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70074-900 Brasil
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70910-900 Braśılia, Brazil
4 National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ, 22290-180, Brazil

Received 14 April 2009 / Received in final form 4 September 2009
Published online 2 March 2010 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2010

Abstract. This paper investigates the topological properties of the commodities networks. We have found
that commodities form strong clusters and are homogeneous with relation to sector (metals, agriculture and
energy). We also develop a dynamic approach suggesting that agriculture commodities are very important
in the network, followed by metals and energy. Furthermore, the parameters that characterize the network
seem to be changing over time.

1 Introduction

Recent literature has employed network theory to
unveil some characteristics of important economic
networks [1–8]. However, most the recent literature has
studied networks generated by correlations of stock prices.
In this paper we focus on commodity prices and the main
objective is to characterize the topology and taxonomy of
the commodity network. The commodity network is an in-
teresting case of study for a number of reasons. Before the
existence of money, commodities were used to buy and to
trade all kind of goods. Nowadays, the commodities are
not only used to exchange goods but it is used as primary
raw materials in all production stages. In crisis and tur-
bulence periods they can be seen as a measure of value.

Many developing countries, and in particular most
of those with weak growth performance, remain highly
dependent on commodities for their trade, production
income and employment. Large structural shifts in the
global economy have been steadily reflected in commodi-
ties prices increases, especially of food, metals and energy.
For example, recently we have witnessed the increase of
crude oil’s price, reaching historical prices over 140 dol-
lars. For countries (net exporters) this increase in prices
is positive for the Balance of Payments. However, for other
countries these shocks may propagate within the economy
increasing overall inflation. For this reason, the study of
commodities is of great relevance. In this paper we will
study how the different commodities form a network and
analyze their relationship using graph theory tools. This
a topic of utmost importance as it may reveal patterns
within the commodities network.

There is a vast literature about the study of topological
properties of networks, which has associated a meaningful
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economic taxonomy. Mantegna [2] presents the minimum
spanning tree (MST) and the associated subdominant ul-
trametric tree in which he selects a topological space of
stocks and is useful to describe the financial markets.

Recent research has found interesting patterns in stock
market networks using concepts from Graph theory [3–8].
Overall this literature has suggested that it is possible
to uncover the formation of clusters within stock market
networks and that it is possible to define a taxonomy for
the stocks within the network. These results are important
and have many implications for the design of portfolio and
risk management models.

Lien and Yang [9] examine the asymmetric effect of
basis on the time-varying variance and correlation of spot
and futures returns and its consequence in dynamic fu-
tures hedging strategies in commodity markets. They pro-
pose an alternative specification of the Bivariate GARCH
model in which the effect is incorporated for estimating
MVRHs (dynamic minimum variance hedge ratios). They
applied it to the commodity market and have found that
the basis effect is asymmetric. They also found that the
model with the asymmetric effect provides greater risk re-
duction than the conventional models, illustrating impor-
tance of the asymmetric effect when modeling the joint
dynamics of spot and futures returns and hence estimat-
ing hedging strategies.

Matia et al. [10] found that the price fluctuations
for commodities have a significantly broader multifractal
spectrum than for stocks. They observe the clustering of
commodities, shuffling the returns by randomly exchang-
ing pairs. Therefore, they found that the commodity se-
ries loses its clustering and the stock series resembles
the original one. It permits to identify that commodities
and stocks are similar to stocks for large fluctuations and
they differ for small fluctuations. They also find that, for
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commodities, stronger higher-order correlations in price
fluctuations result in broader multifractal spectra.

Some authors [11] have applied network-based ap-
proach to analyze the Brazilian interbank network struc-
ture. They found that the network has high heterogene-
ity, a weak evidence of community structure and that the
market is characterized by money centers having expo-
sures to many banks. Tabak et al. [12] apply the net-
work theory to investigate the topological properties of
the Brazilian term structure of interest rates. They found
that the short-term interest rate is the most important
within the interest rates network, in accordance with the
Expectation Hypothesis of interest rates. They also found
that the Brazilian interest rates network forms clusters by
maturity.

Sieczka and Holyst [13] investigated correlations of fu-
ture contracts for commodities traded at different markets
over the period of 1998 to 2007. They created a MST.
They also studied dynamic properties of correlations and
found that the market was constantly getting more corre-
lated within the studied period.

Recent contributions have shown that entropy mea-
sures can be used to assess the topology of complex net-
works ([14]) and that tools from complex networks can
be useful in evaluating different data-sets such as trades
in the world trade web ([15]). Furthermore, Arianos and
Carbone [16] have developed a method to estimate cross-
correlation of long-range dependent series.

Overall, little is known regarding the topology of com-
modities networks and its dynamics properties. This paper
seeks to fill this gap with a dynamic analysis of commodi-
ties networks.

