q)z]1/(1−q); ez
1 = ez). If we take into account eq. (7),

and use e
x⊕qy
q = ex

qey
q (with x⊕q y ≡ x+y+(1−q)xy, and

lnq(xy) = (lnq x) ⊕q (lnq y)), once again we easily verify
Einstein’s principle (1), but now for arbitrary values of the
index q! As anticipated, this exhibits a most important
fact, namely that entropic additivity is not necessary for
satisfying Einstein’s 1910 crucial requirement within the
foundations of statistical mechanics.

In fact, this property is amazingly general. Indeed,
let us consider a generalised trace-form entropic func-
tional SG({pi}) ≡ k

∑W
i=1 pi lnG

1
pi

, where lnG z is some
well-behaved generalization of the standard logarithmic
function. Let us further assume that, for probabilisti-
cally independent systems A and B, SG satisfies, at least
for the simple equal-probabilities case, SG(A + B)/k =
Φ(SG(A)/k, SG(B)/k) ≡ [SG(A)/k] ⊕G [SG(B)/k], where
Φ denotes some generic function, and ⊕G generalises the
standard sum. For equal probabilities (i.e., pi = 1/W ),
SG takes a specific form, namely SG(W ) = k lnG W . We
shall name ez

G the inverse function of lnG z. Then, follow-
ing Einstein’s reversal, the likelihood function is given by

W ∝ e
SG/k
G , (10)

and, once again, by using ex⊕Gy
G = ex

Gey
G, the Einstein

principle (1) is satisfied, ∀G. Clearly, the additive SBG

and the nonadditive Sq are particular illustrations of this
property. Another example which follows this path is the
equal-probability case of another, recently introduced (to
address black holes [9–16] and the so-called area law [17]),
nonadditive entropy, namely (see footnote on p. 69 in [7],
and [9]; see also [18]),

Sδ = kB

W
∑

i=1

pi

(

ln
1

pi

)δ

(δ > 0; S1 = SBG). (11)

For equal probabilities we have

Sδ = k lnδ W, (12)

hence, for δ > 0,

Sδ(A + B)

k
=

{

[

Sδ(A)

k

]1/δ

+

[

Sδ(B)

k

]1/δ
}δ

≡
Sδ(A)

k
⊕δ

Sδ(B)

k
. (13)

Let us note at this point a crucial issue, namely that
entropies SBG, Sq and Sδ are thermodynamically appro-
priate for systems constituted by N elements, such that
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Fig. 1: The index q has been determined [19] from first prin-
ciples, namely from the universality class of the Hamiltonian.
The values c = 1/2 and c = 1 respectively correspond to the
Ising and XY ferromagnetic chains in the presence of a trans-
verse field at T = 0 criticality. For other models see [20,21]. In
the c → ∞ limit we recover the Boltzmann-Gibbs (BG) value,
i.e., q = 1. For an arbitrary value of c, the subsystem non-
additive entropy Sq is thermodynamically extensive for, and

only for, q =

√
9+c2−3

c
. Let us emphasize that this anomalous

value of q occurs only at precisely the second-order quantum
critical point; anywhere else the usual short-range–interaction
BG behavior (i.e. q = 1) is valid.

the total number of admissible microscopic configurations
are, in the N → ∞ limit, given, respectively, by CµN (C >
0; µ > 1), DNρ (D > 0; ρ > 0) and φ(N)νNγ

(ν >
1; 0 < γ < 1) (φ(N) being any function satisfying

limN→∞
ln φ(N)

Nγ = 0; strictly speaking, C and D could
also be sufficiently slowly varying functions of N). Notice
that CµN ≫ φ(N)νNγ

≫ DNρ, which implies that the
Lebesgue measure of the phase-space occupancy typically
vanishes for the cases where nonadditive entropies are to
be used, whereas it is nonzero in the standard BG case. In
all cases, for special values of q (namely q = 1 − 1/ρ) or δ
(namely δ = 1/γ), the thermodynamical requirement that
S(N) ∝ N is satisfied! It is possible to unify the entire

discussion by defining [9] Sq,δ = kB

∑W
i=1 pi(lnq

1
pi

)δ (q ∈

R; δ > 0). Indeed, S1,1 = SBG, Sq,1 = Sq, and S1,δ = Sδ.
It is important to keep in mind that indices such as

q and δ are to be to obtained from first principles, i.e.,
from mechanics (classical, quantum, relativistic). This is
already shown by the fact that, in the two above illustra-
tions, q (or δ) is obtained directly from ρ (or γ). This
means that, if we are dealing, say, with Hamiltonian sys-
tems, q and δ are in principle determined directly from the
Hamiltonian, more precisely from the universality class of
the Hamiltonian. One paradigmatic nontrivial illustration
is analytically available in the literature [19]. It concerns
the entropy of a thermodynamically large subsystem of a
strongly quantum entangled one-dimensional many-body
system which belongs to the universality class character-
ized by the central charge c. Indeed, at quantum criticality

