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The complexity (or simplicity) of a system can be characterized through
very many paths. A quite interesting and operational one, which we follow
here, consists in making use of entropic concepts. The thermodynamical
and statistical-mechanical foundations of this approach, as well as its (an-
alytical, computational, observational, and experimental) applications for
natural, artificial and social systems will be briefly reviewed.
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1. Introduction

In the 1860s, Clausius introduced [1] the concept of entropy (noted S)
within thermodynamics. This most relevant step basically concluded the
foundations of this science, and enabled its expression in terms of the so-
called principles of thermodynamics (nowadays referred to as zeroth, first,
second, third principles). One decade later, Boltzmann postulated [2, 3] an
entropic functional (noted SBG where BG stands for Boltzmann–Gibbs, in
order to also incorporate the refinements introduced by Gibbs [4]), which
connects the macroscopic entropy introduced by Clausius with the micro-
scopic world. The entropy SBG is essentially consistent with the entire struc-
ture of classical thermodynamics, and constitutes the basis of the theory
(very important in contemporary physics) referred to as statistical mechan-
ics. During nearly 140 years, BG statistical mechanics keeps providing un-
countable excellent predictions for many kinds of thermal and similar phe-
nomena. This has somehow — wrongly! — sedimented in the mind of many
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physicists that no other statistical-mechanical theory is possible, and that
SBG is not only sufficient but also necessary for thermodynamics to be sat-
isfied. The scenario has gradually and substantially evolved during the last
25 years, especially through the proposal of nonadditive entropies as a basis
for possibly generalizing BG statistical mechanics [5].

The whole process exhibits a strong analogy with the history of me-
chanics. At the end of the XIX century, mechanics was a synonym of the
Newtonian or classical mechanics. But soon after, quantum and relativistic
mechanics were formulated, and there are now several theories within me-
chanics, which contain the Newtonian mechanics as a particular case. In the
present review, we argue that more than one theory exists within statistical
mechanics, which nevertheless remain related to thermodynamics, the BG
statistical mechanics playing, of course, the basic reference role.

2. Nonadditive entropies and nonextensive statistical mechanics

2.1. Nonadditive entropies

For a system constituted by N elements that globally admits W micro-
scopic configurations (complexions in the language of Boltzmann’s time), we
have the BG entropy given by

SBG(N) ≡ −k
W (N)∑
i=1

pi ln pi ,

W (N)∑
i=1

pi = 1 , (1)

where k is a conventional constant (typically Boltzmann constant kB), and
{pi} are the probabilities. When all probabilities are equal, i.e., pi=1/W (N),
we recover the celebrated Boltzmann formula

SBG(N) = k lnW (N) . (2)

If the system is such that, in the N →∞ limit,

W (N) ∝ µN , (3)

where µ > 1 is a constant, then Eq. (2) implies SBG(N) ∝ N , which provides
an extensive entropy (i.e., 0 < limN→∞ S(N)/N < ∞), in conformity with
thermodynamics. For example, if we have N independent two-faced fair
coins, we have that W (N) = 2N , hence SBG = kN ln 2.

But if the elements of the system are strongly correlated, it frequently
happens that the number of admissible microscopic configurations decreases
drastically, and it might essentially become, in the N → ∞ limit, a zero-
Lebesgue measure set. For example, a wide class of systems yield

W (N) ∝ Nρ , ρ > 0 , (4)
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hence SBG(N) ∝ lnN , thus violating the thermodynamic extensivity of the
entropy. A natural way out appears to be to define nonadditive entropies
such as [5]

Sq(N) ≡ k
1−

∑W (N)
i=1 pqi

q − 1
= k

W (N)∑
i=1

pi lnq
1

pi
= −k

W (N)∑
i=1

pqi lnq pi

= −k
W (N)∑
i=1

pi ln2−q pi ,

W (N)∑
i=1

pi = 1 , q ∈ R , S1 = SBG , (5)

where the q-logarithmic function is defined as lnq z ≡ z1−q−1
1−q (z > 0 ; ln1 z =

ln z). If all admissible events are equally probable, i.e., p1 = 1/W (N), we
have

Sq(N) = k lnqW (N) . (6)

IfW (N) is given by Eq. (4), we straightforwardly verify that Sq=1−1/ρ(N) ∝
N , thus satisfying the thermodynamic extensivity of the entropy as desirable.

It is easy to verify that, if A and B are two probabilistically independent
systems, the entropy of the total system A+B satisfies

Sq(A+B)

k
=
Sq(A)

k
+
Sq(B)

k
+ (1− q)Sq(A)

k

Sq(B)

k
. (7)

In other words, by using Penrose’s definition of entropic additivity [6], we
have that the entropic functional Sq is nonadditive for all values of q except
for q = 1, value for which it recovers the additive BG functional SBG.

