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Abstract. We briefly review the connection between statistical mechan-
ics and thermodynamics. We show that, in order to satisfy thermo-
dynamics and its Legendre transformation mathematical frame, the
celebrated Boltzmann-Gibbs (BG) statistical mechanics is sufficient
but not necessary. Indeed, the N → ∞ limit of statistical mechanics
is expected to be consistent with thermodynamics. For systems whose
elements are generically independent or quasi-independent in the sense
of the theory of probabilities, it is well known that the BG theory (based
on the additive BG entropy) does satisfy this expectation. However, in
complete analogy, other thermostatistical theories (e.g., q-statistics),
based on nonadditive entropic functionals, also satisfy the very same
expectation. We illustrate this standpoint with systems whose elements
are strongly correlated in a specific manner, such that they escape the
BG realm.

1 Introduction

As an enshrined scientist, Einstein, in 1949, expressed his appreciation of classical
thermodynamics, thus sharing the deep impression this theory has had upon him. In
his words [1,2]:
A theory is the more impressive the greater the simplicity of its premises is, the

more different kinds of things it relates, and the more extended is its area of applica-
bility. Therefore the deep impression that classical thermodynamics made upon me. It
is the only physical theory of universal content concerning which I am convinced that,
within the framework of applicability of its basic concepts, it will never be overthrown.
Thermodynamics is the theory of everyday phenomena. Many of its variables

(volume, pressure, temperature, viscosity) and a large part of its applications (re-
frigerator, steam engine, batteries) are known by both scientists and nonscientists.
Although we usually speak about thermodynamical laws, thermodynamic itself is not
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a set of fundamental Laws of Nature in exactly the same sense that Newton’s law
and Maxwell’s equations are. We refer to the fact that thermodynamics is consistent
with all such laws and, in some sense, covers them all [3]. We may say that it is the
theory which is more widely connected with all fundamental physical laws, and it
finds its way into many scientific fields, from elementary particles to large scale as-
trophysics. The main concern of classical thermodynamic is the relationship between
macroscopic variables, as, for instance, the Boyle-Mariotte law P ∝ 1/V . Today it is
understood that the form of its relations is consistent with the underling microscopic
laws governing the constituents of the system. It is in many ways universal, and cru-
cial aspects of it are, remarkably enough, valid regardless the particular model. In
between the level of the microscopic description of a physical system and the level of
its thermodynamical macroscopic relations there is statistical mechanics.
The goal of statistical mechanics is, starting from the microscopic natural rules

(classical, relativistic, quantum mechanics, chromodynamics) and adequately using
probability theory, to arrive to the thermodynamical relations. Along these connec-
tions between the macro- and micro- worlds, the ultimate link is made through the
fundamental concept of entropy. This finding, accomplished against a stream of crit-
icism, surely is one of the most powerful and fruitful breakthroughs of the history
of physical sciences. It was achieved by Boltzmann in the last three decades of the
nineteenth century. His result, currently known by every pure and applied scientist,
and carved on his tombstone in Vienna, namely,

SBG = kB lnW , (1)

is the mathematical link between the microscopically fine description (represented
byW , the total number of accessible microscopic states of the system) and the macro-
scopic measurable quantities (represented by the entropy SBG, the very same quantity
introduced by Clausius in order to complete thermodynamics!). Equation (1) has been
explicitly stated in this form for the first time by Planck, but was clearly known by
Boltzmann. The index G stands for Gibbs, who put Boltzmann’s ideas forward and
overspread the (classical) statistical mechanics concepts through his seminal book [4].
Equation (1) is a particular instance of a more general one, namely

SBG = −kB
W∑

i=1

pi ln pi . (2)

When every microstate is equally probable, i.e., when pi=1/W ∀ i, we recover Eq. (1).
Evidently quantum mechanics was unknown to Boltzmann and it was just birthing
when Gibbs’ book was published. It was left to von Neumann to extend Eq. (2) in
order to encompass quantum systems. He showed that the entropy for a quantum
system should be expressed by using the density matrix operator ρ̂, namely

SBG = −kBTr [ρ̂ ln ρ̂] , (3)

sometimes referred to as the Boltzmann-Gibbs-von Neumann entropy. Notice indeed
that the above equation recovers Eq. (2) when ρ̂ is diagonal.
The optimization of the entropy with appropriate constraints provides the ther-

mal equilibrium distribution, namely the BG exponential distribution, whose con-
sequences are consistent with classical thermodynamics. In what follows we shall,
however, see that entropic functionals different from the BG one must be used in
order to satisfy thermodynamics for complex systems which violate the probabilistic
independence (or quasi-independence) hypothesis on which the BG entropy is gener-
ically based. This is typically the case whenever there is breakdown of ergodicity.
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2 More about entropy