The remainder of the paper is structured as follows.
Section 2 introduces the methodology and the sampling
procedures, whereas Section 3 shows the data and Sec-
tion 4 presents empirical results. Finally, Section 5 pro-
vides some final considerations.

2 Commodity networks

We use the cross-correlation in commodities prices
changes from January 1, 1991 to February 8, 2008. The
dataset is daily closing prices denominated in US dollars.
From the log-return of the commodities prices, which is
defined as Si(t) = ln(Yi(t)) − ln(Yi(t − 1)), where Yi(t) is
the price of commodity i at time t we could calculate the
cross-correlation function as:

ρi,j =
〈Si · Sj〉 − 〈Si〉〈Sj〉√

(〈S2
i 〉 − 〈Si〉2)(〈S2

j 〉 − 〈Sj〉2)
, (1)

where 〈Si〉 represents the statistical average of Si,t for a
given time period. All cross-correlations range from –1 to
1 where a value of ρi,j = 1 implies that commodities have
a perfect correlation between them, and a value of ρi,j =
−1 suggests that these commodities are perfectly anti-
correlated. The matrix ρi,j has n × n order if there are n
commodities in the sample and is symmetric as ρi,j = ρj,i.

2.1 Minimum spanning tree

To study the topology of the network the MST requires
the use of a variable that can be interpreted as dis-
tance, satisfying the three axioms of Euclidean distance.
Therefore, we transform this matrix in order to build
a distance matrix. To build the commodity network we
employ the metric distance proposed by Mantegna [2],
di,j =

√
2(1 − ρi,j), where ρi,j is the correlation between

changes in commodities i and j1.
The MST is a graph that connects all the n nodes

of the graph with n − 1 edges, such that the sum of all
edge weights is a minimum. The MST extracts significant
information from the distance matrix and it reduces the
information space from n×(n−1)

2 correlations to n− 1 tree
edges. It is the spanning tree of the shortest length using
the Prim algorithm of the di,j . Prim’s algorithm is an
algorithm in graph theory that finds a minimum spanning
tree for a connected weighted graph. This means it finds
a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is
minimized. If the graph is not connected, then it will only
find a minimum spanning tree for one of the connected
components2.

Define the maximal distance d∗i,j between two succes-
sive commodities when moving from commodity i to com-
modity j over the shortest path of the MST connecting
these two commodities. The distance d∗i,j is called sub-
dominant ultrametric distance and a space connected by
these distances provides a topological space that has asso-
ciated a unique indexed hierarchy. This distance satisfies
the above axioms of Euclidean distance and also the fol-
lowing ultrametric inequality:

di,j ≤ max[di,k, dk,j ]. (2)

To construct the hierarchical tree and a better interpreta-
tion of it we used the subdominant ultrametric distance
d∗i,j and employ the complete linkage clustering method.

In the complete linkage method distance between
nodes is defined as the distance between the most distant
pair of nodes. The distance Dc can be defined as:

Dc = Max(di,j). (3)

2.2 Weighted networks measures

In order to study the evolution of the networks parame-
ters over time we estimate a variety of network measures3

1 This metric satisfies the three axioms of Euclidean dis-
tance: (i) di,j = 0 if and only if i = j, (ii) di,j = dj,i, and
(iii) di,j ≤ di,k + dk,j .

2 The Prim’s algorithm has the following steps: (1) choose
a pair of commodities with the nearest distance and connect
with a line proportional to this distance; (2) connect a pair
with second nearest distance; (3) connect the nearest pair that
is not connected by the same tree; and (4) repeat step three
until all commodities are connected in one tree.

3 See [17] for a discussion on network measures.
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using a moving window of fixed size (1008 observations).
Therefore, we estimate the parameters for the sample that
comprises observation 1 to 1008, 2 to 1009, and so forth
until we use all the sample. This dynamic approach allows
studying the evolution of the network over time.

Domination power measures [18], also called β-
measure of individual nodes, are able to find the centrality
in a network that takes the direction and the weight of the
relations into account and could be described as below:

β(i) =
n∑

j=1

w(i, j)
λ(j)

, (4)

where w(i, j) is the weight of links connected to vertex i
and λj is the dominance weight of node j given by

λ(j) =
n∑

i=1

w(i, j). (5)

We also study closeness centrality [19], which proxies for
the proximity to the rest of vertices in the network. The
higher its value, the closer that vertex is to the others
(on average). Given a vertex k and a graph G, it can be
defined as:

C(k) =
1∑

h∈G dG(k, h)
, (6)

where dG(k, h) is the minimum distance from vertex k
to vertex h. This measures the influence of a vertex in a
graph.

