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We propose a unifying picture where the notion of generalized entropy is related to information
theory by means of a group-theoretical approach. The group structure comes from the requirement
that an entropy be well defined with respect to the composition of independent systems, in the
context of a recently proposed generalization of the Shannon–Khinchin axioms. We associate a
general information functional to each member of a large class of non-extensive entropies, satisfying
the additivity property on a set of independent systems on the basis of the underlying group law. At
the same time, we also show that the Einstein likelihood function naturally emerges as a byproduct
of our informational interpretation of nonadditive entropies. These results confirm the adequacy of
composable entropies both in physical and social science contexts.

The study of the relations among Statistical Mechan-
ics, Information Theory and the notion of entropy is at
the heart of the science of complexity, and in the last
decades has been widely explored. After the seminal
works of Shannon [1] and Khinchin [2] on the founda-
tions of Information Theory, Jaynes [3] re-formulated
Boltzmann–Gibbs (BG) equilibrium statistical mechan-
ics as a statistical inference theory, where all fundamen-
tal equations are consequences of the maximum entropy
principle applied to the BG entropy SBG. Subsequently,
Rényi [4, 5] introduced a generalized measure of informa-
tion, now called Rényi entropy SR

α , depending on a real
parameter α having the BG entropy as particular case in
the α → 1 limit.

The recent explosion of interest in non–equilibrium sta-
tistical physics motivated, among many research lines,
the search for new entropic functionals. The aim was to
extend the classical BG formulation to new contexts, es-
pecially complex systems and non-extensive systems in
strongly correlated dynamical regimes. The ST

q entropy,
introduced by Havrda and Charvát [6] and Tsallis [7],
has been the prototype of the nonadditive entropies stud-
ied in the last decades [8–13]. These functionals are gen-
eralizations of the BG entropy and they depend on one
or more parameters, in such a way that the BG entropy
is recovered as a particular limit.

This research has led to a new flow of ideas regarding
the old problem of the probabilistic versus the dynamical
foundations of the notion of entropy. It is well known [14]
that Einstein’s approach was very different with respect
to the probabilistic methodology of Boltzmann (which
eventually emerged as the predominant one). Indeed,
Einstein argued that the probabilities of occupation of
the various regions of the phase space associated with
a physical systems cannot be postulated a priori. In-

stead, only a knowledge of dynamics, obtained by solving
the equations of motion, could provide this information.
For this reason, Einstein [15] introduced the likelihood
function W ∝ exp

(

SBG
)

as fundamental quantity (for
the sake of semplicity, here and in the following we put
kB ≡ 1, kB being the Boltzmann constant). He observed
that, by composing two independent systems A and B,
the fundamental relation

W(A ∪ B) = W(A)W(B) (1)

holds. Eq. (1) expresses the fact that the physical de-
scription of the system A does not depend on the physi-
cal description of the system B, and vice versa. Needless
to say, the factorization in Eq. (1) is epistemologically
crucial. Moreover, it anticipated the additivity require-
ment of the information content of independent systems,
as it will be explained below.
By following the analysis in [16], we shall call Eq. (1)

the Einstein’s likelihood principle. The likelihood func-
tion has a clear physical meaning. It is indeed the number
of accessible configurations in the entire space of possible
configurations. In many circumstances, this number is
exponential in the size N of the system and we can write
W ∝ exp (NΣ), where Σ is an (adimensional) entropy
density. Mézard and Parisi [17] introduced this quantity
in the study of disorderd systems, calling Σ complexity,
or configurational entropy, and an equivalent quantity is
used in the study of random optimization problems by
means of statistical physics techniques [18].
The aim of this paper is to provide a novel approach

that relates, in a unique framework, classical informa-
tion theory with both the notion of generalized entropy
and Einstein’s likelihood principle. Precisely, we shall
show that an intrinsic group–theoretical structure is at
the heart of the multiple connections among these foun-
dational perspectives.
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The physical root of this group structure relies in a gen-
eralization of the classical axiomatic formulation, origi-
nally proposed by Shannon and by Khinchin to character-
ize the BG entropy. The first three postulates, nowadays
called the Shannon–Khinchin (SK) axioms [1, 2], define
some crucial properties that any entropic functional S
should satisfy. Let us consider the set P of finite discrete
probability distributions P ∈ P, P := {p1, . . . , pW },

W ∈ N, pi > 0,
∑W

i=1 pi = 1. We can state the pos-
tulates as follows.

