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A plethora of natural, artificial and social complex systems exists which violate the basic hy-
pothesis (e.g., ergodicity) of Boltzmann-Gibbs (BG) statistical mechanics. Many of such cases
can be satisfactorily handled by introducing nonadditive entropic functionals, such as Sq ≡

k
1−

∑W
i=1

p
q
i

q−1

(

q ∈ R;
∑W

i=1 pi = 1
)

, with S1 = SBG ≡ −k
∑W

i=1 pi ln pi. Each class of such

systems can be characterized by a set of values {q}, directly corresponding to its various phys-
ical/dynamical/geometrical properties. A most important subset is usually referred to as the q-
triplet, namely (qsensitivity , qrelaxation, qstationary state), defined in the body of this paper. In the
BG limit we have qsensitivity = qrelaxation = qstationary state = 1. For a given class of complex
systems, the set {q} contains only a few independent values of q, all the others being functions of
those few. An illustration of this structure was given in 2005 [Tsallis, Gell-Mann and Sato, Proc.
Natl. Acad. Sc. USA 102, 15377; TGS]. This illustration enabled a satisfactory analysis of the
Voyager 1 data on the solar wind. But the general form of these structures still is an open question.
This is so, for instance, for the challenging q-triplet associated with the edge of chaos of the logistic
map. We introduce here a transformation which sensibly generalizes the TGS one, and which might
constitute an important step towards the general solution.

I. INTRODUCTION

The pillars of contemporary theoretical physics may be considered to be Newtonian, quantum and relativistic me-
chanics, Maxwell electromagnetism, and Boltzmann-Gibbs (BG) statistical mechanics (microscopic theory consistent
with thermodynamics). Statistical mechanics is in turn grounded upon electromechanics (meaning by this the set of all
mechanics and electromagnetism) and theory of probabilities. The BG theory can be formally constructed by adopt-

ing the BG entropic functional SBG = −k
∑W

i=1 pi ln pi, with
∑W

i=1 pi = 1, k being a conventional positive constant
(usually taken to be the Boltzmann constant kB). This hypothesis is known to be fully satisfactory for dynamical
systems satisfying simple properties such as ergodicity. For more complex systems, the BG entropy can be inadequate,
even plainly misleading. When this happens, must we abandon the statistical mechanical approach? It was advanced
in 1988 [1] that this is not necessary. Indeed, it suffices to consider entropic functionals different from SBG, and
reconstruct statistical mechanics on more general grounds. The so called nonextensive statistical mechanics follows

along this path, based on the entropy Sq = k
1−

∑W
i=1

pq

i

q−1 (q ∈ R; S1 = SBG). It can be easily verified that, if A and B

are any two probabilistically independent systems (i.e., pA+B
ij = pAi p

B
j ),

Sq(A+B)
k =

Sq(A)
k +

Sq(B)
k +(1− q)

Sq(A)
k

Sq(B)
k .

In other words, Sq is nonadditive for q 6= 1, in contrast with SBG which is additive.
The optimization of Sq under appropriate constraints yields distributions such as the q-exponential one pq(x) ∝

[1− (1− q)βx]1/(1−q) ≡ e−βx
q or the q-Gaussian one pq(x) ∝ e−βx2

q (see [2] for an introductory text). This and similar
generalizations of the BG statistical mechanics have been shown to provide uncountable predictions, verifications and
applications in natural, artificial and social complex systems. A regularly updated bibliography as well as selected
theoretical, experimental, observational, and computational papers can be seen at http://tsallis.cat.cbpf.br/biblio.htm
Among recent applications we may mention the experimental validation [3] (accomplished in granular matter) of a
20-year-old prediction, the emergence of neat q-statistical behavior in high-energy collisions at LHC/CERN along 14
experimental decades (see [4] for instance), a notable numerical discovery in the celebrated standard map [5], and the
connection with networks (see [6] for instance).
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II. q-TRIPLETS

The solution of the differential equation

dy

dx
= a1y (y(0) = 1) (1)

is given by y = ea1x. The solution of the more general equation

dy

dx
= aqy

q (y(0) = 1) (2)

is given by y = e
aqx
q . These facts in the realm of nonextensive statistical mechanics suggested a conjecture in 2004 [7],

namely that there could exist in nature q-triplets as indicated in Table I and [8]. The first verification of the conjecture
was done in 2005 by the NASA researchers Burlaga and Vinas in the solar wind [9]. Since then a plethora of q-triplets

x a y(x)