The fundamental bridge between the macroscopic thermodynamical variables and the
microscopic world is the entropy. Within statistical mechanics the entropy is a func-
tional (of the probabilities) whereas within classical thermodynamics, as originally
imagined by Clausius, it is the state function demanded by the Second Law. However,
after Shannon’s insight within the theory of communications, entropy is no longer a
concept exclusively related to classical thermodynamics. In some sense we may say
that the entropic functional has its own life. Nevertheless, when dealing with the
entropy as the bridge linking the microscopic and the macroscopic worlds, there are
constraints that bind the functional to be used as the physically appropriate entropy.
Herein we focus on the mathematical expression of the entropy by imposing the con-
straint that it must be an extensive quantity, i.e., proportional to the system size N .
Why should this be so as a thermodynamical requirement will be addressed below,
in Sect. 3.
It is straightforward to verify, using Eq. (1), the extensivity of the entropy when

a physical system belongs to the so called exponential class, meaning by this those
systems whose number of admissible microstates increases exponentially with N , like
W (N) ∼ µN (µ > 1) in the N → ∞ limit. Those systems generically exhibit weak
correlations between their elements, including, as a limiting case, the probabilistically
independent systems, those with no correlations at all (e.g., a classical ideal gas,
or a set of noninteracting spins). Moreover, it is algebraically very simple to verify
that SBG is not only extensive for systems of the exponential class, but also additive,
according to Penrose’s definition [5]. Indeed, if A and B are two probabilistically
independent systems (hence pA+Bij = pAi p

B
j for every pair i, j, consequently W

A+B =

WAWB), we obtain (kB = 1 henceforth):

SBG(A+B) = −
W∑

i,j=1

pA+Bij ln pA+Bij = SBG(A) + SBG(B). (4)

To restrict ourselves only to systems of the exponential class appears as a rather
limiting and generically unjustified assumption. Indeed, strong correlations between
the N elements do exist in a great variety of natural, artificial and social systems.
One can have, for example, systems belonging to the so called power-law class, with
the number of admissible microstates increasing like W (N) ∼ Nρ (ρ > 0). For this
class, the additive entropy SBG is clearly not extensive, since it is proportional to
lnN . Notice that Nρ ≪ µN for large N , which is intuitive since correlations tend
to bind the system to a smaller number of accessible microstates. In order to ensure
extensivity for this kind of systems we shall use instead the generalization [6–8] of
the BG entropy given by (q ∈ R):

Sq =
W∑

i=1

pi lnq
1

pi
= −

W∑

i=1

pqi lnq pi = −
W∑

i=1

pi ln2−q pi . (5)

In the q → 1 limit, Sq recovers SBG as seen in Eq. (2); lnq x ≡ (x1−q − 1)/(1 − q)
(with ln1 x = lnx) is the q-generalized logarithm.
A remarkable property of Sq is that it can be made extensive for the power-law

class with a suitable choice of the parameter q. If we look at its extremum value, also
occurring when the probabilities are equal, i.e., when pi = 1/W (N), ∀ i, which leads
to Sq = lnqW (N), it is straightforward to verify that, if W (N) ∼ Nρ, Sq ∼ N as
long as q = 1− 1/ρ, result that can not be achieved with SBG.
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Most entropic functionals different from the Boltzmann-Gibbs one are nonaddi-
tive. But it is precisely this nonadditivity which generically enables the entropy of the
system to be extensive. There is in the literature a bit of confusion at this respect1

(see, for instance, [10,11]). Equation (4) expresses the additivity of SBG, whereas the
nonadditivity of Sq is seen, as we may readily check, in

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) .

Inspired in the above result the so-called q-algebra [12,13] emerged. In particular, for
equal probabilities, we verify the additive-like property Sq(WA ⊗q WB) = Sq(WA)+
Sq(WB), where the q-product ⊗q is defined in such way that lnq(x⊗q y) = lnq x +
lnq y.
Let us now focus on the stretched-exponential class, another example of systems

with strong correlations between its N elements, where the number of admissible mi-
croscopic configurations increases likeW (N) ∼ νNγ (ν > 1; 0 < γ < 1). Therefore, the
phase space is more restricted than the exponential class albeit being less restricted
than the power-law one, i.e.,Nρ ≪ νNγ ≪ µN for largeN . The (nonadditive) entropy
which is able to provide extensivity for this class is2 (δ > 0):

Sδ =
W∑

i=1

pi

(
ln
1

pi

)δ
· (6)