Continuity: The function S(p1, . . . , pW ) is continuous
respect to all its arguments.

Maximum principle: The function S(p1, . . . , pW ) is
maximized by pi = W−1 ∀i.

Expansibility: S(p1, . . . , pW , 0) ≡ S(p1, . . . , pW )
(adding an event of zero probability does not
change the value of the entropy).

Also, a fourth axiom, i.e. additivity with respect to the
composition of two systems, was required. Under these
assumptions, Khinchin proved that the only admissi-
ble entropy turns out to be the BG entropy SBG[P ] :=
−
∑W

i=1 pi ln pi.
The additivity property was thought to be a sufficient

condition for the extensivity of BG entropy, which in the
formulation of Clausius is an essential requisite for ther-
modynamics. However, in the last decades it became
evident that the two properties, i.e. additivity and ex-
tensivity, are completely unrelated [19]. Indeed, denot-
ing by W (N) the number of accessible states of a system
with N particles, the BG entropy is not extensive, on
the uniform distribution, if W (N) ∼ Nα for a certain
α ∈ R+. This scaling is not atypical and it appears often
in the framework of complex systems. Recently, the non-
extensivity of Boltzmann’s entropy over a large class of
probability distributions was proved. Surprisingly, Rényi
entropy can be extensive in the same contexts [20]. Ad-
ditivity is therefore not an intrinsic physical requirement.
At the same time, by renouncing to the additivity pos-
tulate, new possibilities arise.
In the context of Information Theory, non–additive en-

tropies provided useful tools, for example in the study of
quantum entanglement [9, 21]. However, the lack of ad-
ditivity appears to be an important flaw if we want to
interpret generalized entropic functionals as classical in-
formation functionals [5, 22]. Indeed, it is expected that,
when composing two statistically independent systems,
the total amount of information is nothing but the sum
of the information content of the two systems. More-
over, any measurement or change of information content
in one of the two systems does not affect, nor is influ-
enced by, any other property of the other system, being
the systems uncorrelated.

This property is certainly satisfied by Boltzmann’s and
Rényi’s entropies, but using non–additive entropic func-
tionals tout–court it is not possible to fulfill the require-
ment above. Therefore, to preserve the meaning of en-
tropy as a measure of the information content of a given
system A, we firstly postulate the general relation

I(A) = f(S(A)), (2)

where the information is assumed to be a function f of
the entropy of the system only.
Secondly, along the lines of [23, 24], we discuss an ax-

iomatic formulation of entropy, generalizing the fourth
SK axiom and requiring, instead of additivity, the com-
posability property [25, 26]. In this settings, we simply
postulate that the entropy of a composite system be a
function of the entropy of the two components only. This
simple requirement is however far rich of consequences.
In particular, a specific algebraic group structure ap-
pears, in which the composition operation plays the role
of group operation. In the following, we will show that,
for a class of entropies, an additive information functional
having the form of Eq. (2) is automatically inferred by
the algebraic structure itself. The composition process of
two or more systems is formalized as follows.

Composability axiom: Given two statistically inde-
pendent systems A and B, each defined over a given
probability distribution in P, there exists a sym-
metric function Φ(x, y) such that

S(A ∪ B) = Φ (S(A), S(B)) . (3)

Moreover, we require the associativity property

Φ (Φ(x, y), z) = Φ (x,Φ(y, z)) (4)

and the relation Φ(x, 0) = x.

When the systems A and B are not independent, we
postulate the relation

S(A ∪ B) = Φ (S(A), S(B|A)) , (5)

where S(B|A) is the entropy evaluated on the conditional

distribution p
B|A
ij :=

pA∪B
ij

pA
i

.

