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H I G H L I G H T S

! The q-Mixing rule is a new nonquadratic mixing rule.
! Correlations between species evaluated by means of the q-product.
! The proposal is a generalization of van der Waals mixing rules.
! The q-Mixing rule has been tested by evaluating vapor–liquid equilibrium.
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a b s t r a c t

We introduce a new nonquadratic mixing rule that models correlations between species by means of the
q-product of mole fractions, instead of the ordinary product. The use of the q-product is a procedure
adopted within the nonextensive statistical mechanics formalism in the generalization of the central
limit theorem for strongly correlated systems. The proposal is a generalization of the ordinary van der
Waals quadratic law that is recovered when the so-called nonquadraticity binary parameter takes the
limit qij-1. The proposed q-mixing rule has been tested by evaluating vapor–liquid equilibrium at
different temperatures for systems containing alcohol, hydrocarbons and CO2, species that yield
departures from ideality. Two distinct approaches, the Akaike Information Criterion and the F-test,
were used to compare the q-mixing rule and the van der Waals mixing rule.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There have been several proposals of equations of state over
more than a century, some based on empirical knowledge and
others with a theoretical background (Poling et al., 2001). The first
successful approach was the van der Waals equation of state (van
der Waals and Rowlinson, 1988). This equation is based on a semi-
empirical theory in which pressure is considered as the sum of
two contributions, a repulsion term and an attraction term. The
equation of state may be represented by

P ¼
RT
v#b

#
a

f ðvÞ
; ð1Þ

where the parameters a is the attractive parameter and b is the
molar co-volume. They depend on thermodynamic properties of
pure substances, and on the composition, for mixtures. Better

accuracy in the predictions of thermodynamic properties, like
vapor pressure, liquid density, equilibrium ratios, is achieved by
modifications of the original van der Waals equation. Probably the
most useful are those of Soave (1972) and Peng and Robinson
(1976).

The evaluation of the parameters a and b has significant
importance for the accurate representation of experimental data.
The expressions for the parameters a and b used with Peng–
Robinson equation of state was proposed in Peng and Robinson
(1976) as follows:

aðTÞ ¼ 0:45724
R2T2

c
Pc

 !

1þk 1#
T
Tc

! "0:5
" #( )2

;

k¼ 0:37464þ1:5422ω#0:26922ω2;

b¼ 0:07780
RTc

Pc
; ð2Þ

where ω is the acentric factor, Tc and Pc are the critical tempera-
ture and pressure, respectively, and R is the universal gas constant.
Mixing rules can be derived from statistical mechanics, or by using
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a phenomenological point of view from classical thermodynamics
(Hall et al., 1993). The widely used van der Waals Mixing Rule
(vdw-MR) (Vidal, 1978) are:

aM ¼
Xc

i

Xc

j

xixjaij; ð3Þ

bM ¼
Xc

i

Xc

j

xixjbij; ð4Þ

where xi is the molar fraction of species i, c is the number of
different species in the mixture, aii and bii are the pure component
parameters (aii ' ai and bii ' bi), and aij and bij (ia j) are cross
parameters (Wei and Sadus, 2000; Peng and Robinson, 1976;
Valderrama, 2003) that are represented by the combining rules
(Vidal, 1978):

aij ¼ aiiajj
# $0:5 1#kij

# $
; ð5Þ

bij ¼
biiþbjj

2
1# lij
# $

; ð6Þ

where kij ¼ kji, kii ¼ 0, lij ¼ lji, lii ¼ 0, and consequently aij ¼ aji and
bij ¼ bji (ia j). kij and lij are binary interaction parameters asso-
ciated with a and b (Poling et al., 2001) that can be adjusted by
experimental data.

The vdW-MR have a quadratic dependence on composition (bM is
reduced to a linear dependence if lij ¼ 0). This functional form is not
able to describe all mixtures, and several works have proposed
different nonquadratic rules, e.g. Wong and Sandler (1992), Adachi
and Sugie (1986), Won (1983), and Higashi et al. (1994). Some
proposed models take into account the excess Gibbs energy at
infinite pressure calculated from a liquid-phase activity coefficient
model (Huron and Vidal, 1979; Michelsen, 1990).

