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1. Introduction

Statistical mechanics is one of the pillars of contem-
porary physics. Indeed, it provides, in principle, the
link between the microscopic and the macroscopic
description and understanding of the world through
a rich variety of mesoscopic instances. More pre-
cisely, starting from mechanics (classical, quantum,
relativistic) and electromagnetism, it incorporates
appropriate concepts of the theory of probabilities,
and finally leads, for large enough systems, to ther-
modynamics. It does so through various interme-
diate descriptions such as those involving master,
Langevin, and Fokker–Planck equations. See Fig. 1
for a schematic set of connections.

The statistical mechanical approach of physi-
cal phenomena was first introduced by Maxwell,
Boltzmann and Gibbs. A crucial step was taken
by Boltzmann who proposed a specific functional
form for the thermodynamic entropy (that had
been introduced a few years earlier by Clausius)
in terms of the probabilities of the microscopic

configurations. Its expression for, say, a system
describable through a discrete set of probabilities
{pi} of W possibilities is given by

SBG = −k
W∑

i=1

pi ln pi

(
W∑

i=1

pi = 1

)

, (1)

where BG stands for Boltzmann–Gibbs, and k is a
positive constant referred to as the Boltzmann con-
stant (which, together with the velocity of light c,
the Planck constant h and the gravitational con-
stant G, constitutes a minimal set of universal phys-
ical constants); for convenience, it is sometimes
taken that k = 1. The important particular instance
where probabilities are all equal (i.e. pi = 1/W , ∀ i)
leads to

SBG = k ln W, (2)

carved on Boltzmann’s grave stone in the Central
Cemetery in Vienna. It is straightforward to verify
that in all cases SBG ≥ 0.
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Fig. 1. Relevant connections between microscopic (bottom;
red boxes) and macroscopic (top; blue box) descriptions
through mesoscopic (middle; orange, green and black boxes)
ones.

For classical systems, this entropy takes the
form

SBG = −k

∫
dx p(x) ln p(x)

(∫
dx p(x) = 1

)
,

(3)

where x denotes a generic point in the full phase
space of the system (Gibbs’ Γ space, having typi-
cally a dimension equal to 2dN , where d is the space
dimension where the system evolves). This expres-
sion cannot be used for too thin distributions, since
they would lead to negative entropies. For exam-
ple, if p(x) = 1/a (a > 0) within a one-dimensional
(dimensionless) interval whose width is a, and zero
otherwise, the entropy will be given by SBG = k ln a.
Clearly, this expression is thermodynamically non-
admissible for a < 1. This is a well known fact, and
is currently considered to reflect the deep quantum
nature of the real world.

For quantum systems, the Boltzmann–Gibbs
entropy takes the form

SBG = −k Tr ρ ln ρ (Tr ρ = 1), (4)

where ρ denotes the density matrix of the system.
In this form, the BG entropy is frequently referred
to as the von Neumann entropy.

The BG entropy and its associated statisti-
cal mechanics provide an extremely useful tool
for studying a wide variety of physical systems.

However, not all (see, for instance, [Gibbs, 1902;
Fermi, 1936]). Indeed, as suggested since at least
1988 [Tsallis, 1988], more general or different
entropic functionals become necessary for the sta-
tistical mechanics of other, more complex, systems.

The systems for which it is certainly appro-
priate to apply the BG entropy and consistently
associated theories can be loosely1 characterized
by short-range space-time correlations, Markovian
processes (short memory), additive noise, strong
chaos (positive maximal Lyapunov exponent),
ergodic dynamics, continuous (Euclidean or Rie-
mannian) geometry for the dynamical occupation
of phase space, short-range many-body interactions,
weakly quantum-entangled subsystems, linear/
homogeneous Fokker–Planck equations, Gausssian
distributions. Such systems neatly benefit from the
additivity2 of the BG entropy, and typically yield
exponential dependences. For example, to start
with, the maximization of SBG under appropriate
constraints yields, for the canonical ensemble, the
celebrated BG weight itself:

p(BG)
i ∝ e−βEi , (5)

where Ei is the energy of state i of a Hamiltonian
system satisfying specific boundary conditions, and
β = 1/kT .

There are, however, complex natural, artificial
and social systems which, in contrast with the
above, can be loosely characterized by long-range
space-time correlations, non-Markovian processes
(long memory), additive and multiplicative noises,
weak chaos (vanishing maximal Lyapunov expo-
nent), nonergodic dynamics, hierarchical (typically
multifractal) geometry for the dynamical occupa-
tion of phase space, long-range many-body inter-
actions, strongly quantum-entangled subsystems,
nonlinear/inhomogeneous Fokker–Planck equations,
non-Gausssian distributions. A quite wide class
among these (though surely not all) can be han-
dled with the entropy [Tsallis, 1988]

Sq = k

1 −
W∑

i=1

pq
i

q − 1

(
W∑

i=1

pi = 1; q ∈ R;S1 = SBG

)

,

(6)

1By loosely we refer to the fact that, in amazingly many cases, necessary and/or sufficient conditions are not available on
rigorous grounds.
2An entropy S is said to be additive [Penrose, 1970] if, for two probabilistically independent systems A and B (i.e. for discrete
systems, pA+B

ij = pA
i pB

j , ∀(i, j)), S(A + B) = S(A) + S(B). This property is straightforwardly satisfied by SBG.
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and its analogous continuous and quantum versions.
For the particular case of equal probabilities, we
obtain

Sq = k lnq W, (7)

where

lnq z ≡ z1−q − 1
1 − q

(z ∈ R+; ln1 z = ln z). (8)

By using this function, entropy (6) can be conve-
niently rewritten as follows:

Sq = k
W∑

i=1

pi lnq
1
pi

. (9)

If A and B are two probabilistically indepen-
dent systems, we straightforwardly verify that

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1 − q)
Sq(A)

k

Sq(B)
k

, (10)

which is a direct consequence of the property

lnq(xy) = lnq x + lnq y

+ (1 − q)(lnq x)(lnq y). (11)

Therefore Sq is nonadditive for q '= 1 (expressions
such as subadditive and superadditive are occasion-
ally used to refer to the q > 1 and q < 1 cases).

The respective domains of applicability of SBG

and of Sq (q '= 1) can be simply characterized
through the equal probability case of a large sys-
tem, i.e. having a number of elements N ( 1. More
precisely, if W (N) ∝ µN (µ > 1), thermodynam-
ical extensivity (i.e. S(N) ∝ N in the N → ∞
limit) is satisfied by SBG. If, in contrast, we have a
system constituted by strongly correlated elements
such that W (N) ∝ Nρ (ρ > 0), we verify that
Sq(N) ∝ N for q = 1−1/ρ < 1. In other words, it is
the requirement that the entropy satisfies thermo-
dynamic extensivity which determines the appro-
priate value of the index q to be used. The main
properties of such systems typically exhibit asymp-
totic power-laws. For example, in what concerns the

distribution of energies of a canonical system (i.e. in
thermal contact with a thermostat), the extrem-
ization of Sq under appropriate constraints [Tsal-
lis et al., 1998] (see also [Curado & Tsallis, 1991])
yields

p(q)
i ∝ e−βEi

q (p(1)
i ∝ e−βEi), (12)

where β is related with the temperature T , and the
q-exponential function is defined as the inverse of
the q-logarithmic function (8), i.e.

ez
q ≡ [1 + (1 − q)z]1/(1−q)

+ (z ∈ R; ez
1 = ez), (13)

with [(. . .)]+ = (. . .) if (. . .) > 0, and zero otherwise.
Let us notice that, if we extremize say S2−q

instead of Sq, we obtain

p(q)
i ∝ e−βEi

2−q , (14)

which interchanges the q < 1 and the q > 1 inter-
vals. We come back to this point later on.

The nonadditive entropy Sq and its associ-
ated nonextensive statistical mechanics [Tsallis &
Brigatti, 2004; Tsallis, 2009a, 2009b, 2010] have
already received a large number of theoretical,
experimental, observational and computational ver-
ifications, including the prediction of the index
(indices) q from first principles3 for some systems,
and its prediction in terms of mesoscopic quantities
for some others. Nevertheless, several interesting,
delicate and/or elusive points are still open to basic
research. It is the purpose of the present paper to
review several (inter-related) among them, and to
indicate their present status of understanding.

Before introducing the present list of open
points, and in order to clarify what kind of natural,
artificial and social phenomena we have in mind,
let us mention several of such phenomena that have
already been reported in the literature in the frame
of the nonadditive entropy Sq and its associated
nonextensive statistical mechanics.