Once again, the extremum of this entropic functional occurs for equal probabilities
and it is straightforward to evaluate that Sδ = [lnW (N)]δ in this case. For the
specific value of δ = 1/γ we verify that Sδ ∼ N , hence extensive, a property which is
unattainable with SBG or Sq for correlations within the stretched-exponential class.
We may now unify Sq and Sδ to form a new two-parameter entropic functional,

namely, Sq,δ =
∑
pi [lnq(1/pi)]

δ with S1,δ = Sδ, Sq,1 = Sq and S1,1 = SBG, but
we will not enter into details about this point here (see [14]). However it is worth
to mention that Sq,δ can be also discussed within the framework of two-parameter
entropies advanced by Hanel and Thurner in [16,17]; see also Tempesta [18].
The three classes of correlations discussed above, together with their respective

mathematical entropic functionals which yield an extensive entropy, are summarized
in Table 1.

3 Why should the thermodynamical entropy always be extensive?

In this Section we will briefly summarize, along lines similar to those of [14,19,20],
the thermodynamic foundations underling the notion that the entropy must always
be an extensive quantity. Let us first write a general Legendre-transformation form of
a thermodynamical energy G of a generic d-dimensional system (d being an integer
or fractal dimension):

G(V, T, p, µ,H, . . .) = U(V, T, p, µ,H, . . .)− TS(V, T, p, µ,H, . . .) + (7)

+ pV − µN(V, T, p, µ,H, . . .)−HM(V, T, p, µ,H, . . .)− · · · ,
1 The confusion arises from the fact that, occasionally, some authors inadvertently use
nonadditive entropies for systems for which the entropy to be used evidently is the BG one.
In the words of Tirnakli “It is like trying to play golf with a soccer ball, and then complaining
that it does not fit in the holes” [9].
2 This entropy was first proposed in [8] (footnote on page 69) in order to construct an
extensive entropy for the stretched-exponential class, and has been discussed in detail in [14].
The same functional form was also discovered (independently) by Ubriaco in [15].
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Table 1. Entropic functionals and classes of systems (exponential, power-law and stretched-
exponential, see text) for which the entropy is extensive, i.e., proportional to the number N
of elements. W (N) is the number of admissible microscopic configurations of a system with
N elements (only configurations with nonvanishing occurrence probability are considered
admissible). We also see the specific values of q and δ for which respectively Sq and Sδ are
extensive.

where T, p, µ,H are the temperature, pressure, chemical potential, external magnetic
field, and U, S, V,N,M are the internal energy, entropy, volume, number of particles,
magnetization. We may identify three types of variables, namely (i) those that are
expected to always be extensive (S, V,N,M, . . .), i.e., scaling with V ∝ Ld, where
L is a characteristic linear dimension of the system (notice the presence of N itself
within this class), (ii) those that characterize the external conditions under which the
system is placed (T, p, µ,H, . . .), scaling with Lθ, and (iii) those that represent energies
(G,U), scaling with Lϵ. Ordinary thermodynamical systems are those with θ = 0 and
ϵ = d, therefore both the energies and the generically extensive variables scale with Ld

and there is no difference between the types (i) and (iii) variables, being all of them
extensive in this case. There are, however, physical systems where ϵ = θ+d with θ ̸= 0.
Let us divide Eq. (7) by Lθ+d, namely,

G

Lθ+d
=
U

Lθ+d
− T
Lθ
S

Ld
+
p

Lθ
V

Ld
− µ
Lθ
N

Ld
− H
Lθ
M

Ld
− · · · , (8)

If we consider now the thermodynamical L→∞ limit, we obtain

g̃ = ũ− T̃ s+ p̃v − µ̃ n− H̃m− · · · (9)

where, using a compact notation, (g̃, ũ) ≡ limL→∞(G,U)/Lθ+d represent the energies;
(s, v, n,m) ≡ limL→∞(S, V,N,M)/Ld represent the usual extensive variables and
(T̃ , p̃, µ̃, H̃) ≡ limL→∞(T, p, µ,H)/Lθ correspond to the usually intensive ones. For a
standard thermodynamical system (e.g., a real gas ruled by a Lennard-Jones short-
ranged potential, a simple metal, etc) we have θ = 0 (hence (T̃ , p̃, µ̃, H̃) = (T, p, µ,H),
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i.e., the usual intensive variables), and ϵ = d (hence (g̃, ũ) = (g, u), i.e., the usual
extensive variables); this is of course the case found in the textbooks of thermody-
namics. Not yet really explored in textbooks are those cases with θ ̸= 0. Indeed, the
correctness of the scaling appearing in Eq. (9) for nonstandard systems, i.e., for those
with θ ̸= 0, has been profusely verified for several systems in the literature [21–34];
one of them is going to be discussed in Sect. 4 below. Furthermore, it has been shown
that such scalings preserve important thermodynamical relations such as the Euler
and Gibbs-Duhem [20].
The thermodynamic relations (7) and (8) put on an equal footing the entropy S,