The present work introduces a new nonquadratic mixing rule
for cubic equations of state that differs from vdW-MR, once it may
consider strong correlations following the lines of nonextensive
statistical mechanics (Tsallis, 1988; Borges, 2004; Moyano et al.,
2006) through a nonquadraticity parameter qij.

The work is organized as follows. Section 2 introduces some
basic concepts of nonextensive statistical mechanics, and intro-
duces the semi-empirical model for the q-Mixing Rule (q-MR). The
methodology, results and discussions appear in Section 3, and
finally Section 4 is dedicated to the conclusions.

2. Nonextensive statistical mechanics

With the advent of the nonextensive statistical mechanics as a
generalization of the Boltzmann–Gibbs statistical mechanics, it became
clear over the years that the new formalism was able to represent
certain classes of systems that were not properly described by
Boltzmann–Gibbs statistical mechanics. Indeed, since the original paper
(Tsallis, 1988), more than two decades ago, many works have been
developed concerning nonlinear systems. The generalized entropy is

Sq ' kB
1#

PW
i ¼ 1 p

q
i

q#1
; ð7Þ

with pi being the probability of the microscopic state i, W being the
number of microscopic states, kB being a positive constant (the
Boltzmann constant) and q being the entropic index. If q-1, Eq. (7)
recovers the celebrated Boltzmann–Gibbs entropy:

S' #kB
XW

i ¼ 1

pi ln pi: ð8Þ

Formal and logical arguments considering an analogy between
Eqs. (8) and (7) have lead to the definition of generalized functions

(Tsallis, 1994), particularly the q-logarithm function

lnqðxÞ '
x1#q#1
1#q

ðx40Þ; ð9Þ

and its inverse, the q-exponential function

expqðxÞ ' exq '
½1þð1#qÞx)1=ð1#qÞ if ½1þð1#qÞx)40;
0 if ½1þð1#qÞx)r0:

(

ð10Þ

The usual logarithmic and exponential functions are recovered in the
limit q-1.

The maximization of the Tsallis entropy, Eq. (7), with the
constraint of constant generalized mean energy, leads to the
generalized canonical ensemble distribution (Tsallis, 1988; Tsallis
et al., 1998):

p Eið Þ ∝ expq #βqEi
% &

; ð11Þ

where βq is the Lagrange parameter that is related to the inverse
temperature, Ei is the energy of the ith state and p(Ei) is the
probability of the state with energy Ei be occupied. One of the
central differences between Tsallis and Boltzmann weights is that
the former presents power law tails (long-lasting for q41, and
abruptly vanishing for qo1), while the latter has exponential tails.

The difference between Boltzmann and Tsallis weights may be also
understood within the following comparison. It is known that the
pressure P of a hypothetical static isothermal ideal gas atmosphere
with gradient given by dP=dh¼ #mgρ decreases with height accord-
ing to an exponential law (Halley's law, see, for instance, Feynman
et al., 1963) PðhÞ ¼ P0expð#mgh=kBTÞ, where P0 is the pressure at
height h¼0, g is the gravitational acceleration. A similar expression
holds for the number density ρ (number of molecules/volume). The
numerator of the exponent is the potential energy of a molecule with
mass m and the denominator is its thermal energy. Thermal equili-
brium is a very strong simplifying hypothesis that certainly is not valid
to our atmosphere. If we consider that the temperature linearly
decreases with height, i.e., with a constant temperature gradient
instead of a zero temperature gradient, — the second simplest
hypothesis possible —, then we find that the pressure decays as
PðhÞ ¼ P0 expqð#mgh=kBT0Þ, with q¼ 1#kBγ=gm and γ ¼ #dT=dh is
the negative of the atmospheric temperature gradient. Once P ¼ ρkBT
and TðhÞ ¼ T0#γh, ρðhÞ ¼ ρ0½expqð#mgh=kBT0Þ)q. In both cases we
have a ratio between the potential and the thermal energies, but in the
former we have an exponential law (Boltzmann weight), while in the
latter we have a q-exponential law (Tsallis weight). The case γ ¼ 0
recovers Halley's law.