Among others we have (i) The velocity dis-
tribution of (cells of) Hydra viridissima follows a
q = 3/2 probability distribution function (PDF)
[Upadhyaya et al., 2001]; (ii) The velocity distribu-
tion of (cells of) Dictyostelium discoideum follows
a q = 5/3 PDF in the vegetative state and a q = 2
PDF in the starved state [Reynolds, 2010]; (iii) The

3By first principles we mean from the set of probabilities of the microscopic configurations and its corresponding dynamics.
For example, whenever the system is a mechanically conservative one, from first principles it is meant from the Hamiltonian
or from the Lagrangian of its elementary constituents.
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velocity distribution in defect turbulence [Daniels
et al., 2004]; (iv) The velocity distribution of cold
atoms in a dissipative optical lattice [Douglas et al.,
2006; Bagci & Tirnakli, 2009]; (v) The velocity dis-
tribution during silo drainage [Arevalo et al., 2007a,
2007b]; (vi) The velocity distribution in a driven-
dissipative 2D dusty plasma, with q = 1.08 ± 0.01
and q = 1.05±0.01 at temperatures of 30 000 K and
61 000 K respectively [Liu & Goree, 2008]; (vii) The
spatial (Monte Carlo) distributions of a trapped
136Ba+ ion cooled by various classical buffer gases
at 300 K [DeVoe, 2009]; (viii) The distributions
of price returns and stock volumes at the stock
exchange, as well as the volatility smile [Borland,
2002a, 2002b; Osorio et al., 2004; Queiros, 2005];
(ix) The distributions of returns of magnetic field
fluctuations in the solar wind plasma as observed in
data from Voyager 1 [Burlaga & Vinas, 2005] and
from Voyager 2 [Burlaga & Ness, 2009]; (x) The
distributions of returns in the Ehrenfest’s dog-flea
model [Bakar & Tirnakli, 2009, 2010]; (xi) The dis-
tributions of returns in the coherent noise model
[Celikoglu et al., 2010]; (xii) The distributions of
returns of the avalanche sizes in the self-organized
critical Olami–Feder–Christensen model, as well as
in real earthquakes [Caruso et al., 2007]; (xiii) The
distributions of angles in the HMF model [Moy-
ano & Anteneodo, 2006]; (xiv) The distribution of
stellar rotational velocities in the Pleiades [Car-
valho et al., 2008]; (xv) The relaxation in various
paradigmatic spin-glass substances through neu-
tron spin echo experiments [Pickup et al., 2009];
(xvi) Various properties directly related with the
time dependence of the width of the ozone layer
around the Earth [Ferri et al., 2010]; (xvii) The
distribution of transverse momenta in high energy
collisions of electron–positron, proton–proton, and
heavy nuclei (e.g. Pb–Pb and Au–Au) [Bediaga
et al., 2000; Wilk & Wlodarczyk, 2009; Biro et al.,
2009; Khachatryan et al., 2010a, 2010b; Adare
et al., 2011; Shao et al., 2010], the flux of solar
neutrinos [Kaniadakis et al., 1996], and the energy
distribution of cosmic rays [Tsallis et al., 2003];
(xviii) Various properties for conservative and dissi-
pative nonlinear dynamical systems [Lyra & Tsallis,
1998; Borges et al., 2002; Ananos & Tsallis, 2004;
Baldovin & Robledo, 2004; Mayoral & Robledo,
2005; Pluchino et al., 2007, 2008; Miritello et al.,

2009; Leo et al., 2010]; (xix) The degree distribu-
tion of (asymptotically) scale-free networks [White
et al., 2006; Thurner et al., 2007]; (xx) Tissue radi-
ation response [Sotolongo et al., 2010]; (xxi) Over-
damped motion of interacting particles [Andrade
et al., 2010].4

2. Some Open Points

2.1. q-generalized Lyapunov
spectrum and Pesin identity

2.1.1. q-generalized Lyapunov spectrum

Let us illustrate this point through a simple exam-
ple, namely a one-dimensional dissipative map, e.g.
the z-logistic family

xt+1 = 1 − a|xt|z (t = 0, 1, 2, 3, . . . ;−1 ≤ xt ≤ 1;

z > 1; 0 ≤ a ≤ 2). (15)

The particular case z = 2 corresponds to the stan-
dard logistic map; the z → 1 limit corresponds to
the tent map. These maps metrically, but not topo-
logically, differ for different values of z. For the sim-
ple z = 2 case, and with y ≡ x+ 1/2, we obtain the
traditional form

yt+1 = µ yt(1 − yt) (0 ≤ µ ≤ 4; 0 ≤ yt ≤ 1). (16)

For a increasing above zero, a succession of
fixed points and fixed cycles occur, separated
by doubling-period bifurcations. These bifurcations
accumulate as a approaches a special point, ac(z),
the first edge of chaos. For z = 2 it is ac(2) =
1.40115518909 . . .

The sensitivity to the initial conditions ξ for
a one-dimensional dynamical system is defined as
follows:

ξ(t) ≡ lim
∆x(0)→0

∆x(t)
∆x(0)

(ξ(0) = 1), (17)

where x denotes the phase space variable. The sys-
tem is said to be strongly chaotic (or simply chaotic)
if ξ exponentially diverges with time. In such cases,
we can define the Lyapunov exponent λ through

ξ(t) ∼ eλ t, (18)

or, more precisely, through

λ ≡ lim
t→∞

ln ξ(t)
t

. (19)

4Many other phenomena have been looked at along similar lines (e.g. biological evolution [Tamarit et al., 1998], turbulence in
electron plasma [Anteneodo & Tsallis, 1997]).
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At the edge of chaos, λ vanishes and ξ increases
slowly with t, in fact algebraically at large enough
values of t. For a increasing above ac(z), λ greatly
oscillates in a complex manner, being however pos-
itive for most of the values of a. The sensitivity ξ
is, in fact, quite generically expected to satisfy

dξ

dt
= λqsenξ

qsen (ξ(0) = 1), (20)

hence [Tsallis et al., 1997; Baldovin & Robledo,
2002a, 2002b; Robledo, 2006]

ξ(t) = e
λqsen t
qsen = [1 + (1 − qsen)λqsent]

1
1−qsen , (21)

where qsen = 1 if the Lyapunov exponent λ1 ≡
λ '= 0 (strongly sensitive if λ1 > 0, and strongly
insensitive if λ1 < 0), and qsen '= 1 otherwise; sen
stands for sensitivity. At the edge of chaos, qsen < 1
(weakly sensitive), and at both the period-doubling
and tangent bifurcations, qsen > 1 (weakly insensi-
tive). The case qsen < 1 yields, in (21), a power-law
behavior ξ ∝ t1/(1−qsen) in the limit t → ∞. This
power-law asymptotics were since long known in the
literature [Grassberger & Scheunert, 1981; Schnei-
der et al., 1987; Anania & Politi, 1988; Hata et al.,
1989; Mori et al., 1989]. The case qsen < 1 is in fact
more complex than indicated in Eqs. (20) and (21).
These equations only reflect the maximal values of
an entire family, fully (and not only asymptotically)
described in [Robledo, 2006; Mayoral & Robledo,
2005].

The rigorous necessary and sufficient condi-
tions for behaviors such as those indicated in
Eqs. (20) and (21), for generic conservative and
dissipative nonlinear maps, stand at present as an
open problem.

2.1.2. Pesin-like identity

Let us now focus on the time evolution of the
entropy of the above illustrative maps. We shall
illustrate with the map defined in Eq. (15).
We divide the phase space x ∈ [−1, 1] in W
equally spaced little intervals denoted with i = 1,
2, 3, . . . ,W (with W ( 1), choose one of them,
and put within M (randomly chosen) initial con-
ditions (with M ( 1; typically M - 10 × W ).
At time t we have in the ith interval Mi(t) points;
naturally

∑W
i=1 Mi(t) = M . We then define a set

of probabilities through pi(t) ≡ Mi(t)/M (hence∑W
i=1 pi(t) = 1), which enables the calculation of

the entropy (we take k = 1)

Sq(t) =

1 −
W∑

i=1

[pi(t)]q

q − 1
. (22)

We next define the entropy production (per unit
time) as follows:

Kq ≡ lim
t→∞

lim
W→∞

lim
M→∞

Sq(t)
t

. (23)

There typically exists an unique value of q, noted
qproduction, such that Kqproduction is finite. For q >
qproduction (q < qproduction), Kq vanishes (diverges).
For various one-dimensional dissipative maps (and
also two-dimensional conservative ones) we verify
that

qproduction = qsen (24)

and

Kqproduction = λqsen . (25)

For strongly chaotic maps, i.e. with λ1 > 0, we ver-
ify that

qproduction = qsen = 1, (26)

and

K1 = λ1 > 0. (27)

This last equality can be seen as a Pesin-like one.
For weakly chaotic ones (typically at the edge

of chaos), i.e. with λ1 = 0, we verify that

qproduction = qsen < 1, (28)

and

Kqproduction = λqsen > 0. (29)

This last equality can be seen as the q-
generalization of the Pesin-like equality. See Fig. 2.

The rigorous necessary and sufficient condi-
tions for equalities such as those indicated in
Eqs. (24) and (25), for generic conservative and
dissipative nonlinear maps, stand at present as an
open problem.