For a given vertex i with connectivity ki and strength
si all weights wi,j can be of the same order if si = ki and if
one weight dominates (or a small number of vertexes) over
the others, we may have an heterogenous case. This mea-
sure is the disparity [17] of vertex i and can be measured
as:

D(i) =
∑

j∈v(i)

wij

si

2
, (7)

where v(i) is the set of neighbors of i.
The weighted clustering coefficient [20] can be mea-

sured as:

cw
i =

1
si(ki − 1)

∑
j,h

(wi,j + wi,h)
2

aijaihajh, (8)

where si is the vertex strength, ki is the degree of vertex
i. This coefficient is within the (0, 1) interval. This mea-
sures considers not just the number of closed triplets in
the neighborhood of a node but also their total relative
weight with respect to the strength of the node.

We calculate the entropy [21] of the network, which is
given by:

H = −
∑

k

P (k) log(P (k)). (9)

The maximum value of entropy is given for a uniform de-
gree distribution, whereas the minimum is zero (all ver-
tices have the same degree)4. This measure provides the
average heterogeneity of the network.

4 The relative weights of the distance matrix are employed
to calculate the probabilities.

3 Data

We evaluate 20 commodities using daily recorded database
from January 2, 1991 to February 8, 2008. We have
obtained 4463 observations for commodities spot prices,
denominated in US dollars5. We build the networks us-
ing correlation distances between the spot prices of com-
modities in the sample following Mantegna [2]. We study
the commodities in the networks built using the previous
MST, based on the concept of ultrametricity.

We also study the dynamics of the evolution of network
measures over time. We employ a recursive approach in
which we use the first 1008 observations to estimate close-
ness centrality, disparity, entropy, clustering and domi-
nance. In order to analyze the data we average these mea-
sures by sector: metals, agriculture and energy to compare
the sectors relative importance within the network.

4 Empirical results

Networks analysis are useful to provide a representation of
a broad variety of complex systems. The networks prop-
erty of hierarchy is useful to observe that the networks of-
ten have structure in which vertices cluster together into
groups that then join to form groups of groups, from the
lowest levels of organization up to the level of the entire
network.

The commodities or groups of commodities with high
values of the distances di,j are influenced by factors, which
are specific to these commodities. For low values of di,j ,
the commodities are affected either by factors which are
common to all commodities and by factors which are spe-
cific to the considered group of commodities. The length
of the segments observed for each group, quantifies the
relative relevance of these factors.

The patterns that we can observe are that, if the dis-
tances of di,j are low, the groups of commodities tend to
form strong clusters and for high values of di,j these links
tend to be weak. The commodities sector has groups of
commodities strongly clustered. This occurs because com-
modities with tendency to suffer more influence of external
risks tend to create clusters more complete and robust.

For our full sample we identify the values of di,j be-
tween 0 and 1.41 indicating that the commodities sector
forms strong clusters and is homogeneous for all character-
istics. The division of the full sample in two parts of equal
size, does not affect the analysis of the network. The di-
vision give us the values of di,j varying from 0 to 1.43, for
the first set, and di,j varying from 0 to 1.42, for the second
set of data. We observe that the values does not change
significantly, indicating that the patterns and characteris-
tics of the full sample continue for the divided sample.

Figure 1 presents the MST and the taxonomy
Hierarchical tree of the subdominant ultrametric associ-
ated to the MST, for a network based on spot prices of

5 In order to check whether results depend on the specific
sample the 4463 observations were divided in two samples, with
2231 for the first set and 2232 for the second.
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Fig. 1. Plot of the MST of a network based on spot prices of commodities distances topology, for the full sample. The node
shape is based on commodities sector. The correspondence is: ellipse for Agriculture, Square for Metals and Diamond for Energy,
(b) plot of the Taxonomy Hierarchical tree of the subdominant ultrametric associated to the MST of spot prices of commodities
distances. The correspondence is based on commodities names.
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Fig. 2. (Color online) Plot of the evolution of commodity indices for the period from January 2, 1991 to February 8, 2008.

commodities distances of the full sample (January 2, 1991
to February 8, 2008). We present the network based on
commodities names6.

Figure 2 presents the evolution of commodity indices
for the period from January 1991 to February 2008.

The MST and taxonomy tree presented in Figure 1
suggest the emergence of clusters and we can see that these
commodities are clustered by sector and independent of
the time width. The metal commodities form homoge-
neous cluster, such as the agriculture and energy com-
modities.

Figures 3 and 4 presents the evolution of dominance,
clustering, disparity, closeness centrality and entropy for
the commodities network. Results for the dominance (β)
measure suggests that the commodities from the agricul-
ture sector are the most important in the network fol-
lowed by metals and energy, respectively. Dominance mea-
sures fall within the (0.8404−1.1932), (0.9526−1.4763),
and (0.4991−0.8542) range for the metals, agriculture and
energy sectors, respectively. The dynamics of the series are
different for each sector.