(i.e., at T = 0 of the entire system), we have q =
√

9+c2−3
c :

see fig. 1. It is clear that, in contrast with this example,

pT [GeV/c]

 dN

dydpT

 = A eq
− pT c / T

dpT = 2π pT dpT

y ≡ rapidity

[A] = GeV
−2

c
3

Data from Wong & Wilk PRD 87, 114007 (2013)A / 10
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Fig. 2: Experimental distributions of the transverse moments
in hadronic jets at the CMS, ALICE and ATLAS detectors at
LHC. The data are from [22]. They can be remarkably well
fitted (along fourteen decades) with the q-exponential function
ex

q ≡ [1+(1−q)x]1/(1−q), which, under appropriate constraints,
extremises the entropy Sq . See details in [23].

the analytical determination of q appears to be mathemat-
ically intractable for most systems. This is the only reason
why we frequently find in the literature papers where the
indices q are determined through fitting procedures. In
some examples, the fitting can nevertheless be amazingly
precise: see [22,23] and fig. 2, where up to 14 decades (in
the probability axis) are satisfactorily covered.

Complexity frequently emerges in natural, artificial and
social systems. It may be caused by various geometrical-
dynamical ingredients, which include nonergodicity,
long-term memory, multifractality, and other spatial-
temporal long-range correlations between the elements
of the system, which ultimately drastically restrict the
total number of microscopically admissible possibilities.
During the last two decades, many such phenomena have
been successfully approached in the frame of nonadditive
entropies and nonextensive statistical mechanics. Pre-
dictions, verifications and various applications have been
performed in high-energy physics [24–29], spin-glasses [30],
cold atoms in optical lattices [31], trapped ions [32], slow
dynamics in proteins and polymer chains [33], anomalous
diffusion of overdamped interacting vortices in type-
II superconductors [34–38], dusty plasmas [39], solar
physics [40–42], long-range interactions [43,44], relativis-
tic and nonrelativistic nonlinear quantum mechanics [45],
among many others (see [46]). All these examples
explicitly or tacitly reflect the fact that fundamental laws
in Nature are dynamical at their basis (see, for instance,
the stochastic processes described in [47–51]).

All of the above is totally consistent with the fact that,
for all those systems for which the correlations between
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the microscopic degrees of freedom are generically weak,
the thermodynamically admissible entropy is precisely the
additive one, SBG, as well known. If, however, strong
correlations are generically present (e.g., of the type as-
sumed in the q-generalization of the Central Limit and
Lévy-Gnedenko Theorems [52,53]), we need to implement
nonadditive entropies [54–56] and their associated statis-
tical mechanics.

Summarizing, in order to satisfy the classical thermo-
dynamical Legendre structure, the thermostatistics of a
wide class of systems whose elements are strongly corre-
lated (for instance, for overdamped systems, or through
long-range interactions and/or through strong quantum
entanglement, like possibly in quantum gravitational
dense systems) are to be based on nonadditive entropies
such as Sq,δ (see footnote 1), and not only on the usual
Boltzmann-Gibbs-von Neumann one. Nevertheless, and
this is the main point of the present note, Einstein’s
likelihood principle (1) is generically satisfied for a wide
class of entropies (which includes Sq and others) and not
only for the BG one. This fact consistently reinforces that
the classical thermodynamical Legendre structure is more
powerful than the role to it reserved by Boltzmann-Gibbs
statistical mechanics. Beautiful illustrations of q 
= 1
systems which are analytically shown to satisfy the
H-theorem, the zeroth, first and second principles of
thermodynamics, as well as the celebrated efficiency of the
Carnot cycle, are available in the literature [37,60–63].
Moreover, nonadditive entropies typically produce
anomalous scalings (with size) of the thermodynamical
variables (see [9] and references therein). Of course, the
usual thermodynamical scalings are recovered for systems
such as the ergodic ones, and generically those that are
consistent with the BG entropic functional [64].
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