2.2. Geometry of occupation of
phase space, Hilbert space

2.2.1. Additivity versus extensivity
of the entropy

The additivity of an entropy only depends on
the mathematical functional which expresses the
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(a) (b)

Fig. 2. Time evolution of the BG entropy for typical values of a of the z = 2 logistic map, corresponding to positive Lyapunov
exponents. (a) We notice that only for q = 1 we observe a linear intermediate behavior of the entropy before saturation. This
linear region is larger for larger W . (b) The entropy production KBG per unit time decreases when the value of a corresponds
to a smaller value of the Lyapunov exponent. From [Latora et al., 2000].

macroscopic (thermodynamical) entropy in terms
of its basic probabilities. Therefore, as already said,
the BG entropy SBG is additive. So is the so-called
Renyi entropy SR

q (useful in the geometrical descrip-
tion of hierarchical structures such as multifractals),
defined (for the discrete case) as follows

SR
q =

ln

(
W∑

i=1

pq
i

)

1 − q
(q ∈ R;SR

1 = SBG). (30)

Indeed, it can be straightforwardly proved that, if
A and B are two probabilistically independent sys-
tems, then SR

q (A + B) = SR
q (A) + SR

q (B).
In contrast, the extensivity of an entropy is a

more subtle concept, and it depends not only on
its functional form but also on the specific system
under consideration, i.e. on its microscopic proba-
bilistic correlations. Consequently, while the expres-
sion “the BG entropy is additive” is definitively
correct, the expression “the BG entropy is exten-
sive” is incorrect. The correct expression would
be “the BG entropy of this class of systems is
extensive”.

Consider a system Σ ≡ A1 +A2 + · · ·+AN con-
stituted by N (not necessarily independent) identi-
cal elements or subsystems {Aj}. An entropy S of

that system is extensive if 0 < limN→∞
S(N)

N < ∞,
i.e. if

S(N) ∝ N (N → ∞). (31)

The important difference between additivity
and extensivity can be illustrated through proba-
bilistic systems of N identical binary random vari-
ables. If the variables are distinguishable, we may
represent them in the following triangular form:

Table 1. Merging of the Pascal triangle . . . .

(N = 0) 1 × 1

(N = 1) 1 × r1,0 1 × r1,1

(N = 2) 1 × r2,0 2 × r2,1 1 × r2,2

(N = 3) 1 × r3,0 3 × r3,1 3 × r3,2 1 × r3,3

(N = 4) 1 × r4,0 4 × r4,1 6 × r4,2 4 × r4,3 1 × r4,4

where 0 ≤ rN,n ≤ 1 and
N∑

n=0

N !
(N − n)!n!

rN,n = 1 (∀N). (32)

If the distinguishable variables are independent
we obtain the particular case

rN,n = pN−n(1 − p)n (0 ≤ p ≤ 1). (33)

1230030-6

In
t. 

J. 
Bi

fu
rc

at
io

n 
Ch

ao
s 2

01
2.

22
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 C

EN
TR

O
 B

RA
SI

LE
IR

O
 D

E 
PE

SQ
U

IS
A

S 
FI

SI
CA

S 
on

 1
0/

18
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 3, 2012 7:31 WSPC/S0218-1274 1230030

Some Open Points in Nonextensive Statistical Mechanics

Table 2. Merging of the Pascal triangle . . . .

(N = 0) 1 × 1

(N = 1) 1 × p 1 × (1 − p)

(N = 2) 1 × p2 2 × p(1 − p) 1 × (1 − p)2

(N = 3) 1 × p3 3 × p2(1 − p) 3 × p(1− p)2 1 × (1 − p)3

(N = 4) 1 × p4 4 × p3(1 − p) 6 × p2(1 − p)2 4 × p(1 − p)3 1 × (1 − p)4

If p = 1/2, this triangle becomes

Table 3. Merging of the Pascal triangle . . . .

(N = 0) 1 × 1

(N = 1) 1 × 1
2

1 × 1
2

(N = 2) 1 × 1
4

2 × 1
4

1 × 1
4

(N = 3) 1 × 1
8

3 × 1
8

3 × 1
8

1 × 1
8

(N = 4) 1 × 1
16

4 × 1
16

6 × 1
16

4 × 1
16

1 × 1
16

In the presence of correlations, the generic tri-
angle can take various forms characterized by the
sets {rN,n}, ∀N . For example, we have the Leibnitz
triangle.

Table 4. Merging of the Pascal triangle . . . .

(N = 0) 1 × 1

(N = 1) 1 × 1
2

1 × 1
2

(N = 2) 1 × 1
3

2 × 1
6

1 × 1
3

(N = 3) 1 × 1
4

3 × 1
12

3 × 1
12

1 × 1
4

(N = 4) 1 × 1
5

4 × 1
20

6 × 1
30

4 × 1
20

1 × 1
5

Its generic term is given by

rN,n =
(N − n)!n!

N !
1

N + 1
. (34)

The Leibnitz triangle satisfies the following
remarkable property (from now on referred to as
the triangle Leibnitz rule):

rN,n + rN,n=1 = rN−1,n. (35)

This property implies probabilistic scale-invariance.
Indeed, it implies that the marginal probabilities of
a N -system coincide with the joint probabilities of
a (N − 1)-system.

Let us now turn back to the entropy. For a
wide class of systems (which includes all the above
probabilistic triangles) a value of q exists, noted
qentropy, such that Sqentropy is extensive. For all the
above examples, it is qentropy = 1, i.e. SBG(N) ∝ N
(N → ∞).

Let us now severely restrict the admissible
probabilistic region (defined as the set of con-
figurations whose probability is strictly positive).
We are referring to cases where the total num-
ber, noted Weff(N) (eff stands for effective), of
admissible configurations is much smaller than
W (N) for N ( 1. In other words, cases where
limN→∞ Weff(N)/W (N) = 0. Two such exam-
ples are indicated in what follows (see details in
[Tsallis et al., 2005]). These triangles have nonzero

Table 5. Anomalous probability sets: d = 1 (top), and
d = 2 (bottom). The left number within parentheses
indicates the multiplicity (i.e. Pascal triangle). The
right number indicates the corresponding probability.
The probabilities, noted rN,n, asymptotically satisfy

the Leibnitz rule, i.e. limN→∞
rN,n+rN,n+1

rN−1,n
= 1 (∀n).

In other words, the system is, in this sense, asymptot-
ically scale-invariant. Notice that the number of trian-
gle elements with nonzero probabilities grows like N ,
whereas that of zero probability grows like N2.

(N = 0) 1 × 1

(N = 1) 1 × 1
2

1 × 1
2

(N = 2) 1 × 1
2

2 × 1
4

1 × 0

(N = 3) 1 × 1
2

3 × 1
6

3 × 0 1 × 0

(N = 4) 1 × 1
2

4 × 1
8

6 × 0 4 × 0 1 × 0

(Continued)
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Table 5. (Continued)

(N = 0) 1 × 1

(N = 1) 1 × 1
2

1 × 1
2

(N = 2) 1 × 1
3

2 × 1
6

1 × 1
3

(N = 3) 1 × 3
8

3 × 5
48

3 × 5
48

1 × 0

(N = 4) 1 × 2
5

4 × 3
40

6 × 3
60

4 × 0 1 × 0

probabilities only along a (left) strip whose width is
denoted d + 1. The two examples here respectively
correspond to d = 1 and d = 2.

It can be shown that, for this family of trian-
gles, we have Weff(N) / W (N) = 2N (N ( 1),
and consistently

qentropy = 1 − 1
d

(d = 1, 2, 3, . . .). (36)

2.2.2. Some many-body physical examples
enabling first-principle calculations
of q

Quantum entanglement is caused by the intrinsic
nonlocality of quantum mechanics. This nonlocal-
ity makes the elements of a N -body (N ( 1)
system to be strongly correlated, which diminishes
considerably the size of the admissible space of
microscopic configurations. Depending on the spe-
cific system, SBG(N) might be extensive. We con-
sider here what is currently referred to as the block
entropy, i.e. the entropy of a subsystem which is
very large but nevertheless much smaller than the
entire N -system. The elements of this subsystem
are quantum-entangled with all the N elements, but
our detector only detects (for whatever reason) the
elements of the subsystem. For the subsystem, it fre-
quently happens that its SBG is nonextensive, and
therefore inadequate for thermodynamical purposes.
We review here two magnetic examples for which a
nontrivial value qentropy exists such that the block
entropy Sqentropy is extensive, thus reconciling the
subsystem entropy with thermodynamics.

Both examples concern chains of many-body
spin systems with short-range interactions at T = 0,
i.e. at their fundamental state. The total N -system
is in a pure state, and therefore its entropy vanishes.
A block of successive L spins (with 1 / L / N) is,

however, in a mixed state and therefore its entropy
Sq(L) is different from zero. By Sq(L) we mean
precisely

Sq(L) =
1 − Tr ρq

L

q − 1
, (37)

where

ρL = TrN−LρN , (38)

ρN being the density matrix of the N -system. We
have that Tr ρ2

N = 1 (i.e. a pure state, hence
Sq(N) = 0), whereas Tr ρ2

L < 1 (i.e. a mixed state,
hence Sq(L) > 0).