The introduction of the generalized q-logarithm and q-expo-
nential functions has allowed the development of a consistent
generalized nondistributive algebra, based on the q-algebraic
operators (Nivanen et al., 2003; Borges, 2004), q-addition x*qy,
q-difference x⊖qy, q-product x+qy, and q-ratio x⊘qy represented
as

x*qy¼ xþyþð1#qÞxy;

x⊖qy¼
x#y

1þð1#qÞy
ya

1
q#1

! "
;

x+qy¼ x1#qþy1#q#1
' (1=ð1#qÞ

þ ðx; y40Þ;

x⊘qy¼ x1#q#y1#qþ1
' (1=ð1#qÞ

þ ðx; y40Þ: ð12Þ

The subscript þ in the q-product and in the q-ratio is a short-cut
that means ½A)þ ¼maxðA;0Þ, i.e., whenever the basis is negative or
zero, (x1#qþy1#q#1r0 for the q-product, and x1#q#y1#qþ1r0
for the q-ratio), the q-operation (q-product or q-ratio) is defined as
zero, instead of being calculated by its corresponding mathematical
expression. This feature, known as cut-off, is essential for the
consistency of the formalism, and it is also present in the definition
of the q-exponential, see Eq. (10). The q-product is commutative
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(x+qy¼ y+qx), but it is not distributive in relation to the ordinary
product, aðx+qyÞa ðaxÞ+qyax+qðayÞ: It is also not distributive in
relation to the q-addition ða*qbÞ+qxa ða+qxÞ*qðb+qxÞ, 8qa1.
This q-algebra, particularly the q-product, has a central role in the
generalization of the central limit theorem, and in the general-
ization of the Fourier transform (Umarov et al., 2008; Jauregui and
Tsallis, 2010). It will be clear in the following that the present work
is based squarely in the q-product. Some properties of q-functions
and q-algebra may be found in Yamano (2002), Naudts (2002),
Cardoso et al. (2008), Lobao et al. (2009), and Tsallis (2009).

There have been proposed generalizations of equations of state
following the lines of nonextensive statistical mechanics. The ideal
gas has been revisited in Silva Jr et al. (1998), Plastino and Lima
(1999), and the equation of state is written as PV ¼ IðqÞNRTn,
where

IðqÞ ¼
1

1#ð1#qÞβn1
2
mv2

) *ðq=ð1#qÞÞd3v

Z
1#ð1#qÞβn1

2
mv2

) *1=ð1#qÞ

dv;

βn ¼ 1=ðRTnÞ and Tn is a function that recovers the temperature T in
the limit q-1. The van der Waals-EoS has also been revisited
along these lines, as Martínez et al. (2001)

Pþaq
1
V

! "2
" #

ðV#bÞ ¼NRT ; ð13Þ

where aq ¼ a βq=β#ð1#qÞ
h i

and βq=β¼ 1þð1#qÞβ
' (

aN2=ω, with

β¼ 1=ðRTÞ. There are other works dealing with nonextensive
classical gas. Negative specific heat and polytrope-type relation
are analytically explored in Abe (1999). Equipartition and virial
theorems are shown to be valid 8q in Martínez et al. (2000).
Internal energy and energy correlation are considered in Abe et al.
(2001). The kinetic nonextensive generalization of the Maxwellian
ideal gas is discussed in Lima and Silva (2005). The Joule, Joule–
Thomson, and second virial coefficients are evaluated in Zheng and
Du (2007). It was recently shown that the ideal gas in a finite heat
reservoir requires the q-entropy (Biró, 2013). Heat capacities of
simple diatomic gases (N2, O2, CO) present nonextensive behavior at
low temperatures (Guo and Du, 2009). A recent model based on the
q-exponential for evaluating solubility of solids in supercritical
solvent was advanced in Tabernero et al. (2014).

The present work is confined to mixtures, rather than pure
components, and we focus on the mixing rules that are applied to

the parameters of cubic equations of state. We have chosen the
Peng–Robinson equation of state (Peng and Robinson, 1976), but the
expressions for the mixing rules presented below in Section 2.1, may
equally be applied to other equations of state, e.g., Soave equation of
state (Soave, 1972).