the volume V and the number of elements N , and there can be no doubt about the
extensivity of the latter two variables. In fact, similar analysis can be performed us-
ing N instead of V since V ∝ N .
An example of nonstandard system with θ ̸= 0 is the classical Hamiltonian dis-

cussed in Sect. 4 below. We consider two-body interactions decaying with distance
r like 1/rα (α ! 0). For this system we have θ = d − α whenever 0 " α < d (see,
for example, Fig. 1 of [25]). This peculiar scaling occurs because the potential is not
integrable, i.e., the integral

∫∞
constant dr r

d−1 r−α diverges for 0 " α " d, therefore
the Boltzmann-Gibbs canonical partition function itself diverges. Gibbs was aware of
this kind of problem and has pointed out [4] that whenever the partition function
diverges, the BG theory can not be used because, in his words, “the law of distribu-
tion becomes illusory”. The divergence of the total potential energy occurs for α " d,
which is referred to as long-range interactions. If α > d, which is the case of the d = 3
Lennard-Jones potential, whose attractive part corresponds to α = 6, the integral does
not diverge and we recover the standard behaviour of short-range-interacting systems
with the θ = 0 scaling. Nevertheless, it is worth recalling that nonstandard ther-
modynamical behaviour is not necessarily associated with long-range interactions in
the classical sense just discussed. A meaningful description would then be long-range
correlations (spatial or temporal) because for strongly quantum-entangled systems,
correlations are not necessarily connected with the interaction range (see Sect. 5).
However the picture of long- versus short-ranged interactions in the classical sense,
directly related to the distance r, has the advantage to depict clearly the thermody-
namic relations (7) and (8) for the different scaling regimes, as shown in Fig. 1.
One more recent result is now available [35–37], related to the so called Large

Deviation Theory in theory of probabilities [38,39], which also is consistent with the
extensivity of the entropy, even in the presence of strong correlations between the el-
ements of the system. In fact it is known since several decades that the mathematical
foundation of BG statistical mechanics crucially lies on the theory of large deviations.
To attain the same status for nonextensive statistical mechanics, it is necessary to
q-generalize the large deviation theory itself. The purpose of those efforts precisely is
to make a first step towards that goal through the study of a simple model.
Finally, a further indication we can refer to is the analogy with the time t depen-

dence of the entropy of simple nonlinear dynamical systems, e.g., the logistic map.
Indeed, for the parameter values for which the system has positive Lyapunov ex-
ponent (i.e., strong chaos and ergodicity), we verify SBG ∝ t (under appropriate
mathematical limits), but for parameter values where the Lyapunov exponent van-
ishes nontrivially, e.g., the Feigenbaum point (i.e., weak chaos), it is the nonadditive
entropy Sq for a specific value of q the one which grows linearly with t (see [40–49]
and references therein), and consistently provides a generalized Pesin-like identity. If
we take into account that, in many such dynamical systems, t plays a role analogous
to N in thermodynamical systems, we have here one more indication which aligns
with the extensivity of the entropy for complex systems.
In what follows we illustrate the above concepts through three physical systems,

namely a long-range-interacting many-body classical Hamiltonian system (Sect. 4),
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0 1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, µ, H ∝ L0

Extensive, e.g., G, U, S, N, V, M ∝ Ld

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, µ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ Ld

Pseudo−extensive, e.g., G, U ∝ L d+θ

Fig. 1. Representation of the different scaling regimes of the Eq. (8) for classical d-
dimensional systems. For attractive long-range interactions (i.e., 0 ! α/d ! 1, α char-
acterizes the interaction range in a potential with the form 1/rα) we may distinguish three
classes of thermodynamic variables, namely, those scaling with Lθ, named pseudo-intensive
(L is a characteristic linear length, θ is a system-dependent parameter), those scaling with
Ld+θ, the pseudo-extensive ones (the energies), and those scaling with Ld (which are always
extensive). For short-range interactions (i.e., α > d) we have θ = 0 and the energies recover
their standard Ld extensive scaling, falling in the same class of S, N , V , etc., whereas the
previous pseudo-intensive variables become truly intensive ones (independent of L); this is
the region, with two classes of variables, that is covered by the traditional textbooks of
thermodynamics.

a strongly quantum entangled system at zero temperature (Sect. 5), and black holes
(Sect. 6).