The first example is a pure ferromagnet with
spin 1/2 anisotropic first-neighbor interactions in
the XY plane in the presence of a transverse mag-
netic field at its critical value (a T = 0 quan-
tum phase transition from the paramagnetic to
the ferromagnetic state). It contains the Ising (XY
isotropic) ferromagnet as the central charge c =
1/2 (c = 1) particular case. We analytically find
[Caruso & Tsallis, 2008] that

qentropy =
√

9 + c2 − 3
c

(c ≥ 0). (39)

The second example is a random magnet of the
Heisenberg type with spins S, in the absence of
any external field. It is numerically found [Saguia &
Sarandy, 2010] that

qentropy = 1 − 1.67
c

= 1 − 1.67
ln(2S + 1)

(c ≥ 0). (40)

Both expressions for qentropy are represented in
Fig. 3.

Since the block is not in a pure but in a mixed
state, it necessarily has a nontrivial energy distribu-
tion. Which distribution? It could be given, in the
N → ∞ limit, by say

ρL ∝ e
−βqenergyHL
qenergy (L ( 1), (41)

where qenergy could well be a (relatively simple)
function of qentropy:

qenergy = h(qentropy). (42)

In the c → ∞ limit one naturally expects the BG
limit qenergy = qentropy = 1 to hold (i.e. h(1) = 1).

The block density matrix ρL stands at present
as an open problem. If it turns out to be of the
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0.25 0.5 0.75 1 1.25 1.5
1/c

−1.5

−1

−0.5

0.5

1

q

Fig. 3. Curves of q versus 1/c. The red dot corresponds to
the BG limit. The continuous (dashed) curve corresponds to
the T = 0 linear chain for the pure (random) magnet in
[Caruso & Tsallis, 2008; Saguia & Sarandy, 2010].

form (41), what would be the values of qenergy and
of βqenergy?

2.3. q-generalized central limit
theorems

2.3.1. q-product

For reasons that will soon become clear let us intro-
duce a q-generalization of the product, the q-product
[Nivanen et al., 2003; Borges, 2004]:

x ⊗q y = [x1−q + y1−q]
1

1−q (x ⊗1 y = xy). (43)

The main reason for defining such a product is that
it satisfies the following remarkable property:

lnq(x ⊗q y) = lnq x + lnq y. (44)

Similarly to Eq. (11), which essentially reflects the
nonadditivity of the entropy Sq, Eq. (44) reflects its
possible extensivity in the presence of strong cor-
relations characterized by q. Let us illustrate this
fact. Assume that we have a system whose subsys-
tem A (B) has NA ( 1 (NB ( 1) strongly cor-
related elements such that its nonzero-probability
configurations are equally probable, and equal to
1/W (NA) (1/W (NB)). Assume also that the corre-
lations are such that W (NA) ∝ (NA)ρ (W (NB) ∝
(NB)ρ) with ρ ∈ R. Then we straightforwardly ver-
ify entropic extensivity for q = 1 − 1/ρ, i.e. that
S1−1/ρ(NA + NB) ∝ NA + NB.

We shall focus here on the q-product for the
case q ≥ 1, and x and y non-negative real numbers
(see [Tsallis & Queiros, 2007] for further details). It
is straightforward to check that this product is com-
mutative, associative, it has an inverse, a unit, and
a zero. But there are preliminary indications that
there is no associative generalized sum with regard
to which the q-product is distributive. The argu-
ment goes essentially as follows. We first develop
the q-product as follows (see Appendix A in [Tsal-
lis, 2009a]):

x ⊗q y = xy

{
1 + (q − 1)(ln x)(ln y)

+
1
2
(q − 1)2[(ln2 x)(ln y) + (ln x)(ln2 y)

+ (ln2 x)(ln2 y)] + · · ·
}

. (45)

We next assume the existence of a generalized sum
x⊕q y whose development would be as follows5:

x⊕q y = (x + y)
{

1 + (q − 1)a1(x, y)

+
1
2
(q − 1)2a2(x, y) + · · ·

}
, (46)

where a1(x, y) = a1(y, x) and a2(x, y) = a2(y, x)
are functions to be found by simultaneously impos-
ing (i) distributivity of the q-product with regard
to x⊕q y, and (ii) associativity of this generalized
sum. In other words, we impose

x ⊗q (y⊕q z) = (x ⊗q y)⊕q (x ⊗q z), (47)

and

x⊕q (y ⊕q z) = (x⊕q y)⊕q z. (48)

Also, we impose x⊕q 0 = 0, ∀ q, which immediately
implies a1(x, 0) = a2(x, 0) = 0. By developing in
powers of (q − 1) both relations (47) and (48), we
obtain strong constraints on a1(x, y) and a2(x, y).
Although the full discussion remains to be done,
a preliminary analysis [Curado et al., 2008] sug-
gests that no such a1(x, y) and a2(x, y) can exist.
If indeed they do not exist, no algebra exists whose
product would be the q-product. That would be

5We use x⊕q y instead of simply x ⊕q y because, for different purposes, the latter is already defined in the literature. It is
called q-sum and is defined as x⊕q y = x + y + (1− q)xy. Let us say right away that x⊗q y is not distributive with regard to
x ⊕q y, as can be easily verified.
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some kind of new mathematical structure, satisfy-
ing all the axioms of an algebra but distributivity.

The distributivity of the q-product stands at
present as an open problem. Depending on whether
it exists or not, and on what would be the analyt-
ical definition of x⊕q y, is it possible to construct
some structure having some similarity with a vec-
tor space?

2.3.2. q-Fourier transform and discussion
of its inverse

By using the definition (43) we can define the follow-
ing q-generalized Fourier transform (q-FT) [Umarov
et al., 2008, 2010]:

Fq[f(x)](ξ) =
∫

dx eixξ
q ⊗ f(x) (q ≥ 1). (49)

For non-negative real f(x) we have that

Fq[f(x)](ξ) =
∫

dx eixξ[f(x)]q−1

q f(x) (q ≥ 1).

(50)

It is clear that 1-FT recovers the standard Fourier
transform (FT), which is a linear integral transform.
It is also clear that, for q '= 1, the q-FT is a non-
linear integral transform.6 It has been so defined
in order to be closed with regard to the family of
the q-Gaussian distributions. Let us be explicit. We
consider the following q-Gaussian7

f(x) = Gq(x) ≡ [1 − (1 − q)β x2]
1

1−q

∫
dy[1 − (1 − q)β y2]

1
1−q

=
e−βx2

q∫
dy e−βy2

q

(β > 0; q < 3), (51)

where we remind that the support is infinite for
1 ≤ q < 3, and is finite for q < 1.8 Equation (51)

can be written explicitly as follows:

Gq(x) = Nq

√
β[1 − (1 − q)β x2]

1
1−q

(β > 0; q < 3), (52)

with

Nq ≡






[
q − 1

π

]1/2 Γ
(

1
q − 1

)

Γ
(

3 − q

2(q − 1)

) if 1 < q < 3,

1√
π

if q = 1,

3 − q

2

[
1 − q

π

]1/2 Γ
(

3 − q

2(1 − q)

)

Γ
(

1
1 − q

) if q < 1.

(53)

We can verify that, for q ≥ 1,

Fq[Gq(x)](ξ) = e−β ξ2

q , (54)

with

q =
1 + q

3 − q
, (55)

and

β =
(3 − q)N2(1−q)

q

8β2−q
. (56)

This expression can be conveniently rewritten as
follows:

(β)
1√
2−q β

√
2−q =

[
(3 − q)N2(1−q)

q

8

] 1√
2−q

. (57)

For q = 1, we recover ββ = 1/4, which leads, in
quantum mechanics, to the Heisenberg uncertainty
principle. Notice also that Eqs. (55) and (56) are
invertible, i.e. (q,β) → (q,β) and (q, β) → (q,β).

6If x is a variable which carries physical dimensions, it is convenient to define definition (49) as follows: Fq [f(x)](ξ) =
R

d(xf0)e
ixξ
q ⊗ (f(x)/f0) =

R
d(xf0)e

ixξ[f(x)/f0]
q−1

q (f(x)/f0) =
R

dx e
ixξ[f(x)/f0]

q−1

q f(x) (q ≥ 1), where f0 > 0 is a reference
value. If f(0) is finite, a simple choice would be to just adopt f0 = f(0). With this generalized definition it follows that xξ is
a pure number, which physically is very convenient. If x is already a pure number, we can of course adopt f0 = 1.
7q-Gaussians are referred to with various names in the literature. In the form f(x) ∝ 1/[a2 +x2]κ, they are occasionally called
“generalized Lorentzians” or “kappa distributions” in areas such as plasma physics, and “Barenblatt form” in the area of
porous media. Also they recover the Student’s t-distributions and the r-distributions for special values of q. Because of that,
in finance, they are loosely referred to as “Student’s t-distributions” even outside these special values of q.
8Let us remind that the q-Gaussian form is normalizable only for q < 3. Its variance is finite for q < 5/3, and diverges for
5/3 ≤ q < 3. Its q-variance, however, remains finite for any q < 3, i.e. as long as it is normalizable.