We can summarize these facts by saying that, if the system is such that
W (N) is given by Eq. (3) (which basically means independence or weak
correlations), the additive entropy SBG is extensive and the nonadditive
entropy Sq is nonextensive for all q 6= 1, whereas, if W (N) is given by
Eq. (4) (which is a frequent class of strong correlations), Sq is extensive
for q = 1 − 1

ρ and nonextensive for all other values of q, including q = 1.
As we see, additivity depends only on the entropic functional and is easy to
determine. Extensivity, in contrast, depends on both the entropic functional
and the system, and can generically be quite hard to analytically determine.

Another interesting case occurs if

W (N) ∝ νNγ
, ν > 1 , 0 < γ < 1 , (8)
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which also essentially corresponds to zero-Lebesgue measure for the occu-
pancy of phase space (or of the analogous spaces for quantum systems). To
tackle this case, we may use the following entropy [7, 8]:

Sδ(N) ≡ k
W (N)∑
i=1

pi

(
ln

1

pi

)δ
,

W (N)∑
i=1

pi = 1 , S1 = SBG . (9)

This entropy becomes, for equal probabilities, i.e., pi = 1/W (N),

Sδ(N) = k(lnW )δ . (10)

We can verify that Sδ=1/γ(N) ∝ N , in conformity with thermodynamics.
Also, if A and B are probabilistically independent, we have that, for δ 6= 1,

Sδ(A+B) 6= Sq(A) + Sq(B) , (11)

hence Sδ is nonadditive.
It is worth emphasizing that µN � νN

δ � Nρ, which exhibits that
both nonexponential cases (4) (power law) and (8) (stretched exponential)
correspond essentially to zero-Lebesgue measure problems in what concerns
the occupancy of phase space. Let us finally mention that all three entropies
that have been discussed here can be unified through

Sq,δ(N) ≡ k

W (N)∑
i=1

pi

(
lnq

1

pi

)δ
,

W (N)∑
i=1

pi = 1 , Sq,1 = Sq , S1,δ = Sδ , S1,1 = SBG . (12)

A summary of the present subsection is presented in Table I.

2.2. Extensive entropies

Let us answer here an interesting question: Since we admit entropic
functionals that might be nonadditive, why do we not admit nonextensive
entropies as well? (This question was first pointed to me in these terms by
A. Coniglio.)

To discuss thermodynamics and its Legendre-transform structure on gen-
eral grounds, let us remind a typical form of the thermodynamical energy G
(Gibbs energy) of a generic d-dimensional system [9]

G(V, T, p, µ,H, . . . ) = U(V, T, p, µ,H, . . . )− TS(V, T, p, µ,H, . . . )
+pV − µN(V, T, p, µ,H, . . . )

−HM(V, T, p, µ,H, . . . )− . . . , (13)
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TABLE I

Entropic functionals and classes of systems (exponential, power-law and stretched-
exponential, see the text) for which the entropy is extensive, i.e., proportional
to the number N of elements. W (N) is the number of admissible microscopic
configurations of a system with N elements (only configurations with nonvanishing
occurrence probability are considered admissible). We also see the specific values
of q and δ for which respectively Sq and Sδ are extensive. From [10].

Entropy

W (N) SBG Sq Sδ
N →∞ (q 6= 1) (δ 6= 1)

(Additive) (Nonadditive) (Nonadditive)

∼ µN Extensive Nonextensive Nonextensive
(µ > 1)

∼ Nρ Nonextensive Extensive Nonextensive
(ρ > 0) (q = 1− 1/ρ)

∼ νNγ

Nonextensive Nonextensive Extensive
(ν > 1; 0 < γ < 1) (δ = 1/γ)

where T, p, µ,H are the temperature, pressure, chemical potential, external
magnetic field respectively, and U, S, V,N,M are the internal energy, en-
tropy, volume, number of particles (in turn proportional to the number of
degrees of freedom), magnetization, respectively. From the Legendre struc-
ture, we identify three classes of variables, namely (i) those that are ex-
pected to always be extensive like N itself (S, V,N,M, . . .), i.e., scaling with
the (d-dimensional) volume V = Ld ∝ N , where L is a characteristic linear
dimension of the system (clearly, V ∝ Ad/(d−1), where A is the d-dimensional
area)1, (ii) those that characterize the external conditions under which the
system is placed (T, p, µ,H, . . .), scaling with Lθ, and (iii) those that repre-
sent energies (G,U), scaling with Lε.