2.1. q-mixing rules

Within the pairwise additivity approximation with short–range
interactions, the parameter aM of the mixture is considered as an
average of the interactions between binaries, weighted by the joint
probability of finding that particular pair of molecules together, i.
e., aM ¼

P
i;jpijaij. If independence between molecules is consid-

ered, the joint probability of finding species i in the neighborhood
of species j is simply the product of finding i and j in the bulk
solution that is represented by its molar fraction, pij ¼ pipj , xixj.
Thus, the quadratic nature of the mixing rule derives from the
hypothesis of independence. Deviation from this scenario is
usually considered by the introduction of an additional parameter
kij according to Eq. (3). This structure preserves the quadratic
nature, i.e., the independence hypothesis. The present model
follows the procedure used in the generalization of the central
limit theorem. It considers the joint probability of strongly
correlated systems (that may be a consequence of local inhomo-
geneities, long-range interactions, or other features that leads to
the failure of the independence hypothesis) as the q-product of the
individual probabilities, rather than the ordinary product (Tsallis,
2005; Tsallis et al., 2005). The proposed q-Mixing Rule is

aq;M ¼
P

i;jaijðxi+qij xjÞP
i;jðxi+qij xjÞ

; ð14Þ

where qji ¼ qij, qii ¼ 1 and xi+qij xj is the q-product between the
non-negative numbers xi and xj. The normalizing factorP

i;jðxi+qij xjÞ in the denominator of Eq. (14) is necessary to avoid
the Michelsen–Kistenmacher syndrome (Michelsen and
Kistenmacher, 1990). The parameter qij radically changes the usual
mixing rule, it exhibits a nonquadratic dependence on the com-
position (that is obviously recovered as qij-1), as can be seen
below in Figs. 1 and 2. This break with the quadratic dependence
on the composition in the mixing rule has led us to call qij as
nonquadraticity parameter within the present context.

Fig. 1 illustrates the dependence of aq;M with the molar fraction,
for different values of q12 in a hypothetical binary mixture, with
k12 ¼ 0. aq;M is limited by q12 ¼ 0 with

a0;M ¼
x21a11þx22a22

x21þx22
; ð15Þ

Fig. 1. q-Mixing rule, Eq. (14) for a binary hypothetical mixture, with arbitrarily
chosen values a1 ¼ 1 and a2 ¼ 2, and k12 ¼ 0. The choice was driven by the need to
give a good visual representation of the influence of the parameter q12 on the
composition. Different values of the parameter q12 are indicated: q12 ¼ 1 (dashed
line), q12 ¼ 0 (dashed–dotted line, red online), q12 ¼1 (dashed–dashed–dotted
line, blue online). A straight line, that corresponds to q12 ¼ 1 and
k12 ¼ 1#ða11þa22Þ=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
Þ, is indicated by a solid line, for comparison. (For

interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 2. Effect of the parameter k12 in the q-MR, Eq. (14) for a binary hypothetical
mixture with a1 ¼ 1 and a2 ¼ 2. q12 ¼ 1 (dashed line), q12 ¼ 0:1 (solid line), and
k12 ¼ 0 (black), k12 ¼ #0:3 (red online), k12 ¼ 0:3 (blue online). (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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that does not depend on the cross parameter a12, and q12 ¼1,
with

a1;M ¼
x21a11þx22a22þ2a12½x1Hðx2#x1Þþx2Hðx1#x2Þ)

x21þx22þ2½x1Hðx2#x1Þþx2Hðx1#x2Þ)
; ð16Þ

and H(u) is the Heaviside step function. The parameter q12a1
introduces two distinct regions, with positive and negative concavities
(the concavity of the usual vdW-MR is fixed, given by a11þa22#2a12).
Proper fitting of the parameter k12 leads to a shift of the inflection
point, as shown in Fig. 2, and thus allowing better description of
experimental data. It is worth noting that this shift may be such that
the inflection point can be located outside the physical region
0rx1r1, so the model, with q12a1, is able to represent data
without the inflection point, but in a nonquadratic form.

Derivatives of Eq. (14) are necessary for the calculation of
various thermodynamic properties of mixtures, e.g., fugacities, and
they are given by

∂aq;M
∂Ni

¼
1P

i;j
ðxi+qij xjÞ

X

i;j

∂aijðxi+qij xjÞ
∂Ni

! "
#aq;M

X

i;j

∂ðxi+qij xjÞ
∂Ni

! "8
<

:

9
=

;;

ð17Þ

with

X

i;j

∂ðxi+qij xjÞ
∂Ni

¼
2
NT

X

i

xi+qij xj
% &

xj xqiji #xqijj 1#δij
# $% &( )

#
2
NT

xj+qij xj
% &qij

x1#qij
j ;

X

i;j

∂aijðxi+qij xjÞ
∂Ni

¼
2
NT

X

i

aij xi+qij xj
% &

xj xqiji #xqijj 1#δij
# $% &( )

#
2ajj
NT

xj+qij xj
% &qij

x1#qij
j ; ð18Þ

where NT is the total number of moles and δij is the Dirac delta. As
it happens in this generalized formalism, all equations are reduced
to the ordinary ones in the limit qij-1.