1230030-10

In
t. 

J. 
Bi

fu
rc

at
io

n 
Ch

ao
s 2

01
2.

22
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 C

EN
TR

O
 B

RA
SI

LE
IR

O
 D

E 
PE

SQ
U

IS
A

S 
FI

SI
CA

S 
on

 1
0/

18
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 3, 2012 7:31 WSPC/S0218-1274 1230030

Some Open Points in Nonextensive Statistical Mechanics

The above relations show that the q-FT is
invertible within the class of the q-Gaussians. It
is not so in general. Indeed, it has been shown
by Hilhorst [2009, 2010] that, for a given value
of q, one-parameter families of functions {f(x)}
exist such that their q-FT does not depend on that
parameter. Therefore the q-FT has not always an
unique preimage, i.e. although the q-FT is invert-
ible within the closed class of q-Gaussians, it is not
invertible, in general. This peculiar property does
not exist for q = 1, but it does emerge for q > 1.
Therefore an interesting question can be put: Does
a procedure exist which given a (say non-negative,
for simplicity) function f(x), enables us to go for-
ward and backward through the q-FT and come back
to the same function? The answer is yes, as recently
shown in [Jauregui & Tsallis, 2011]. The procedure
is as follows.

Given a non-negative function f(x), we make
the transformation x → x + y, and then calculate
the q-FT on the variable x, i.e. we calculate

Fq[fy](ξ, y) =
∫ +∞

−∞
f(x + y)eiξx[f(x+y)]q−1

q dx.

(58)

Next, by using the recently introduced q-Dirac delta
[Jauregui & Tsallis, 2010], we can recover the func-
tion f(y), or equivalently f(x), through

f(y) =
[
2 − q

2π

∫ +∞

−∞
Fq[fy](ξ, y)dξ

] 1
2−q

(59)

for all points of the interior of the support of f(x)
(see [Jauregui & Tsallis, 2011] for details concerning
the points at the edge of the support).

2.3.3. q-independence

Two random variables X and Y , with respective
distributions fX(x) and fY (y), are said to be inde-
pendent if the joint distribution satisfies

f(x, y) = fX(x)fY (y). (60)

This implies that the distribution of their sum is
given by

fX+Y (z) =
∫

dx

∫
dyf(x, y)δ(z − x − y)

=
∫

dxfX(x)fY (z − x), (61)

where δ denotes the Dirac delta. If we take the FT,
we obtain that

F [fX+Y (z)](ξ) = F [fX(z)](ξ)F [fY (z)](ξ). (62)

Due to this property, we can alternatively define
independence of X and Y by saying that the FT of
fX+Y (z) equals the product of the FT of fX(x) and
the FT of fY (y). If the variables are not indepen-
dent (i.e. if they are correlated), we have that

F [fX+Y (z)](ξ) =
∫

dx

∫
dyf(x, y)δ(z − x − y)

'= F [fX(z)](ξ)F [fY (z)](ξ). (63)

We shall next define a special type of correla-
tion between X and Y , named q-independence, by
imposing

Fq[fX+Y (z)](ξ)

= Fq[fX(z)](ξ) ⊗q Fq[fY (z)](ξ), (64)

with q given by Eq. (55). This definition might seem
rather esoteric at this stage, but it will turn out
to be amazingly frequent in nature, as we shall
see later on. Of course 1-independence recovers
independence.

2.3.4. q-generalized central limit theorems

In the empirical sciences, the repetition of an exper-
iment (in nearly equal conditions) is a must if we
wish to increase the experimental precision. If we
do it N times, we then consider as valid the exper-
imental value of the arithmetic mean of those N
results. This ubiquitous fact points towards the
importance of considering random variables of the
type SN = X1 + X2 + · · · + XN , which constitutes
the scope of the Central Limit Theorem (CLT).
This important theorem admits a variety of forms,
but basically it states that, if {Xi} are equally dis-
tributed independent (or quasi-independent in some
sense), have a finite variance, and N is increasingly
large, the sum SN always converges, after appropri-
ate centering and scaling, onto a Gaussian, which
is therefore called the attractor of the sum. If the
variance diverges, the attractor becomes instead a
Lévy distribution, also called α-stable distribution
with α < 2 (this is sometimes referred to as the
Lévy–Gnedenko CLT).

It is quite natural that the attractors are
neither Gaussian nor Lévy distributions if strong
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correlations are present between the {Xi} variables.
It has been recently shown [Umarov et al., 2008]
that, if the variables are equally distributed
q-independent and a conveniently q-generalized
variance σQ is finite, the N → ∞ attractors are q-
Gaussians. If that q-generalized variance diverges,
then the nature of the attractors is different and
they are referred to as the (q,α)-stable distributions
Lq,α(x) [Umarov et al., 2010]. The α → 2 limit of
the (q,α)-stable distributions are the q-Gaussians
Lq,2(x) ≡ Gq(x); the q → 1 limit of the (q,α)-
stable distributions are the α-stable distributions
L1,α(x) ≡ Lα(x); the limit L1,2(x) ≡ G(x) corre-
sponds to Gaussians. Q is defined as Q = 2q − 1
(with 1 ≤ q < 2), and σQ =

R ∞
−∞ dx x2[f(x)]QR ∞
−∞ dx[f(x)]Q

. These

theorems are schematically depicted in the follow-
ing table (where the Cq,α’s are positive coefficients).
See [Tsallis & Queiros, 2007; Queiros & Tsallis,
2007] for typical illustrations of the four types of
attractors.

There are many Gaussians in nature: it seems
reasonable to believe that this is due to the CLT,
which shows that details can be of no impor-
tance if the number of involved random variables
is large. Similarly, and for the same reason, we
also expect many q-Gaussians to exist in nature
(as well as in artificial and social systems), as long
as q-independence emerges naturally in many com-
plex systems, where strong correlations between ele-
ments is an important ingredient. And it is precisely
this situation that has been profusely illustrated in
Sec. 1.

q = 1 [independent] q *= 1 (i.e. Q *= 1) [globally correlated]

σQ < ∞ G(x) Gq(x)

(α = 2) [with same σ1 of f(x)] [with same σQ of f(x)]

Gq(x) ∼ G(x) if |x| - xc(q, 2)

Gq(x) ∼ Cq,2/|x|2/(q−1) if |x| . xc(q, 2)

for q > 1, with limq→1 xc(q, 2) = ∞

σQ → ∞ Lα(x) Lq,α(x)

(α < 2) [with same |x| → ∞ behavior of f(x)] [with same |x| → ∞ behavior of f(x)]

Lα(x) ∼ G(x) if |x| - xc(1, α) Lq,α ∼ C
(intermediate)
q,α /|x|

2(1−q)−α(3−q)
2(q−1)

Lα(x) ∼ C1,α/|x|1+α if |x| . xc(1, α) if x
(1)
c (q, α) - |x| - x

(2)
c (q, α)

with limα→2 xc(1, α) = ∞ Lq,α ∼ C
(distant)
q,α /|x|

1+α
1+α(q−1)

if |x| . x
(2)
c (q, α)

Let us incidentally mention that the lack of
inverse of the q-FT led to Hilhorst [2009, 2010]
to disregard q-Gaussians as attractors. A detailed
reply to his claim was recently made available in
[Umarov & Tsallis, 2010], which reinforces that q-
Gaussians are, in many respects, very special dis-
tributions. It must be also taken into account that,
from a different perspective, a theorem like the q-
CLT (and even other forms associated with other
types of correlations) has been also proved with-
out using the q-FT [Vignat & Plastino, 2007; Hahn
et al., 2010].

The above discussion mainly focused on q ≥ 1.
However, the q-FT has also been addressed for q < 1
(see [Nelson & Umarov, 2008, 2010]).

As an interesting mathematical challenge we
may now ask: Is it possible to alternatively prove
the q-CLT by simultaneously using the q-FT and
relation (59)?

2.3.5. Possible relation between
q-independence and
scale-invariance

Two probabilistic models, [Moyano et al., 2006] and
[Thistleton et al., 2009] respectively, involving N
equally distributed random variables were intro-
duced some time ago. Their numerical discussion
suggested that, in the N → ∞ limit, q-Gaussians
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emerged with q ≤ 1, after appropriate centering and
scaling. It was however proved [Hilhorst & Schehr,
2007] quickly after that the limiting distributions of
these two models are not exactly q-Gaussians, even
if numerically they are amazingly close to them.
This interesting result put forward a relevant ques-
tion, which we describe now.