Stationary state distribution Ei −β Zqstationary state
p(Ei) = e

−βqstationary state
Ei

qstationary state

Sensitivity to the initial conditions t λqsensitivity
ξ(t) = e

λqsensitivity
t

qsensitivity

Typical relaxation of observable O t −1/τqrelaxation
Ω(t) ≡ O(t)−O(∞)

O(0)−O(∞)
= e

−t/τqrelaxation
qrelaxation

TABLE I: Three possible physical interpretations of Eq. (2) within nonextensive statistical mechanics. In the BG limit we have
qsensitivity = qrelaxation = qstationary state = 1. For one dimensional dynamical systems it is qentropy production = qsensitivity ,
where qentropy production denotes the index q for which Sq increases linearly with time t. From [8].

and directly related quantities have been found in solar plasma [10–13], the ozone layer [14], El Niño/Southern
Oscillations [15], geological faults [16], finance[17, 18], DNA sequence [19], logistic map (see [20–31]), and elsewhere
[32, 33].

III. CONNECTIONS BETWEEN q-INDICES

Some very basic points can be addressed at this stage: How many indices q can be systematically defined? How
many of them are independent? Through what relations can all the others be calculated? To what specific physi-
cal/mathematical/probabilistic/dynamical property is each of them associated?
As we shall see, there are many more than three relevant q-indices. Nevertheless, the q-triplet plays a kind of

guiding role in questions such as what is the correct entropy to be used, at what rhythm it relaxes to a stationary
state, and how this stationary state can be characterized. Consistently, in the BG limit all the indices q are expected
to be equal among them and equal to unity.
Inspired by the specific values for the q-triplet observed by NASA [9], a path was developed in [34]. Two self-dual

transformations admitting q = 1 as a fixed point were introduced, namely the additive duality q → 2 − q and the
multiplicative duality q → 1/q. These simple transformations had already appeared in various contexts in nonextensive
statistical mechanics (see [2] and references therein). The novelty in [34] is that they were used to systematically
construct a mathematical structure, which we describe in what follows. We first define the transformations µ and ν:

µ → q2(q) = 2− q → 1

1− q2(q)
=

1

q − 1
, (3)

ν → q0(q) =
1

q
→ 1

1− q0(q)
=

1

q − 1
+ 1 . (4)
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The subindices 2 and 0 will become clear soon. We straightforwardly verify µ2 = ν2 = 1, νµ = (µν)−1. Also, we
can analogously define (µν)m and (νµ)n with integer numbers(m,n). This set of transformations enables (see [2, 34])
the definition of a simple structure (hereafter referred to as the TGS structure). The NASA q-triplet for the solar
wind found an elegant description within this structure, as shown later on in this paper. Not so the logistic-map
edge-of-chaos q-triplet, and others. As a possible way out of this limitation, a generalization of the TGS structure
was proposed in [8], which we review now.
Let us consider the following transformation:

qa(q) =
(a+ 2)− aq

a− (a− 2)q
(a ∈ R) , (5)

or, equivalently,

1

1− qa(q)
=

1

q − 1
+ 1− a

2
, (6)

or, even,

2

2− a

1

1− qa(q)
=

2

2− a

1

q − 1
+ 1 . (7)

We straightforwardly verify that q2 = 2 − q (additive duality) and q0 = 1/q (multiplicative duality) [2, 34, 38, 39].
Also, we generically verify selfduality, i.e., qa(qa(q)) = q , ∀(a, q), as well as the BG fixed point, i.e., qa(1) = 1 , ∀a:
See the figure in [8]. The duality (5) is in fact a quite general ratio of linear functions of q which satisfies these
two important properties (selfduality and BG fixed point). It transforms biunivocally the interval [1,−∞) into the
interval [1, a

a−2 ]. Moreover, for a = 3 and a = 5 we recover respectively q3 = 5−3q
3−q [35] and q5 = 7−5q

5−3q [36].