3. Parameter estimation, results and discussions

In this section, a comparative analysis between the performance
of q-MR and vdW-MR for the prediction of vapor–liquid equilibrium
(VLE) of systems at different temperatures is shown. The Peng–
Robinson equation of state (Peng and Robinson, 1976) together with
vdW-MR and q-MR were used for calculating the vapor–liquid
equilibrium for the following binary systems at different tempera-
tures: CO2þ2-butanol (Elizalde-Solis and Galicia-Luna, 2010), etha-
nolþglycerol (Shimoyama et al., 2009), ethaneþdecane (Gardeler
et al., 2002), CO2þethanol (Galicia-Luna et al., 2000), CO2þstyrene
(Tenório Neto et al., 2013), CO2þacetic acid (Bamberger et al.,
2000), CO2þH2S (Chapoy et al., 2013) and ethyleneþ1-decanol
(Gardeler et al., 2002). The fitting parameters of the model are k12
and q12 (we remind the reader that the vdW-MR uses fixed q12 ¼ 1,
so it is not a fitting parameter for this case, but only for q-MR). The

Table 1
Relative errors between experimental and calculated values of pressure (in bar), and vapor mole fraction of species 1.

System Temperature (K) Classical mixing rule q-mixing rule

k12 Δpð%Þ Δy k12 q12 Δpð%Þ Δy

CO2þ2-butanol 313.21 0.1144 6.2 0.0005 0.1238 1.0506 2.4 0.0005
333.12 0.1052 10.8 0.003 0.1220 1.0695 4.0 0.001
363.06 0.0917 9.9 0.007 0.1069 1.0683 5.0 0.008
All temperatures 0.1012 9.2 0.002 0.1162 1.0656 4.6 0.003

Ethanolþglycerol 493.00 #0:1047 5.1 0.002 #0:0487 1.1698 5.4 0.003
543.00 #0:0789 7.2 0.02 #0:0477 1.1662 3.7 0.02
573.00 #0:0926 6.2 0.02 #0:0502 1.1877 3.2 0.03
All temperatures #0:0848 6.8 0.01 #0:0487 1.1699 4.7 0.01

Ethaneþdecane 410.95 0.0166 5.7 0.005 0.0118 0.9754 2.1 0.005
444.25 #0:0015 2.8 0.01 #0:0064 0.9831 1.7 0.01
All temperatures 0.0071 4.5 0.008 0.0024 0.9817 3.0 0.008

CO2þethanol 312.82 0.0931 1.2 0.006 0.0928 0.9966 1.0 0.006
348.40 0.0889 6.3 0.006 0.1004 1.0411 1.1 0.01
373.00 0.0852 8.3 0.01 0.1013 1.0620 1.8 0.01
All temperatures 0.0881 6.1 0.006 0.0963 1.0352 3.4 0.008

CO2þstyrene 303.00 0.0550 5.3 – #0:0383 0.7982 2.6 –

313.00 0.0781 4.9 – #0:0213 0.8151 2.3 –

323.00 0.0735 5.2 – #0:0392 0.7890 2.5 –

All temperatures 0.0755 5.1 – #0:0328 0.7984 2.5 –

CO2þacetic acid 313.20 0.0492 3.0 0.0009 0.0512 1.0178 0.9 0.0008
333.20 0.0586 3.0 0.002 0.0623 1.0284 0.7 0.002
353.20 0.0697 4.8 0.005 0.0681 1.0300 1.7 0.006
All temperatures 0.0623 4.3 0.003 0.0636 1.0320 3.5 0.003

Ethyleneþ1-decanol 308.15 0.0314 4.5 0.0003 0.0238 0.9859 3.8 0.0004
318.15 0.0323 4.2 0.004 0.0260 0.9881 2.3 0.004
All temperatures 0.0319 4.3 0.002 0.0251 0.9875 2.9 0.002