We will consider scale-invariant a N -particle
probabilistic model which satisfies the following
property:

fN−1(x1, x2, . . . , xN−1)

=
∫

dxN fN (x1, x2, . . . , xN ), (65)

where fN (x1, x2, . . . , xN ) is the joint probability
distribution associated with the random variables
(x1, x2, . . . , xN ), satisfying

∫
dx1 dx2 · · · dxN fN (x1,

x2, . . . , xN ) = 1 (∀N). In other words, a N -particle
probabilistic model is said to be scale-invariant if
the marginal probabilities after tracing over any
particle the N -particle joint probabilities coincide
with the (N − 1)-particle joint probabilities. If the
system is made by N binary random variables,
scale-invariance is nothing but what is sometimes
referred to as the Leibnitz triangle rule (not to be
confused with the Leibnitz chain rule!), i.e. (see for
instance [Tsallis et al., 2005]),

rN,n−1 + rN,n

= rN−1,n (N = 2, 3, 4, . . . ;n = 0, 1, 2, . . . , N),
(66)

with

N∑

n=0

N !
(N − n)!n!

rN,n = 1 (∀N). (67)

It is straightforward to prove that probabilis-
tic independence yields scale-invariance. Indeed,
if no correlation is present, we have that
fN (x1, x2, . . . , xN ) = f1(x1)f1(x2) . . . f1(xN ) with∫

dx f1(x) = 1, which trivially implies scale-
invariance. But, even in the presence of correla-
tions, scale-invariance is possible. The celebrated
Leibnitz triangle is one such example. Both mod-
els introduced in [Moyano et al., 2006; Thistleton
et al., 2009] are also nontrivially scale-invariant. But
they are not q-independent. Indeed, if they were,
the N → ∞ limiting distributions of both models
would be q-Gaussians, and they are not.

We immediately conclude that scale invariance
is not sufficient for q-independence. It is never-
theless compatible with it. Indeed, in [Rodriguez
et al., 2008; Hanel et al., 2009] we have intro-
duced scale-invariant models whose limiting distri-
butions are q-Gaussians for values of q both above
and below q = 1 (which corresponds in fact to
independence).

The present scenario is as follows: scale-invari-
ance clearly is not sufficient for q-independence, but
could well be necessary.

So the following question emerges: What are the
exact mathematical implications between (strict or
asymptotic) scale-invariance and (strict or quasi)
q-independence? Or, alternatively, is there some
other generic condition which, added to scale-
invariance, makes it necessary and sufficient for
q-independence?

2.4. q-generalized plane waves,
Dirac delta, wave equation and
nonlinear Klein–Gordon,
Schrödinger and Dirac
equations

The q-exponential function has various remarkable
properties which straightforwardly generalize those
of the exponential function. Let us illustrate this
through the following ordinary differential equa-
tions (ODE). We consider the (linear) ODE

dy

dx
= a1y (a1 ∈ R), (68)

with y(0) = 1. The solution is given by

y(x) = ea1x. (69)

We may now generalize Eq. (68) into the following
(nonlinear) one:

dy

dx
= aqy

q ((aq, q) ∈ R2). (70)

The solution is now given by

y(x) = e
aqx
q . (71)

We may finally unify [Tsallis et al., 1999] both
Eqs. (68) and (70) into

dy

dx
= a1y + (aq − a1)yq ((a1, aq, q) ∈ R3), (72)
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whose solution is given by

y =
[
1 − aq

a1
+

aq

a1
e(1−q)a1x

] 1
1−q

. (73)

This solution makes a crossover from the q-
exponential (for small x) to the exponential func-
tion (for |(1−q)a1x| ( 1). As an interesting remark,
let us mention that, for q = 2, this solution becomes
y = 1

1− aq
a1

+
aq
a1

e−a1x , which in the appropriate limits

(and with the photonic density of states) recovers
the Planck law for the black-body radiation! (see
details in [Tsallis, 2009a]).

Let us now turn onto q-plane waves and related
matters, and later on, we will address a possible
relation between them and the crossover we have
mentioned here above.

To start, we remind that the representation
of Dirac delta in terms of plane waves has been
recently generalized as follows [Jauregui & Tsallis,
2010] in terms of q-plane waves:

δ(x) =
2 − q

2π

∫ ∞

−∞
dke−ikx

q (1 ≤ q < 2), (74)

which implies that a wide class of functions f(x)
exist such that
∫ ∞

−∞
dxδ(x − x0)f(x) = f(x0) (1 ≤ q < 2). (75)

Let us now focus on the standard one-
dimensional linear wave equation

∂2Φ(x, t)
∂x2

=
1
c2

∂2Φ(x, t)
∂t2

, (76)

for which any function of the type Φ(kx−ωt), twice
differentiable, is a solution. In particular, one may
have a q-plane wave,

Φ(x, t) = Φ0 expq[i(kx − ωt)]; [Φ0 ≡ Φ(0, 0)],
(77)

as a solution of the equation above, provided that
[Nobre et al., 2010]

ω = ck (1 ≤ q < 3). (78)

Its generalization to d dimensions is straightforward
(see [Nobre et al., 2010]). Its plane wave solution
becomes

Φ(x, t) = Φ0 expq[i(k · x− ωt)]. (79)

Let us introduce now the following d-dimen-
sional nonlinear generalization of the Schrödinger
equation for a free particle of mass m,

i! ∂

∂t

[
Φ(x, t)

Φ0

]
= − 1

2 − q

!2

2m
∇2

[
Φ(x, t)

Φ0

]2−q

.

(80)

We notice that the scaling of the wave function by
Φ0 guarantees the correct physical dimensionalities
for all terms. This scaling becomes irrelevant only
for linear equations (e.g. in the particular case q = 1
of Eq. (80)). Now, if one uses the q-plane wave solu-
tion Eq. (79) by simply replacing k → p/! and
ω → E/!, one verifies [Nobre et al., 2010] that the
form

Φ(x, t) = Φ0 expq

[
i

! (p · x− Et)
]
, (81)

is a solution of the above nonlinear equation, with

E =
p2

2m
, (82)

thus preserving the well-known energy spectrum of
the free particle for all values of q.

Let us now add a mass term in the traditional
wave equation, and propose the following nonlinear
Klein–Gordon equation in d dimensions, namely

∇2Φ(x, t) =
1
c2

∂2Φ(x, t)
∂t2

+ q
m2c2

!2
Φ(x, t)

[
Φ(x, t)

Φ0

]2(q−1)

. (83)

One may verify easily [Nobre et al., 2010] that
the same q-plane wave used for the nonlinear
Schrödinger equation is a solution of Eq. (83), pre-
serving for all q the Einstein relation

E2 = p2c2 + m2c4. (84)

Let us finally consider a nonlinear generaliza-
tion of the d = 3 Dirac equation [Dirac, 1928],
namely [Nobre et al., 2010]

i!∂Φ(x, t)
∂t

+ i!c(α · ∇)Φ(x, t)

= βmc2A(q)(x, t)Φ(x, t), (85)

where αx,αy,αz (written in terms of the Pauli spin
2 × 2 matrices σx, σy, and σz) and β (written in
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terms of the 2 × 2 identity matrix I) are the stan-
dard 4 × 4 matrices [Liboff, 2003], namely

αx =
(

0 σx

σx 0

)
, αy =

(
0 σy

σy 0

)
,

αz =
(

0 σy

σy 0

)
,

(86)

and

β =
(

I 0
0 −I

)
. (87)

The new, q-dependent, term is given by the 4×4
diagonal matrix A(q)

ij (x, t) = δij [Φj(x, t)/aj ]q−1,

where {aj} are complex constants (A(1)
ij (x, t) = δij).

The solution of Eq. (85) we focus on is the following
four-component column matrix

Φ(x, t) ≡





Φ1(x, t)

Φ2(x, t)

Φ3(x, t)

Φ4(x, t)





=





a1

a2

a3

a4




expq

[
i

!(p · x− Et)
]
.

(88)

Substituting this four-component vector into
Eq. (85), we get, for the coefficients {aj}, pre-
cisely the same set of four algebraic equations cor-
responding to the linear case, namely (see p. 803,
Eq. (15.45b) of [Liboff, 2003]),

(E − mc2)a1 − cpza3 − c(px − ipy)a4 = 0

(E − mc2)a2 − c(px + ipy)a3 + cpza4 = 0

(E − mc2)a3 − cpza1 − c(px − ipy)a2 = 0

(E − mc2)a4 − c(px + ipy)a1 + cpza2 = 0.

(89)

These equations have, for all q, a nontrivial
solution only if the Einstein energy–momentum
relation Eq. (84) is satisfied.