4 A classical model with long- and short-ranged interactions

To better discuss the concepts of long- and short-range interaction let us see a concrete
and well known example, namely, an ensemble ofN classical spins arranged in a lattice
whose Hamiltonian is given by

H = −J
N∑

⟨i,j⟩

Si · Sj (10)

where J > 0 is the ferromagnetic coupling constant. The symbol ⟨i, j⟩ means that the
sum runs only over the nearest neighbour for each spin. If the system lies in a ring,
i.e., a one-dimensional system, each spin has only two nearest neighbours; if it lies
in say bidimensional plane and is arranged as a square lattice there are four nearest
neighbours. It is a typical example of what is referred to as short-range interactions.
Depending on the dimension of the spin vector Si, the Hamiltonian (10) may represent
the Ising, the classical XY or Heisenberg models, all of them very well understood
and described by the traditional Boltzmann-Gibbs equilibrium statistical mechanics
(see, for example, the classical paper by Stanley [50] for the linear case).
Let us now consider the case where the interaction is not restricted to the nearest

neighbours anymore. Let us consider the other extreme situation where all spins
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interact with all others with the same strength regardless the distance between them.
The system is said to be fully-coupled and is described by the following Hamiltonian:

H = −J
N∑

i=1

N∑

j=1

Si · Sj . (11)

It is a typical example of a long-range system. It may be directly assessed that the
total energy of this model is not proportional to the system size N , hence the system
is nonextensive and, strictly speaking, there is no traditional thermostatistics in this
case at all. In the framework of Sect. 3, Hamiltonian (11) is associated with θ = d
which means a U ∝ V 2d ∝ N2 scaling. Accordingly, there is no quantity different
from zero or from infinity that can be calculated (“the law of distribution becomes
illusory” here).
A way to overcome the difficulty without moving out of the standard formalism

can be thought of. If the (initially) constant coupling constant is conveniently rescaled
as J → J/N – nowadays called Kac’s prescription –, the extensivity of the system
is recovered. Mathematically this procedure is evidently rightful but it throws us in
an strange situation where the microscopic coupling constant J become dependent
on N , i.e., following Baxter’s words [51], it leave us with the “unphysical property
that the interaction strength depends on the number of particles”.
Leaving aside the epistemological issue of having a two-body coupling constant J

dependent on the system N let us put forward the scaling J → J/N idea and explore
the following system [24,25,31,52,53]:

H = 1
2

N∑

i=1

p2i +
J

2Ñ

N∑

i=1

N∑

j=1
j ̸=i

1− cos(θi − θj)
rαij

· (12)

The Hamiltonian (12) is a extension of the models (10) and (11) by including a
kinetic term provided that the classical spin vectors Si be bidimensional, since, in
this case, Si · Sj = cos(θi − θj). In the α→∞ limit, the interaction term of Eq. (12)
approaches the first-neighbours Hamiltonian (10), whereas if α = 0 it approaches
the fully-coupled instance (11). The latter case is called Hamiltonian Mean Field, or
simply HMF, after Antoni and Ruffo’ s work [52], a model that has been profusely
studied in the past years.
The parameter Ñ is judiciously chosen in order to make the energy extensive

for all values of α/d. It behaves, when N is large, like Ñ ∼ N1−α/d if 0 " α/d <
1 and like Ñ ∼ O (1) if α/d > 1. In other words, it recovers the general scaling
for systems with α ̸= 0. This is referred to as the α-XY model (the spins may be
visualized as XY-planar rotators), and it is a genuine Hamiltonian system in the sense
that the variables pi and θi are canonical conjugate pairs. With a kinetic term the
model presents its own dynamics and equation of motion can be derived throughout
a Hamiltonian formulation. Consequently, to enquire numerically physical properties
of the system through molecular dynamic simulations constitutes a natural route.
After scaling the interaction with Ñ , the energy of the system becomes extensive

and all the traditional thermodynamical techniques can be applied (the canonical
partition function does not diverge in the thermodynamic limit anymore). It re-
mains, however, nonadditive, i.e., if we bring together two system A and B ruled
by Hamiltonian (12), the joined internal energy uA+B , with u = ⟨H/N⟩, will be
uA+B ̸= uA + uB in general. This happens because the long-range nature of the
interaction is still present, property particularly seen when α = 0 and the scaling de-
creases the interaction strength equally regardless the distance. Thereby, even with the
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P(−pi)/P0