CO2þH2S 258.41 0.0977 1.1 0.01 0.1044 0.8488 0.9 0.01
273.15 0.0980 1.2 0.01 0.0959 1.0884 0.2 0.01
293.47 0.1019 0.9 0.01 0.1053 0.8729 0.5 0.01
All temperatures 0.1004 1.1 0.01 0.1031 0.9043 0.9 0.01

L.S. Souza et al. / Chemical Engineering Science 132 (2015) 150–158 153



parameters were estimated using the boiling point calculation
programmed in FORTRAN language, and the particle swarm opti-
mization algorithms from ESTIMA packages (Schwaab et al., 2008;
Alberton et al., 2013) was used to minimize the objective function,
given by Eq. (19).

Considering that the dependent variables yexp and Pexp are
uncorrelated (yexp is the mole fraction of the vapor phase), and

assuming that the residuals are independent and normally dis-
tributed with zero mean, the parameters can be evaluated by
minimizing the objective function:

FobðθÞ ¼
XNexp

n

ycalcn ðx; T ;θÞ#yexpn
# $2

σ2
yexp ;n

þ
Pcalc
n ðx; T ;θÞ#Pexp

n

% &2

σ2
Pexp ;n

; ð19Þ

where θ represents the set of fitting parameters, Nexp is the number
of experiments and Pexp

n and Pcalc
n are respectively the experimental

Fig. 3. Pressure–composition diagram for the CO2 (1)þ2-butanol (2) system.
Experimental data with error bars, and calculated values with q-MR (solid line)
and vdW-MR (dashed line) are displayed. The main panel (graph at the left) shows
the mole fraction of species 1 (x1) of the liquid phase, and the three thin panels at
the right show the mole fraction of species 1 (y1) of the vapor phase.

Fig. 4. Pressure–composition diagram for the ethanol (1)þglycerol (2) system.
Experimental data with error bars, and calculated values with q-MR (solid line) and
vdW-MR (dashed line) are displayed. The main panel (graph at the left) shows the
mole fraction of species 1 (x1) of the liquid phase, and the three thin panels at the
right show the mole fraction of species 1 (y1) of the vapor phase.

Fig. 5. Pressure–composition diagram for the ethane (1)þ1-decane (2) system.
Experimental data with error bars, and calculated values with q-MR (solid line) and
vdW-MR (dashed line) are displayed. The main panel (graph at the left) shows the
mole fraction of species 1 (x1) of the liquid phase, and the two thin panels at the
right show the mole fraction of species 1 (y1) of the vapor phase.

Fig. 6. Pressure–composition diagram for the CO2 (1)þethanol (2) system. Experi-
mental data with error bars, and calculated values with q-MR (solid line) and vdW-
MR (dashed line) are displayed. The main panel (graph at the left) shows the mole
fraction of species 1 (x1) of the liquid phase, and the three thin panels at the right
show the mole fraction of species 1 (y1) of the vapor phase.

Fig. 7. Pressure–composition diagram for the CO2 (1)þstyrene (2) system at 303 K,
313 K and 323 K. Experimental data with error bars, and calculated values with q-
MR (solid line) and vdW-MR (dashed line) are displayed. The graph shows the mole
fraction of species 1 (x1) of the liquid phase and the mole fraction of species 1 (y1)
of the vapor phase.

Fig. 8. Pressure–composition diagram for the CO2 (1)þacetic acid (2) system.
Experimental data with error bars, and calculated values with q-MR (solid line) and
vdW-MR (dashed line) are displayed. The main panel (graph at the left) shows the
mole fraction of species 1 (x1) of the liquid phase, and the three thin panels at the
right show the mole fraction of species 1 (y1) of the vapor phase.
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and calculated pressure of system, for the nth data set, and σ is the
estimated standard deviation for each experimental point. Uncer-
tainty of experimental data for each considered systemwas provided
by the corresponding references, according to two cases: they were
explicitly given for the following systems: CO2þacetic acid, CO2þH2S
and CO2þstyrene. Estimated uncertainties were provided for the
systems CO2þ2-butanol, ethanolþglycerol, ethaneþ1-dodecane,
CO2þethanol and ethyleneþ1-decanol systems.