Let us combine now two[54] transformations of the type (5) (or, equivalently, (6)):

µ → qa(q) =
(a+ 2)− aq

a− (a− 2)q
→ 1

1− qa(q)
=

1

q − 1
+ 1− a

2
, (8)

and

ν → qb(q) =
(b+ 2)− bq

b− (b− 2)q
→ 1

1− qb(q)
=

1

q − 1
+ 1− b

2
, (9)

with b 6= a. It follows that

µν → qa(qb(q)) =
(b− a)− (b− a− 2)q

(b− a+ 2)− (b− a)q
→ 1

1− qa(qb(q))
=

1

1− q
+

b − a

2
, (10)

and

νµ → qb(qa(q)) =
(a− b)− (a− b− 2)q

(a− b + 2)− (a− b)q
→ 1

1− qb(qa(q))
=

1

1− q
+

a− b

2
, (11)

with µ2 = ν2 = 1, νµ = (µν)−1, and qa(qa(q)) = q , ∀(a, q).
For integer values of m and n, we can straightforwardly establish

(µν)m → q
(m)
a,b (q) ≡ qa(qb(qa(qb(...)))) =

m(b− a)− [m(b − a)− 2]q

[m(b− a) + 2]−m(b− a)q
(12)

→ 1

1− q
(m)
a,b (q)

=
1

1− qa(qb(qa(qb(...))))
=

1

1− q
+m

b− a

2
, (13)

and

(νµ)n → q
(n)
b,a (q) ≡ qb(qa(qb(qa(...)))) =

n(a− b)− [n(a− b)− 2]q

[n(a− b) + 2]− n(a− b)q
(14)

→ 1

1− q
(n)
b,a (q)

=
1

1− qb(qa(qb(qa(...))))
=

1

1− q
+ n

a− b

2
. (15)
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As we see, q
(1)
a,b = qa(qb(q)) and q

(1)
b,a = qb(qa(q)).

For a 6= b and any integer values for (m,n), the above general relations can be conveniently rewritten as follows:

2

b− a

1

1− q
(m)
a,b (q)

=
2

b− a

1

1− q
+m (m = 0,±1,±2, ...) , (16)

and

2

a− b

1

1− q
(n)
b,a (q)

=
2

a− b

1

1− q
+ n (n = 0,±1,±2, ...) . (17)

For m = n = 1 and (a, b) = (2, 0) we recover the simple transformations q
(1)
2,0 = 2− 1

q (see Eq. (7) in [37], and footnote

in page 15378 of [34]) and q
(1)
0,2 = 1

2−q .

We can also check that, with m = 0,±1,±2, ..., (µν)mµ and ν(µν)m correspond respectively to

2

b− a

1

1− q
(m,µ)
a,b (q)

− 2− a

2(b− a)
= −

[ 2

b− a

1

1− q
− 2− a

2(b− a)

]

−m, (18)

and

2

b− a

1

1− q
(ν,m)
a,b (q)

− 2− b

2(b− a)
= −

[ 2

b− a

1

1− q
− 2− b

2(b− a)

]

+m. (19)

Analogously we can check that, with n = 0,±1,±2, ..., (νµ)nν and µ(νµ)n correspond respectively to

2

a− b

1

1− q
(n,ν)
b,a (q)

− 2− b

2(a− b)
= −

[ 2

a− b

1

1− q
− 2− b

2(a− b)

]

− n , (20)

and

2

a− b

1

1− q
(µ,n)
b,a (q)

− 2− a

2(a− b)
= −

[ 2

b− a

1

1− q
− 2− a

2(a− b)

]

+ n . (21)

As we see, the structures that are involved exhibit some degree of complexity. Let us therefore summarize the
frame within which we are working. If we have an unique parameter (noted a) to play with, we can only transform q
through Eq. (5). If we have two parameters (noted a and b) to play with, we can transform q in several ways, namely
through Eqs. (13), (15), (18), (19), (20) and (21), with m = 0,±1,±2, ... and n = 0,±1,±2, ...; the cases m = 0
and n = 0 recover respectively Eqs. (8) and (9). The particular choice (a, b) = (2, 0) recovers the TGS structure
introduced in [2, 34, 38, 39]. Also, the particular choice (a, b) = (−1, 0) within the transformation (10) recovers the
transformation q → 1+q

3−q , which plays a crucial role in the q-generalized Central Limit Theorem [40]; coincidentally

(or not), the relation b− a = 1 recovers the γ = 1/2 case of Eq. (32) of [8] (see also [41–43]).
To make the approach introduced in [8] even more powerful, we may introduce now the most general self-dual ratio

of linear functions of q, which has the q = 1 fixed point. It is given by

qa1,a2
(q) =

a1 − a2q

a2 − (2a2 − a1)q
(a1 ∈ R; a2 ∈ R) , (22)

or, equivalently,

1

1− qa1,a2
(q)

=
1

q − 1
+ 1 +

a2
a2 − a1

, (23)

or, even,

a2 − a1
2a2 − a1

1

1− qa1,a2
(q)