−pi P0

u = 0.69
N = 1000000
α = 0.90
τ = 1.0 (5 steps)
n = 300000
t ∈ [200000, 500000]
Initial conditions:
     {pi} = Uniform
     {θi} = 0 ∀ i

Gauss
t = 0 distribution

(q, βq) = (1.58, 11.2)

10−5

10−4

10−3

10−2

10−1

100

−12 −10 −8 −6 −4 −2  0  2  4  6  8  10  12

P(−pi)/P0

−pi P0

u = 0.69
N = 1000000
α = 2.00
τ = 1.0 (5 steps)
n = 300000
t ∈ [200000, 500000]
Initial conditions:
     {pi} = Uniform
     {θi} = 0 ∀ i

t = 0 distribution
(q, βq) = (1.00, 6.4)

10−5

10−4

10−3

10−2

10−1

100

−6 −4 −2  0  2  4  6

Fig. 2. Molecular dynamics results for the d = 1 Hamiltonian (12) for two values of α under
identical simulational setup for all the other parameters (energy, initial conditions, number
of particles, period over which the time average is calculated, etc; we consider here, without
loss of generality, J = 1). What we see is a typical single-initial-condition one-momentum
distribution for α = 0.9 < d = 1 (long-range, left plot) and α = 2.0 > d = 1 (short-range,
right plot). The continuous curves correspond to q-Gaussians with q = 1.58 for α = 0.9 and
q = 1 (i.e., a Gaussian) for α = 2.0. See details in [31].

extensivity recovered, unexpected behaviour should not be seen as striking, and it has
been actually caught in several (numerical) experiments. As one example of unpre-
dict behaviour within the traditional scenario, one has the long-lived quasistationary
states (QSS) which emerges for α/d < 1 [31,54–64]. In these states the thermodynam-
ical quantities like temperature and magnetization do not coincide with the canonical
predictions. Moreover, its lifetime diverge with increasing system size N , associated
with the order in which the thermodynamic N →∞ and the infinite time t→∞
limits are considered. Specifically, if we let N →∞ first, the system remains trapped
in these QSS’s, never reaching the final Boltzmann-Gibbs equilibrium state, most
probably being the QSS itself the ultimate state in this case. Another example comes
from the one-momentum distribution. Within the BG framework it is expected a
Maxwellian distribution for the velocities, no matter whether it is calculated by using
time or ensemble averages. This distribution shape, i.e., a Gaussian, is in fact observed
in the (time average) numerical simulations, but only for α sufficiently large (hence
short-range). However, if α is small (hence long-range), it was observed [31,63,65] dis-
tributions very well described by q-Gaussians, in disagreement with the traditional
BG thermostatistical scenario (see Fig. 2).
The model (12) is very rich and certainly will continue giving rise to several

new and interesting results. These nonstandard behaviours observed for α/d < 1
appear to be in line with nonergodicity [64,66–68] and with the thesis of the q-
generalized Central Limit Theorem (see references and comments in [31]). The fact
that the a ad hoc scaling of the interaction recovers the formal extensivity but not
eliminate its intrinsic long-range nature appears to be the reason why this model is not
satisfactorily described within the BG thermodynamics scenario. It is conceivable that
such long-range interaction could generate correlations strong enough to constraint
the dynamics of the system within some regions of the phase space, thus reducing
the “number” of accessible microstates in the same spirit of the correlation classes
discussed in Sect. 2.

4.1 Searching for q from first principles

It is expected that the index q of the entropy functional Sq shown in Eq. (5) to
be an intrinsic property of the geometrical/dynamical nature of the occupancy of



2170 The European Physical Journal Special Topics

phase space. It should be calculated from first principles, i.e., from the microscopic
fundamental dynamical law governing the system. However this calculation is by no
means an easy task and, in many cases, it will be virtually impossible without strong
mathematical approximations. Nevertheless a few examples have been analytically
solved wherein a first-principle q value was achieved, as the one discussed in Sect. 5
bellow. Here, for the many-body α-XY model, q shall be approached through the
Hamiltonian (12) itself.
Inspired by the q-Gaussian one-momentum distribution seen in Fig. 2 we may

figure out a possible route to calculate from first principles the value of q. This
distribution extremize the nonadditive entropy Sq upon which the nonextensive sta-
tistical mechanics [6–8] is based. Within this framework, the stationary state is ex-
pected to yield a probability distribution expq (−βqH) /Zq(βq) with Zq(βq) being
the generalized partition function (expq represents the inverse of the q-generalized
logarithm defined in Sect. 2; the expq function becomes the ordinary exponential
for q = 1). The one-momentum marginal probability would then be calculated us-
ing P (p1) =

∫
dp2...dpNdθ1...dθN expq (−βqH) /Zq. The possible functional form of

P (p1) could be a qm-Gaussian, where m stands for momentum (we singled the label
out here because the value qm is not necessarily the same as that of the entropic
functional Sq; naturally we expect qm = 1 if q = 1). The entropic index q (and also
qm) is expected to characterize universality classes, possibly a function q = q(α/d) to
be different from 1 for 0 " α/d < 1, and equal to 1 for α/d ! 1 in accordance with
the numerical experiments. At the present computational stage, we have access to qm
but not yet to q. The latter implies an extremely heavy computational task since it
has to do with the occupancy of the entire many-body phase space for given initial
conditions.