It trivially follows
ε = θ + d . (14)

If we divide Eq. (13) by Lθ+d and consider the large L limit (i.e., the ther-
modynamical limit), we obtain

1 Within the thermodynamical Legendre-transform structure, it is, of course, natural
that S, V,N,M belong to the same class. The variable N is extensive by definition.
Therefore, so must clearly also be the entropy S, as well as V,M .
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g

(
T

Lθ
,
p

Lθ
,
µ

Lθ
,
H

Lθ
, . . .

)
= u

(
T

Lθ
,
p

Lθ
,
µ

Lθ
,
H

Lθ
, . . .

)
− T

Lθ
s

(
T

Lθ
,
p

Lθ
,
µ

Lθ
,
H

Lθ
, . . .

)
+
p

Lθ
− µ

Lθ
n

(
T

Lθ
,
p

Lθ
,
µ

Lθ
,
H

Lθ
, . . .

)
−H
Lθ

m

(
T

Lθ
,
p

Lθ
,
µ

Lθ
,
H

Lθ
, . . .

)
− . . . , (15)

where g ≡ limL→∞G/L
θ+d, u ≡ limL→∞ U/L

θ+d, s ≡ limL→∞ S/L
d, n ≡

limL→∞N/L
d, m ≡ limL→∞M/Ld. The three types of thermodynamical

scalings that have emerged are represented in Fig. 1. Physical illustrations
of these various behaviours, including black holes, can be found in [11].

 0  1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, µ, H ∝ L
0

Extensive, e.g., G, U, S, N, V, M ∝ L
d

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, µ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ L
d

Pseudo−extensive, e.g., G, U ∝ L d+θ

Fig. 1. Representation of the different scaling regimes of Eq. (15) for classical d-
dimensional systems. For attractive long-range interactions (i.e., 0 ≤ α/d ≤ 1,
α characterizes the interaction range in a potential with the form 1/rα), we may
distinguish three classes of thermodynamic variables, namely, those scaling with Lθ,
named pseudo-intensive (L is a characteristic linear length, θ is a system-dependent
parameter), those scaling with Ld+θ, the pseudo-extensive ones (the energies), and
those scaling with Ld (which are always extensive). For short-range interactions
(i.e., α > d), we have θ = 0 and the energies recover their standard Ld extensive
scaling, falling in the same class of S, N , V , etc., whereas the previous pseudo-
intensive variables become truly intensive ones (independent of L); this is the
region, with two classes of variables, that is covered by the traditional textbooks
of thermodynamics. From [10].
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The correctness of these scalings has been repeatedly checked in the lit-
erature for many types of fluid, magnetic, percolating, polymerized systems
[12–23]: details can be found in those papers.

Besides the above general Legendre structure which mandates the ther-
modynamical entropy to be extensive in all cases, there exist other consistent
arguments as well, which come from large deviation theory considerations
(see [24] and references therein). However, the presentation of those argu-
ments here remains out of the present scope.

2.3. Nonextensive statistical mechanics

The optimization of nonextensive entropies such as Sq with appropri-
ate constraints [25, 26] yields what is referred in the literature as nonex-
tensive statistical mechanics. The word nonextensive comes here from the
(internal) energy U(N), which is typically indeed nonextensive (typically
limN→∞ U(N)/N diverges), not from the entropy, which is not necessarily
taken to be additive in order to be precisely always extensive.

In other words, in BG statistical mechanics, both the energy and the
entropy are extensive; in nonextensive statistical mechanics, the energy is
nonextensive (superextensive for long-range-interacting many-body Hamil-
tonian systems), but the entropy remains extensive. The entropic extensiv-
ity within BG thermostatistics is guaranteed by the additive BG entropic
functional; the entropic extensivity within nonextensive thermostatistics is
guaranteed by nonadditive entropic functionals such as Sq and Sδ. Let us
mention at this point a regrettable misname that has been a source of not
few confusions in the literature: the title of the book [27] should have been
Nonadditive Entropy, and not Nonextensive Entropy.

If the linear mean value of a random variable x is finite, the optimization
of Sq[p(x)] yields the q-exponential function p(x) ∝ e−βxq , where β is related
to the Lagrange parameter, and the function ezq is defined as follows

ezq ≡ [1 + (1− q)z]
1

1−q , (16)

if 1 + (1− q)z > 0, and zero otherwise. This function is the inverse of lnq z
previously defined; also, ez1 = ez.

If the linear mean value vanishes and the quadratic mean value is nonva-
nishing, the optimization of Sq[(p(x)] yields p(x) ∝ e−βx

2

q , currently referred
to in the literature as q-Gaussian.

In what concerns the thermostatistics corresponding to Sδ and Sq,δ, the
basic results are already available in [28] and [29], respectively.