=
a2 − a1
2a2 − a1

1

q − 1
+ 1 . (24)

The particular case

(a1, a2) = (a+ 2, a) (25)

recovers the transformation introduced in Eq. (5) [8]. All the steps from Eq. (8) to Eq. (21) can easily be generalized,
involving now four parameters, (a1, a2, b1, b2), instead of only two, (a, b). It becomes clear that the 4-parameter
structure that can be constructed with the transformation (24) remains isomorphic to the set Z of integer numbers.
Of course, to go from the 4-parameter structure to the 2-parameter structure we need to assume also, analogously to
Eq. (25), that (b1, b2) = (b + 2, b).
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IV. SOME FINAL REMARKS

Essentially, we reproduce here the final remarks in [8]. The data observed in [9] for the solar wind are consistent
with the q-triplet [34] (qsensitivity , qstationary state, qrelaxation) = (−0.5, 7/4, 4).

If we identify, in Eq. (10), (q, q
(1)
a,b) ≡ (qsensitivity , qrelaxation) we can verify that, for a − b = 2, the data are

consistently recovered. Moreover, if we use once again Eq. (10) and a − b = 2, but identifying now (q, q
(1)
a,b) ≡

(qrelaxation, qstationary state), once again the data are consistently recovered. The particular case (a, b) = (2, 0) was
first proposed in [34]. In other words, it is possible to consider this q-triplet as having only one independent value,
say qsensitivity ; from this value we can calculate qrelaxation by using Eq. (10); and from qrelaxation we can calculate
qstationary state by using once again Eq. (10). This discussion can be summarized as follows:

1

1− qsensitivity
− 1

1− qrelaxation
=

1

1− qrelaxation
− 1

1− qstationary state
=

a− b

2
= 1 . (26)

It is occasionally convenient to use the ǫ-triplet defined as (ǫsensitivity , ǫstationary state, ǫrelaxation) = (1−qsensitivity , 1−
qstationary state, 1−qrelaxation). Let us mention that an amazing set of relations was found among these by [44], namely

ǫstationary state =
ǫsensitivity + ǫrelaxation

2
, (27)

ǫsensitivity =
√
ǫstationary state ǫrelaxation , (28)

ǫ−1
relaxation =

ǫ−1
sensitivity + ǫ−1

stationary state

2
. (29)

The emergence of the three Pythagorean means in this specific q-triplet remains still today enigmatic. One could
advance that these relations hide some unexpected symmetry, but its nature remains today completely unrevealed.
Let us now focus on a different system, namely the well known logistic map at its edge of chaos (also referred to as

the Feigenbaum point). The numerical data for this map yield the q-triplet (qsensitivity , qstationary state, qrelaxation) =
(0.244487701..., 1.65± 0.05, 2.249784109...) [21, 28, 46–48].
An heuristic relation has been found [45] between these three values, namely (using ǫ ≡ 1− q)

ǫsensitivity + ǫrelaxation = ǫsensitivity ǫstationary state . (30)

Indeed, this relation straightforwardly implies

qstationary state =
qrelaxation − 1

1− qsensitivity
. (31)

Through this relation we obtain qstationary state = 1.65424... which is perfectly compatible with 1.65 ± 0.05. In the
generalized structure that we have developed here above we have five free parameters (q, a1, a2, b1, b2) (or only three
free parameters (q, a, b) in the more restricted version presented in [8]) in addition to the integer numbers (m,n). It
is therefore trivial to make analytical identifications with (qsensitivity , qstationary state, qrelaxation) such that Eq. (30)
is satisfied.
The real challenge, however, is to find a general theoretical frame within which such identifications (and, through

the freedom associated with (m,n), infinitely many more, related to physical quantities) become established on a clear
basis, and not only through conjectural possibilities; as a simple illustration of such q indices being associated to specific
properties, we may mention the relation [49–51] qstationary state =

τ+2
τ , hence qstationary state−1 = 2(qavalanche size−1)

with τ ≡ 1/(qavalanche size − 1). Such a frame of systematic identifications remains up to now elusive and certainly
constitutes a most interesting open question. Along this line, a connection that might reveal promising is that, if
we assume that q is a complex number (see, for instance, [52, 53]), then Eq. (5) corresponds to nonsingular [with
(a+2)(a−2)−a2 = −4 6= 0 , ∀a] Moebius transformations, which form the Moebius group, defining an automorphism
of the Riemann sphere.
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