5 A fully quantum-entangled system – An exact calculation of q
from first principles

When dealing with classical systems, spatial correlations and long-time memory are
usually neatly connected with long-range interactions. However, when one goes deeper
in the microscopic structure of the matter the strictly quantum mechanical phenom-
enon of entanglement comes into play and long-range correlations are not necessarily
connected with long-range interactions in the sense discussed in the Sect. 4. For
example, let us consider the following first-neighbourhood interaction Hamiltonian
describing a quantum N spin-1/2 ferromagnetic chain under a transverse magnetic
field at its critical value at zero temperature:

H = −
N−1∑

i=1

[
(1 + γ)σxi σ

x
i+1 + (1− γ)σ

y
j σ
y
i+1 + 2λσ

z
i

]
(13)

where σµ, µ = x, y, z, are the Pauli’s matrices, and γ and λ are the intensity
of the anisotropy and magnetic field respectively. Known as quantum XY model,
Hamiltonian (13) recovers for |γ| = 1 (i.e., maximum axial anisotropy) the quantum
Ising chain. Furthermore it is known that, in the thermodynamic N → ∞ limit, a
quantum phase transition (hence at T = 0) exists at the critical point |λc| = 1.
If we have complete information about a system its entropy is zero. Quantum

mechanically, complete information means that we are dealing with a pure state.
Evidently the intrinsic probabilistic nature of a quantum system forbids us to have
complete information in a classical sense; a pure state means that there is an unique
quantum state describing the system. At zero temperature the system is in its
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Fig. 3. q as a function of the central charge c which characterizes the universality class (and
which contains the quantum spin chain (13) as a particular instance). The BG entropy for
a block of L contiguous spins is SBG (L) ∝ lnL for all finite values of the central charge,
thus violating thermodynamical extensivity. However, for the special values of q shown here
(see Eq. (14)), Sq (L) ∝ L, i.e., it satisfies one-dimensional extensivity, thus enabling the use
of all the relations that can be found in any good textbook of thermodynamics. See details
in [71].

fundamental state, hence the entropy should be zero for any admissible entropic
functional. Being ρ̂N the density operator of the whole chain, a pure state means
that Tr ρ̂ 2N = Tr ρ̂N = 1. However, even for T = 0, it is possible to calculate a en-
tropy different from zero if we consider only a block of L contiguous spins and work
with the reduced matrix ρ̂L = TrN−Lρ̂N . This reduced matrix in general does not
represent a pure state, but a mixed state instead (i.e., Tr ρ̂ 2L < Tr ρ̂L = 1). This fact
is a consequence of the nonlocal entanglement that is responsible for the long-range
quantum correlations of the spin chain (13) at T = 0.
The degree of entanglement between a block of L contiguous spins and the rest of

the chain in its ground state can be characterized by the von Neumann entropy (3)
of the block (see [69,70]). For a large block size, it typically saturates off criticality,
whereas it is logarithmically unbounded at the critical point, i.e., the so called area law
for d = 1 systems. In order words, the BG entropy at T = 0 for the chain (13) does not
scale with the system size, but like SBG (L) ∝ lnL, being SBG (L) ∝ Ld−1 the general
area-law scaling for d-dimensional systems with d > 1. However, it was shown [71]
(see also [72]) that the thermodynamical extensivity is recovered if we move from
the BG entropic functional to the Sq one. Furthermore, as the Hamiltonian (13) can
be exactly diagonalized, is was possibly to calculate analytically, for the universality
class characterized by the central charge c, a closed form for q, namely

q =

√
9 + c2 − 3
c

· (14)

Therefore, in order to achieve an extensive entropy for the chain (13), which implies a
finite value for S/L in the L→∞ limit, it is enough to calculate Sq with the specific
value of q shown in Eq. (14) (see Fig. 3).