The above nonlinear Schrödinger equation (80)
can be further generalized as follows:

i! ∂

∂t

[
Φ(x, t)

Φ0

]
= − !2

2m

{

aS
1∇2

[
Φ(x, t)

Φ0

]
+ (aS

q − aS
1 )

1
2 − q

∇2

[
Φ(x, t)

Φ0

]2−q
}

. (90)

The case (aS
1 , aS

q ) = (1, 1) (or equivalently (aS
q , q) = (1, 1)) recovers the usual linear Schrödinger equation,

and the case (aS
1 , aS

q ) = (0, 1) recovers Eq. (80).
Analogously, the nonlinear Klein–Gordon equation (83) can be further generalized as follows:

∇2Φ(x, t) =
1
c2

∂2Φ(x, t)
∂t2

+
m2c2

!2
Φ(x, t)

{
aKG

1 + (aKG
q − aKG

1 )q
[
Φ(x, t)

Φ0

]2(q−1)
}

. (91)

The case (aKG
1 , aKG

q ) = (1, 1) (or equivalently (aKG
q , q) = (1, 1)) recovers the usual linear Klein–Gordon

equation, and the case (aKG
1 , aKG

q ) = (0, 1) recovers Eq. (83).
Finally, the nonlinear Dirac equation (85) can be further generalized as follows:

i!∂Φ(x, t)
∂t

+ i!c(α · ∇)Φ(x, t) = βmc2δij

{

aD
1 + (aD

q − aD
1 )
[
Φj(x, t)

aj

]q−1
}

Φ(x, t). (92)

The case (aD
1 , aD

q ) = (1, 1) (or equivalently
(aD

q , q) = (1, 1)) recovers the usual linear Klein–
Gordon equation, and the case (aD

1 , aD
q ) = (0, 1)

recovers Eq. (85).
In light of the situations that have been

considered in the present subsection, we may ask
the following two points: What is the precise class
of functions f(x) for which Eq. (75) applies? (See
[Jauregui & Tsallis, 2011].) Is it possible, following

along the lines of Eqs. (72) and (73) or any other
path, to find exact solutions of Eqs. (90)–(92)?

2.5. Dependence of q on the
interaction-range of many-body
Hamiltonians

The BG entropy and its associated statisti-
cal mechanics are known to be very useful for
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many-body Hamiltonians with say two-body inter-
actions that are short-ranged and that do not
introduce severe frustration (which would break
down ergodicity, like it happens, for instance, for
spin-glasses). A paradigmatic classical Hamiltonian
system which violates (for 0 ≤ α ≤ d) the short-
range-interacting condition (and introduces no frus-
tration at all) is the α-XY one [Anteneodo & Tsallis,
1998]9:

HN =
1
2

N∑

i=1

p2
i

+
1

2Ñ

∑

i,j

1 − cos(θi − θj)
rα
i,j

(α ≥ 0), (93)

where the N rotators are located at the sites of
a d-dimensional simple hypercubic lattice (with
periodic boundary conditions). The distances ri,j

take the values 1, 2, 3, . . . for d = 1, the values
1,
√

2, 2, . . . for d = 2, the values 1,
√

2,
√

3, 2, . . . for
d = 3, and so on; due to the periodic boundary con-
ditions, more than one value of ri,j can be defined
between two given sites i and j (e.g. for d = 1, two
such values exist generically): in all cases we take
into consideration only the smallest value of ri,j for
a given couple (i, j). Ñ is defined as follows:

Ñ ≡
∑

j

1
rα
i,j

. (94)

The role played by Ñ is analyzed in [Anteneodo &
Tsallis, 1998]. It is introduced here to conform to
the vast literature existing for this Hamiltonian. It
makes the Hamiltonian HN to be extensive for all
admissible values of α.

The (infinitely degenerate) fundamental state
of the Hamiltonian (93) corresponds to all rotators
being parallel, and the corresponding total energy
UN vanishes. We may define the asymptotic energy
per particle u ≡ limN→∞ UN/N . A critical value
uc exists such that the system is ferromagnetically

ordered for 0 ≤ u < uc, and it is paramagnetically
disordered for u ≥ uc. For example, for d = 1, it
is uc = 3/4, ∀α (see [Campa et al., 2001; Tsallis,
2009a] for further details).

For all values α/d > 1, only one collective
thermal equilibrium exists, correctly (and analyt-
ically) described within BG statistical mechanics.
For those systems, the limits limN→∞ limt→∞ and
limt→∞ limN→∞ of all thermostatistical properties
commute. For all values 0 ≤ α/d < 1, two col-
lective thermal stationary states exist, namely the
thermal equilibrium (corresponding to the ordering
first t → ∞ and then N → ∞), and the so-called
quasi-stationary state (QSS) (corresponding to the
ordering first N → ∞ and then t → ∞). Ther-
mal equilibrium is correctly described within the
BG theory. Not so the QSS, which emerge at val-
ues of u slightly below uc (e.g. for u - 0.69 for
d = 1), and are not described correctly within
the BG theory. Indeed, for QSS, the microscopic
dynamics is nonergodic since the ensemble aver-
ages and the time averages do not coincide. The
ensemble averages are neither BG (q = 1) nor
q '= 1 well described (approaches based on the
Vlasov equation might be relevant). But the time
averages (by far the most relevant in experiments)
appear to follow q-statistics [Pluchino et al., 2007,
2008]. Indeed, the distribution of momenta {pi} is
definitively non-Gaussian, and is well fitted by qvel-
Gaussians with qvel > 1, where vel stands for veloci-
ties. For the α = 0 model (known in the literature as
the HMF model [Antoni & Ruffo, 1995]), we have
qvel - 1.5 [Pluchino et al., 2007, 2008]. In princi-
ple, one expects qvel(α, d) with qvel(0, d) being inde-
pendent from d. It is however, quite probable that
qvel only depends on the ratio α/d, i.e. qvel(α/d)
with qvel(0) - 1.5. Moreover, it seems plausible
that qvel(α/d) monotonically decreases from qvel(0)
to qvel(1) = 1 when α/d increases from zero to unity.

A directly related question is the following. It
is clear that, at the QSS, the corresponding (canon-
ical) distribution for the entire phase space cannot
be given by the BG weight, i.e. we have that

P (p1, p2, . . . , pN , θ1, θ2, . . . , θN ) '= e−βHN (p1,p2,...,pN ,θ1,θ2,...,θN )
∫

dp1dp2 · · · dpNdθ1dθ2 · · · dθNe−βHN (p1,p2,...,pN ,θ1,θ2,...,θN )
. (95)

9Many other types of classical and quantum Hamiltonian systems can be thought of in long-range-interacting versions as
illustrations along similar lines (see, for instance, [Nobre & Tsallis, 1995; Caride et al., 1983]).
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Indeed, if the BG weight was the correct one, we would have (since the kinetic and potential ener-
gies commute) that the one-momentum marginal distribution P (p1) would be a Gaussian, namely the

Maxwellian e−βp2
1/2

R
dp1e−βp2

1/2
. But we numerically know that this is not true. Therefore the distribution P (p1,

p2, . . . , pN , θ1, θ2, . . . , θN ) must be a different one. A possible Ansatz would be that, for N ( 1, it is given by

P (p1, p2, . . . , pN , θ1, θ2, . . . , θN )

=
e
−βqstationary stateHN (p1,p2,...,pN ,θ1,θ2,...,θN )
qstationary state∫

dp1dp2 · · · dpNdθ1dθ2 · · · dθNe
−βqstationary stateHN (p1,p2,...,pN ,θ1,θ2,...,θN )
qstationary state

, (96)

where

qstationary state = f
(α

d

)
, (97)

and

βqstationary state = g
(α

d
,β
)
. (98)

Naturally we expect f(α/d) = 1 and g(α/d,β) = β
for α/d > 1.

At this point, relevant open questions that arise
are: Is it true that, at the QSS, the distribution
in the full Γ phase space is given by Eq. (96)? If
so, what is the function qstationary state = f(α/d)
for 0 ≤ α/d < 1? Is it true that the one-
moment marginal distribution is a qvel-Gaussian?
Is it qvel = qstationary state, or, if not, what is it their
relationship for 0 ≤ α/d < 1? Are qvel(α/d) and
qstationary state(α/d) universal in the sense that they
are shared by a wide class of classical Hamiltonian
systems?

2.6. Temperature and the zeroth
principle of thermodynamics

The zeroth principle of thermodynamics plays a
basic role in its axiomatic formulation. It states
that if a system A is in thermal equilibrium with a
system B, and B is in thermal equilibrium with a
system C, then A is in thermal equilibrium with C.
In other words, the concept of thermal equilibrium
is transitive, which exhibits the great importance of
the temperature, a quantity whose value is shared
by all systems in thermal equilibrium. Can sta-
tionary (or quasi-stationary) states different from
thermal equilibrium also satisfy this transitivity?
It might be that some of them can. Indeed, in
what concerns the behavior of two systems A and
B in QSS at somewhat different temperatures and
being put in thermal contact suggests that. After
contact between two equal-sized systems (with N
rotators and N(N − 1)/2 links each), they evolve

into a single double-sized system (with 2N rota-
tors) whose temperature is between the two initial
temperatures: see Figs. 4 and 5, and details in [Tsal-
lis, 2009a]. All this occurs before the entire system
makes the crossover to the BG regime, where ther-
mal equilibrium takes place.

The point which remains to be checked (for this
and other similar long-ranged Hamiltonians) is: If
we follow a full sequence of connections and discon-
nections between systems A, B and C, all of them at
their respective QSS ’s, will the behavior be totally
analogous to what is known to happen at thermal
equilibrium (i.e. at the BG states)?