To end this section, let us remind that the indices q and δ are to be deter-
mined from first principles, i.e., essentially from mechanics. One illustrative
such calculation can be found in [30, 31]: see Fig. 2.
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Fig. 2. The index q has been determined [30] from first principles, namely from
the universality class of the Hamiltonian, characterized by the central charge c.
The values c = 1/2 and c = 1, respectively, correspond to the Ising and XY

ferromagnetic chains in the presence of transverse field at T = 0 criticality. For
other models, see [32, 33]. In the c → ∞ limit, we recover the Boltzmann–Gibbs
(BG) value, i.e., q = 1. For arbitrary value of c, the subsystem nonadditive entropy
Sq is thermodynamically extensive for, and only for, q =

√
9+c2−3
c .

3. Applications

Nonadditive entropies and nonextensive statistical mechanics have been
relevant to a wide number of predictions, verifications and applications in
natural, artificial and social systems [34]. We briefly mention here some of
them.

There have been various applications to long-range-interacting many-
body classical Hamiltonians such as the XY ferromagnet and the Fermi–
Pasta–Ulam models ([35, 36] and references therein), self-organized criti-
cality [37], turbulence [38, 39], low-dimensional dissipative maps [40–45],
low-dimensional conservative maps [46, 47], anomalous diffusion [48, 49], the
Heisenberg model with long-range interactions [50, 51] (by the way, the quan-
tum analog with long-range interactions remains an open problem; for the
short-range model see, for instance, [52] and references therein), spin glass
relaxation [53], cold atoms in optical lattices [54, 55], ion trapping [56], over-
damped motion of vortices in type-II superconductors [57–61], dusty plasma
[62], the so-called q-triplet in solar wind and similar phenomena [63–71],
asymptotically scale-free networks [72], black-hole physics [11, 73–75], non-
linear relativistic and quantum equations [76]. The q-generalization of cen-
tral limit theorems and related properties [77–80] is worth special mention-
ing.



Thermodynamics and Statistical Mechanics for Complex Systems . . . 1097

Let us specifically add here recent applications in high-energy physics at
the LHC/CERN and elsewhere [81–98]. A typical illustration is presented
in [31, 99, 100]: see, for instance, Fig. 3 (some tiny log-periodic oscillations
are observed on top of the q-exponentials, which might be related to some
microscopic fractality [101]).

pT [GeV/c]

 dN

dydpT

 = A eq
− pT c / T

dpT = 2π pT dpT

y ≡ rapidity

[A] = GeV
−2

c
3

Data from Wong & Wilk PRD 87, 114007 (2013)A / 10
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Fig. 3. Experimental distributions of the transverse moments in hadronic jets at the
CMS, ALICE and ATLAS detectors at the LHC. The data are from [99]. They can
be remarkably well fitted (along fourteen decades) with the q-exponential function
exq ≡ [1 + (1 − q)x]1/(1−q), which, under appropriate constraints, extremizes the
entropy Sq. See details in [100].

Many other applications (in economics, linguistics, geophysics, neuro-
sciences) can be found in [27, 102].

4. Final remarks

The logical path we have followed here is to satisfy in all cases the exten-
sivity of the entropy, since this property is mandated by classical thermody-
namics. For standard systems (essentially ergodic, which implies an occu-
pation of phase space with a nonzero-Lebesgue measure), this requirement
is satisfied by the Boltzmann–Gibbs entropic functional, which is additive.
For nonstandard systems (essentially nonergodic, which typically emerges
through a zero-Lebesgue-measure occupation of phase space), this require-
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ment is, for wide classes of systems, satisfied for nonadditive entropic func-
tionals such as Sq and Sδ. The indices q and δ are to be determined from first
principles, namely from mechanics (classical, quantum, relativistic). When
this is analytically intractable, they may be determined from mesoscopic
arguments (e.g., from Langevin-like and Fokker–Planck-like equations), or
simply through fitting. The extremization of these nonadditive entropies
under appropriate constraints yields a generalization of Boltzmann–Gibbs
statistical mechanics, currently referred to as nonextensive statistical me-
chanics. The amazing number of phenomena in natural, artificial and social
systems which do follow (not rarely through many experimental or numerical
decades) q-exponential and q-Gaussian behaviours together with their ana-
lytical connections provide, as far as we can see, a neat validation of these
concepts. Various interesting questions remain open, such as — to name
just one — the analytical connection between the indices q and the exponent
characterizing the range of long-range-interacting many-body Hamiltonians.

Partial financial support from the Brazilian agencies CNPq and Faperj
and from the John Templeton Foundation is acknowledged.
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