Table 1 shows the fitted parameters k12 and q12, and deviations
between experimental data and predicted results, according to

ΔP ¼
100
Nexp

XNexp

i ¼ 1

jPexp
i #Pcalc

i j
Pexp
i

ð20Þ

and

Δy¼
1

Nexp

XNexp

i ¼ 1

jyexpi #ycalci j : ð21Þ

It can be seen that the Peng–Robinson equation of state with q-
MR presents a good prediction of the phase behavior for all
systems, with smaller deviations in the pressure than those using
vdW-MR.

Deviations in the vapor phase concentration using Peng–Robin-
son equation of state were small for both mixing rules. Ref. Tenório
Neto et al. (2013) does not bring data for the vapor phase of the
system CO2þstyrene. At low pressures, the results calculated with
q-MR for the system CO2þ2–butanol are better than those

Fig. 9. Pressure–composition diagram for the ethylene (1)þ1-decanol (2) system. Experimental data with error bars, and calculated values with q-MR (solid line) and vdW-
MR (dashed line) are displayed. Both graphs show the mole fraction of species 1 (x1) of the liquid phase and the mole fraction of species 1 (y1) of the vapor phase.

Fig. 10. Pressure–composition diagram for the CO2 (1)þH2S (2) system. Experimental data with error bars, and calculated values with q-MR (solid line) and vdW-MR
(dashed line) are displayed. The graph shows the mole fraction of species 1 (x1) of the liquid phase and the mole fraction of species 1 (y1) of the vapor phase.

Fig. 11. Influence of the parameters q12 and k12 on the pressure composition diagram. The curve for the system CO2 (1)þethanol (2) at 348.40 K is taken as a baseline for
comparison (solid black line), as it is in Fig. 6. Left panel displays different values of q12 for fixed k12 ¼ 0:1004. Right panel displays different values of k12 for fixed
q12 ¼ 1:0411.
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calculated with vdW-MR, however the predicted values by these
models for higher pressures are similar. The results obtained for the
systems CO2þacetic acid and CO2þstyrene with q-MR are signifi-
cantly better than with the conventional mixing rule, by providing
qualitatively correct predictions of pressure and vapor concentra-
tion. However both mixing rules show similar results for the
CO2þH2S system. The q-MR is able to present a smooth inflection
for the system CO2þstyrene, which is in agreement with the data.
Figs. 3–10 show pressure–composition diagrams with comparison
between experimental data and calculated results for the consid-
ered examples.

Some pressure–composition diagrams, particularly Figs. 3, 4 and 7,
display an inflection point. This change in the concavity is due to the
stronger influence of interactions between molecules under high
pressures, and the ability of the q-MR model to represent this
behavior is a consequence of the inflection point of the curves of
the interaction parameter of the mixture aq;M versus composition, see
Fig. 1 and 2. Fig. 11 shows the effect of the parameters q12 and k12 on
the inflection point. It can be seen that as the parameter q12 departs
from unit the difference in concavities becomes more pronounced,
whereas the parameter k12 is related to a shift of the curves.

The q-MR model has two binary parameters, while the original
vdW-MR has only one. In order to make a unbiased comparison, we
have implemented the Akaike Information Criterion (AIC) (Akaike,
1974) that is a suitable tool for these situations. It is defined as

AICi ¼ #2log ðmaximum likelihoodÞþ2ki: ð22Þ

If the standard deviations σi are known and the residuals are normally
distributed, the AIC is written as

AICi ¼ Foptob ðθÞþ2kiþ
2kiðkiþ1Þ
n#ki#1

ð23Þ

where ki is the number of parameters of the model i, Nexp is the
number of experiments and θopt is the set of optimal parameters (in
our case, parameters estimated for all temperatures, as showed in
Table 1). According to the Akaike procedure the more appropriate
model among those that are being compared is that one which results
in the lower AIC value. The results are shown in Table 2. It is also
useful to compare the relative AIC values, and this is shown in the last
column of the Table. Values less than 1 indicate that the q-MR is better
than vdW-MR. All considered systems present relative AIC index
smaller than 1, indicating that the improvement achieved by the q-
MR is not simply due to the existence of an additional parameter.