2.7. Connection to thermodynamics
and q-expectation values

To generalize BG statistical mechanics for the
canonical ensemble (from [Tsallis, 2009b]), we
optimize Sq with the constraint

W∑

i=1

pi = 1 (99)

Fig. 4. Systems A and B that will be put in thermal con-
tact at a certain moment by allowing the coupling constant
l to become different from zero. Here N = 5. From [de Albu-
querque et al., 2008].
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Fig. 5. Time evolution of the temperatures of A and B.
The initial conditions are water bag for both A and B, at
slightly different initial internal energies, hence slightly dif-
ferent initial temperatures. Here N = 10 000, and l is taken
as zero until the moment indicated with a green vertical line,
and l = 0.1 after that moment. From [de Albuquerque et al.,
2008].

and also
W∑

i=1

PiEi = Uq, (100)

where

Pi ≡
pq

i
W∑

j=1

pq
i

(
W∑

i=1

Pi = 1

)

(101)

is the so-called escort distribution [Beck & Schlogl,

1993]. It follows that pi = P 1/q
iPW

j=1 P 1/q
j

. There are

various converging reasons for being appropriate to
impose the energy constraint with the {Pi} instead
of with the original {pi}. The full discussion of this
delicate point is beyond the present scope. How-
ever, some of these intertwined reasons are explored
in [Tsallis, 2004]. By imposing Eq. (100), we follow
[Tsallis et al., 1998], which in turn reformulates the
results presented in [Tsallis, 1988; Curado & Tsal-
lis, 1991]. The passage from one to the other of the
various existing formulations of the above optimiza-
tion problem is discussed in detail in [Tsallis et al.,
1998; Ferri et al., 2005].

The entropy optimization yields, for the sta-
tionary state,

pi =
e
−βq(Ei−Uq)
q

Zq
, (102)

with

βq ≡ β
W∑

j=1

pq
j

, (103)

and

Zq ≡
W∑

i

e
−βq(Ei−Uq)
q , (104)

β being the Lagrange parameter associated with
the constraint (100). Equation (102) makes explicit
that the probability distribution is, for fixed βq,
invariant with regard to the arbitrary choice
of the zero of energies. The stationary state
(or (meta)equilibrium) distribution (102) can be
rewritten as follows:

pi =
e
−β′

qEi
q

Z ′
q

, (105)

with

Z ′
q ≡

W∑

j=1

e
−β′

qEj
q , (106)

and

β′
q ≡ βq

1 + (1 − q)βqUq
. (107)

The form (105) is particularly convenient for many
applications where comparison with experimental
or computational data is involved. Also, it makes
clear that pi asymptotically decays like 1/E1/(q−1)

i
for q > 1, and has a cutoff for q < 1, instead of the
exponential decay with Ei for q = 1.

The connection to thermodynamics is estab-
lished in what follows. It can be proved that

1
T

=
∂Sq

∂Uq
, (108)

with T ≡ 1/(kβ). Also we prove, for the free energy,

Fq ≡ Uq − TSq = − 1
β

lnq Zq, (109)

where

lnq Zq = lnq Zq − βUq. (110)

This relation takes into account the trivial fact
that, in contrast with what is usually done in BG
statistics, the energies {Ei} are here referred to Uq
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in (102). It can also be proved

Uq = − ∂

∂β
lnq Zq, (111)

as well as relations such as

Cq ≡ T
∂Sq

∂T
=

∂Uq

∂T
= −T

∂2Fq

∂T 2
. (112)

In fact, the entire Legendre transformation struc-
ture of thermodynamics is q-invariant, which is both
remarkable and welcome.

Important questions that remain to be clari-
fied include: What are the connections of quantities
such as β, βq, β′

q, and Uq, with the thermostatisti-
cal quantities naturally appearing in models such as
those focused on in Sec. 2.5?

2.8. q-triplet and possibly
associated algebras

For the most basic quantities (e.g. sensitivity to the
initial conditions, relaxation towards equilibrium
of correlation functions, equilibrium distribution of
energies) of systems described by the BG theory,
the exponential function emerges ubiquitously as
the adequate one. This function is replaced by the
q-exponential one for systems described by nonex-
tensive statistical mechanics. The question appears
about what is the value of q to be used. A wide
number of examples show that the value of q is
directly associated with the class of properties that
are being studied. For example, for dissipative one-
dimensional maps at the edge of chaos we have that
the sensitivity to the initial conditions is character-
ized by qsensitivity < 1, the entropy production is
characterized by qentropy production (and for such sys-
tems we verify that qsensitivity = qentropy production),
the relaxation of the entropy towards its satura-
tion value is characterized by qrelaxation > 1, the
sums of many successive iterations are character-
ized by qattractor > 1, and so on. In other words,
for a given nonextensive system, we typically have
not one value of q, but an infinite number of them,
most probably interconnected in such a way that at
the end only one (or very few) is independent, thus
characterizing universality classes of nonextensiv-
ity. In the limit when a BG regime is approached,
all these values of q are typically expected to merge
into the single value q = 1.

Very little is known nowadays about the (plau-
sible) analytical connections of such indices with

the following algebra emerging within the q-CLT
[Umarov et al., 2008, 2010] and related matters:

1
1 − q+

m/α

=
1

1 − q0
+

m

α
(0 < α ≤ 2;

m = 0,±1,±2,±3, . . .), (113)

and
1

1 − q−m/α

=
1

q0 − 1
+

m

α
(0 < α ≤ 2;

m = 0,±1,±2,±3, . . .), (114)

where α = 2 corresponds to q-Gaussians, and 0 <
α < 2 corresponds to (q,α)-stable distributions. See
Fig. 6. As examples of q-triplets and analogous rela-
tions, let us mention, among others available in the
literature, the following:

(i) Fluctuations of the magnetic field of the solar
wind (as detected by Voyager 1 [Burlaga &
Vinas, 2005]):

qsensitivity = −0.6 ± 0.2,

qrelaxation = 3.8 ± 0.3, (115)

qstationary state = 1.75 ± 0.06,

possibly interpreted [Tsallis et al., 2005] as

qsensitivity = −1
2
,

qrelaxation = 4, (116)

qstationary state =
7
4
.

(ii) Edge of chaos (Feigenbaum point) of the logis-
tic map (see [Tirnakli et al., 2009; Fuentes &
Robledo, 2010] and references therein):

qsensitivity = 0.244487701341282066198 . . . ,

qrelaxation = 2.249784109 . . . , (117)

qstationary state = 1.65 ± 0.05.

(iii) Fluctuations of the width (above Buenos
Aires) of the Ozone layer [Ferri et al., 2010]:

qsensitivity = −8.1 ± 0.2,

qrelaxation = 1.32 ± 0.06, (118)

qstationary state = 1.89 ± 0.02.
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(a) (b)

Fig. 6. Curves of (a) q+
m/α and (b) q−m/α as functions of q0 for typical values of m/α. They are respectively given by Eqs. (113)

and (114). The three black dots in (a) correspond, from top to bottom, to q+
1 = qrelaxation = 4, q+

0 = qstationary state = 7/4

and q+
2 = qsensitivity = −1/2 respectively [Tsallis et al., 2005].

As we can see, these examples suggest that
quite widely qsensitivity < 1 < qstationary state <
qrelaxation.

As open questions, we may emphasize: What
are the precise connections between physical proper-
ties and the q-triplet and similar quantities? How
many of those indices are independent? Are there
direct connections between these indices and the q-
CLT algebra shown in Eqs. (113) and (114)?

2.9. Universality classes,
classification of entropies

The BG entropy and its associated exponential
distribution for thermal equilibrium have been
extended, during the last two decades, in the
sense of thermodynamics and statistical mechan-
ics, into other forms. Stationary states have been
discussed which correpond to the q-exponential
form [Tsallis, 1988], logarithmic form [Curado, 1999;
Curado & Nobre, 2004], stretched-exponential form
[Anteneodo & Plastino, 1999], as well as other, more
general, forms [Hanel & Thurner, 2011; Tempesta,
2011].

The present belief is that BG entropy and
statistics are sufficient but not necessary for ther-
modynamics. In other words, thermodynamics
might be more powerful than the role attributed to
it by BG statistical mechanics. A question which

arises then naturally is: What is the most gen-
eral form of entropy which can be consistent with
thermodynamics, more precisely with the zeroth,
first, second, and third principles? What are the
superstatistical forms [Beck & Cohen, 2003; Tsal-
lis & Souza, 2003] which would correspond to this
general entropy and statistics?

3. Conclusions

During the last two decades the nonadditive
entropy Sq and its associated nonextensive statis-
tical mechanics have been and are being intensively
studied worldwide (over three thousands of papers
are available in the literature [Bibliography, 2010]).
A variety of analytical, computational, experimen-
tal and observational results and applications pro-
vide nowadays what one may consider as a relatively
clear understanding of its domain of validity. Nev-
ertheless, various relevant points still remain to be
clarified. We have presented here a set of such open
questions in the hope that future work will improve
our insights.
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