The average weighted clustering coefficients fall
within the (0.1180−0.3291), (0.1190−0.3632), and
(0.1350−0.3501) range for the metals, agriculture and
energy sectors, respectively. In the beginning of the
sample the difference between sectors was small, but
is has increased substantially in the recent years. An
interesting feature is that these sector share similar
dynamics over time.

The average disparity measures fall within the
(0.0559−0.0873), (0.0560−0.0701), and (0.0626−0.1025)

6 We also split the sample in two and plot both the MST and
the taxonomy Hierarchical tree of the subdominant ultrametric
associated to the MST and find qualitatively the same results.

range for the metals, agriculture and energy sectors, re-
spectively. These sector display very different dynamics
with the energy sector showing the highest disparity over
most of the sample. In the end of the sample the metals
sector shows a substantial increase in disparity.

The average closeness centrality fall within the
(0.0367−0.0582), (0.0369−0.0657), and (0.0376−0.0642)
range for the metals, agriculture and energy sectors, re-
spectively. These sectors display different dynamics over
time and the energy sector has the highest centrality in
the beginning of the sample, whereas the agriculture sec-
tor has the highest centrality for the middle of the sample.
In the end of the sample the metals sector shows the high-
est closeness centrality.

Finally, the entropy measures imply an increase in net-
work heterogeneity in the 1999–2001 period, with a sub-
sequent fall in the 2002–2004 period. These changes were
followed by similar changes, which seem to be cyclical in
the last part of the sample. Therefore, the degree of het-
erogeneity seems to be fluctuating over time.

Since 1973 oil crisis, oil and energy have become more
volatile. Regnier [22] points out that oil prices are highly
volatile (93%) compared with all products manufactured
in the US since 1986. Specifically, crude oil prices are
65% more volatile than other products. However, recently,
commodities prices in general have become more volatile.
Prices have been through a sudden rose since the begin-
ning of 2004 and have lasted for several years. Disparity
figures for the energy sector seems to be fluctuating widely
if compared to other sectors, which is in line with these
changes in volatility7.

7 Several authors have documented these fluctuations (see
Radetzki [23], Akram [24],Wei and Zhu [25]).



248 The European Physical Journal B

Fig. 3. Plot of the average (a) dominance, (b) clustering coef-
ficient and (c) disparity for the Metals (solid line), Agriculture
(dashed line) and Energy (dotted line) sectors. We employ 1008
observations (approximately four years of data) for each cal-
culation and estimate these measures recursively on a moving
average basis.

In general spikes in the dynamics of clustering coeffi-
cients, disparity, closeness centrality and entropy occur ap-
proximately in 2001, 2004 and 2008, which have been years
in which commodities have suffered substantial shocks due
to the war in Iraq and Afghanistan and the recent sub-
prime crisis. In the latter, the failure of major banks in
the US and Europe have provoked a worldwide confidence
crisis, which have had important implications on commod-
ity prices.

Fig. 4. (a) Plot of the average closeness centrality for the Met-
als (solid line), Agriculture (dashed line) and Energy (dotted
line) sectors and (b) plot of the entropy for the entire network
over time. We employ 1008 observations (approximately four
years of data) for each calculation and estimate these measures
recursively on a moving average basis.

We also compare the measures associated with the
commodities (correlation) network to the measures asso-
ciated to the randomized versions of this network. Since
the metric distance dij of this network belongs to the in-
terval [0, 2], we have built random networks that satisfy
this characteristic. In one version of the randomized net-
work, dij has uniform distribution in the interval [0, 2].
In the second version version of the randomized network,
dij has a normal distribution with the same mean and
the same variance of the original network truncated in 0
and 2. In both versions of the randomized network, we
found that the disparity, entropy, strength and domina-
tion power measures are higher than the original network.

5 Conclusions

This paper shows that the MST and the ultrametric hi-
erarchical tree can be used to analyze the commodities
sector. The evidence suggests that the commodities sec-
tor forms clusters and is homogeneous with respect to the
sector. In other words, if the price of a commodity raise,
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the group of this commodity tends to raise too. The results
also provide an indication that the sector is vulnerable to
the influence of external risks and tends to create com-
plete and robust clusters. We found that the time width
does not influence the analysis of the clusterization of the
commodities sector and as well as the full sample, the sets
of commodities forms clusters and are homogeneous by
sector.

We also develop a dynamic analysis of the commodi-
ties network using weighted network measures: closeness
centrality, disparity, entropy, dominance and clustering.
Empirical results suggests that agriculture commodities
are very important in the network, followed by metals and
energy. Furthermore, the parameters that characterize the
network seem to be changing over time. Our results sug-
gest that the analysis of networks should analyze also the
temporal dimension.
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