6 On the entropy for black holes

Far from going into details on this fascinating topic, which very recently had its foun-
dations expanded by one of its most important contributors [73,74], we will use the
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black hole physical system as a possible application of the entropy Sδ discussed in
Sect. 2 (Eq. (6)). As already discussed, the Boltzmann-Gibbs entropy has, as under-
ling hypothesis, weak correlations and ergodicity. To fit a black hole under this general
assumptions may eventually not be a safe thermodynamical starting approach. In-
deed, the outstanding results of Bekenstein and Hawking [75–77] have already shown
that the BG entropy of a black hole is proportional to its boundary surface. It is
important to recall that, for a variety of reasons, this result appears to be evidently
true, i.e., the BG entropy is in fact proportional do the area, as several and diver-
sified calculations along almost forty years have confirmed [78]. In a few words, the
Bekenstein-Hawking result reads:

SBH ∝ A (15)

where A is the event horizon area. If the black hole is to be considered as a gen-
uine d = 2 system, which means that it is physically identified solely with its event
horizon surface, Eq. (15) is extensive and must be seen as the the truly thermodynam-
ical entropy. Therefore, in a thermodynamical sense, there is nothing that should be
regarded as intriguing or unusual, and, strictly speaking, this would not be an area-
law problem [70,79–81]. However, if the black hole is to be considered a genuine d = 3
system, we then recover the very same discussion of the previous Sect. 5. Its thermo-
dynamical entropy then should not be associated with the additive BG functional and
a nonadditive generalization should be used instead. It happens that the Bekenstein-
Hawking result (15) is very helpful here too, since it says to us thatW ∝ ebA (b > 0),
hence we are dealing with a stretched-exponential class system. Therefore, it follows
that extensivity is recovered by using the entropic functional Sδ with δ = 3/2 (see
more details in [31]).
This idea has recently been put forward by Komatsu and Kimura [82,83] within a

entropic-force scenario. See also [84], where the probability distribution that extrem-
izes Sδ and its associated Fokker-Plank equation are analyzed.

7 Final remarks

To conclude, let us now summarize the line of thought that we have presented here.
Thermodynamics is a highly valuable approach to nature, and we see no reason at
all for generalizing its basic principles, in particular in what concerns entropy. Be-
cause of the Legendre-transform structure of thermodynamics, as well as because of
strong indications within the probabilistic large-deviation theory, the extensivity of
the entropy must be preserved in all cases that we are aware of, whether short- or
long-ranged-interacting systems, classical or quantum (strongly entangled or not),
dissipative systems, among others. For systems that live in their entire (or nearly
entire) phase space (or Hilbert or Fock spaces if the system is a quantum one), in
other words, if the system is essentially ergodic in a region with finite Lebesgue mea-
sure, the number W (N) of admissible microscopic possibilities increases exponen-
tially with N (exponential class). Consequently it is the Boltzmann-Gibbs (additive)
entropic functional which guarantees the extensivity of the entropy. But if, due to
strong correlations between the elements of the system, the occupancy of phase space
is severely restricted (so strongly that the Lebesgue measure of the visited region is
zero, which is the case of the power-law and stretched-exponential classes), we typi-
cally need nonadditive entropic functionals such as Sq or Sδ in order to comply with
the requirement of extensivity for the thermodynamical entropy. This fact has very
relevant consequences, in particular in what concerns the probability distributions
that spontaneously emerge in the corresponding (frequently unique) stationary or
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quasi-stationary states. They tend to exhibit, for example for the power-law class,
q-exponential behaviors (which asymptotically are power-laws) instead of the usual
exponential ones that typically are observed for all kinds of relevant physical proper-
ties. A vast literature illustrates this scenario [85]. We have here selected a few of such
examples (classical long-range-interacting many-body Hamiltonian systems, strongly
quantum entangled systems at their quantum critical point, black holes). The same
picture is seen in many other systems through analytical, experimental, observational
and computational results in natural, artificial and social systems, along with predic-
tions, verifications and applications (see, for instance, a brief review in [86]). Further
reinforcing and clarifying evidences are naturally welcome. Indeed, a variety of open
questions (whose details are out from the present scope) still remain to be better
understood.

We have benefited from fruitful remarks by M. Jauregui and U. Tirnakli. We also acknowl-
edge partial financial support from CNPq, Faperj and Capes (Brazilian agencies). It is our
great pleasure to dedicate this review to Hans J. Herrmann, wishing him a very happy
anniversary for his (first) 60 years!
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10. S. Pressé, K. Ghosh, J. Lee, K.A. Dill, Phys. Rev. Lett. 111, 180604 (2013)
11. C. Tsallis [arXiv:1404.1257v1] [cond-mat.stat-mech] (2014)
12. E.P. Borges, Physica A 340, 95 (2004)
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