We have also considered the F-test as an additional criterium
for discrimination between models with different numbers of
parameters (Ludden et al., 1994; Motulsky and Christopoulos,
2004). The F-ratio is defined as

Fratio ¼
FvdW#MR
ob ðθoptÞ#Fq#MR

ob ðθoptÞ

Fq#MR
ob ðθoptÞ

dfq#MR

dfvdW#MR#dfq#MR ð24Þ

where dfq#MR and dfvdW#MR are the degrees of freedom
(df i ¼N#ki) of the equation of state with q-MR and the equation
of state with vdW-MR, respectively. The calculated F-ratios are
showed in Table 3 and they are compared to the critical F-ratios
taken from the F-Distribution Table (with the same number of
degrees of freedom) for three different values of significance level,
α¼ 0:01, 0.05 and 0.1.

The greater the value of the F-ratio, the greater the statistical
significance of the q-MR model compared to the vdW-MR model.
Only one system considered in the present work presented F-ratio
smaller than the critical F-ratio: the calculated F-ratio for the
system CO2þacetic acid is slightly smaller than F-ratioα ¼ 0:01.

Table 2
AIC values (all temperatures have been considered).

System Number of data points Fq#MR
ob ðθoptÞ FvdW#MR

ob ðθoptÞ AICq#MR AICvdW#MR AICq#MR

AICvdW#MR

CO2þ2-butanol 29 80 339.28 208 483.45 80 343.28 208 485.45 0.38

Ethanolþglycerol 22 5113.12 8419.57 5117.12 8421.57 0.61

Ethaneþdecane 22 6686.10 10 317.19 6690.10 10 319.19 0.65

CO2þethanol 43 6870.52 18 739.05 6874.52 18 741.05 0.34

CO2þstyrene 18 2154.63 13 187.47 2158.63 13 189.47 0.16

CO2þacetic acid 20 17 866.15 24 490.74 17 870.15 24 492.74 0.73

Ethyleneþ1- decanol 20 13 126.17 19 343.19 13 130.17 19 345.19 0.68

CO2þH2S 18 4024.09 64 537.57 4028.09 64 539.57 0.06

Table 3
F-ratio (all temperatures considered) and significance levels of α¼ 0:01, α¼ 0:05 and α¼ 0:1.

System F-ratio F-ratioα ¼ 0:01 F-ratioα ¼ 0:05 F-ratioα ¼ 0:1

CO2þ2-butanol 43.1 7.7 4.2 2.9

Ethanolþglycerol 12.9 8.1 4.3 3.0

Ethaneþdecane 10.9 8.1 4.3 3.0

CO2þethanol 70.8 7.3 4.1 2.8

CO2þstyrene 81.983 8.5 4.5 3.0

CO2þacetic acid 6.7 8.2 4.4 3.0

Ethyleneþ1-decanol 8.5 8.3 4.4 3.0

CO2þH2S 240.6 8.5 4.5 3.0
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4. Conclusions

This work introduces a new nonquadratic mixing rule that is a
generalization of the usual quadratic mixing rule, which is recovered
in a special limit qij-1. The q-mixing rule here introduced, general-
ized through the nonquadraticity parameter qij, is free from the
Michelsen–Kistenmacher syndrome. It is based on the q-product that
is able to reflect correlations. Departures from the quadratic nature of
the mixing rule, as described by the q-mixing rule, may be so strong
as to present an inflection point in the graph of the parameter of the
mixture aq;M as a function of composition. This is distinctive from the
original parabolic mixing rule, which has constant concavity. This
feature is also responsible for the change in concavity in the
pressure–composition diagram, specially at high pressures, when
interaction between molecules becomes more significant. It is a
common practise to use the binary parameter kij with quadratic
mixing rules to increase the fitting power of the models, though this
parameter preserves the quadratic nature of the rule. We also use the
parameter k12 in our proposal. Indeed it is essential in the present
model once it allows proper adjustment of the inflection point of the
mixing rule.

We have used the Peng–Robinson equation of state in the
presented examples, but the procedure can readily be applied to
virtually any cubic equation of state that uses mixing rules à la van
der Waals.

We have exemplified the usefulness of the proposed q-mixing
rule with vapor–liquid equilibrium calculations for binary systems
containing carbon dioxide (CO2þ2-butanol, CO2þethanol, CO2þ-
styrene, CO2þacetic acid, CO2þH2S), and also for the mixtures
ethanolþglycerol, ethaneþdecane, and ethyleneþ1-decanol. We
have used two procedures to compare the proposed model with
the usual one, the Akaike Information Criterion and the F-test, and
the q-MR has succeeded in all instances considered.
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