We shall define admissible entropies those satisfying
the first three SK axioms and the composability axiom.
The axiom contains crucial requirements, that allow the
existence of a zeroth law of thermodynamics. Also, when
composing a system with another in a certainty state
(zero entropy), the entropy of the composed system will
remain unchanged. This natural generalization of the SK
axiom allows an infinite number of admissible entropic
forms [23, 24].
The classification and the study of the properties of

all functions Φ(x, y) satisfying the composability axiom
was performed in the context of formal group theory [27].
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This branch of algebraic topology was established in the
second half of the XX century, starting from the work of
Bochner [28]. In particular, there exists a universal group
law, the Lazard formal group, whose general expression
is given by

Φ(x, y) = G
(

G−1(x) +G−1(y)
)

. (6)

Here G(t) is a general strictly monotonically increasing
function whose power series expansion is of the form

G (t) =
∑∞

k=0 ak
tk+1

k+1 , where {ak}k∈N a real sequence,
with a0 ̸= 0. This series, by means of the Lagrange inver-
sion theorem, is invertible with respect to the composi-
tion (i.e., there exists a seriesG−1 such that G−1(G(t)) =
t). One can prove that, given a group law, there exists
a specific function G such that the law takes the form in
Eq. (6) [29].
Consequently, if a functional S satisfies the generalized

SK axioms, then the associated composition law (3) can
be realized in terms of the universal law (6) by means
of a specific function G. The rich algebraic structure
underlying the simple composability axiom naturally al-
lows to classify all entropies possessing a given composi-
tion law. Also, we can generate new examples, accord-
ing to the composition law adopted. For the trace-form
family (i.e., the family of entropies having the structure
S[P ] =

∑

i pif(pi) for a certain concave function f), we
have the form [24]

SG[P ] =
W
∑

i=1

piG

(

ln
1

pi

)

. (7)

For example, the celebrated Boltzmann entropy corre-
sponds to the additive group:

Φ(x, y) = x+ y ⇒ G(t) = t. (8)

The multiplicative group

Φ(x, y) = x+ y + (1− q)xy ⇒ G(t) =
e(1−q)t − 1

1− q
(9)

leads to the Tsallis entropy, defined for q ∈ R as [30]

ST
q [P ] :=

W
∑

i=1

pi logq
1

pi

q→1
−−−→ SBG[P ], (10)

where logq(x) :=
x1−q−1
1−q

q→1
−−−→ lnx, x ∈ R+. Remarkably,

the BG entropy and the Tsallis entropy are the only trace
form entropies that are admissible. All other entropies
in the form (7) satisfy the composability property only
on the uniform distribution, i.e. in the microcanonical
ensemble. Dropping out the trace-form hypothesis, new
entropic forms are allowed [24]. For example, the Rényi
entropy

SR
α [P ] :=

ln
∑W

i=1 p
α
i

1− α

α→1
−−−→ SBG[P ] (11)

belongs to the additive group of composable entropies.
Motivated by the previous discussion, we can propose

now a notion of information functional that comes di-
rectly from the group-theoretical structure. A priori,
apart from the entropies belonging to the additive group,
all the other ones do not satisfy the additivity property
for the composition of probabilistic independent systems.
However, we can overcome this difficulty by associating
to each of them an information functional that is in-
deed additive on statistically independent systems. This
functional is determined by the composition class itself,
i.e., by the function G appearing in Eq. (6). Conse-
quently, we propose the following main definition of a
group-theoretical information functional.
Given a composable entropy SG, with a group law of

the form (6), the information functional of S for any sys-
tem A is defined to be

IG(A) = G−1(SG(A)). (12)

In the specific case of an entropy of trace-form class
(7), we recover for our functional the expression of the
Kolmogorov-Nagumo mean [31, 32]:

IG(A) = G−1

(

W
∑

i=1

piG

(

ln
1

pi

)

)

. (13)

The information functional (12), however, is defined
in the generic case of entropies that are composable and
not only on trace-form entropies. We are ready now to
present one of the main results of this Letter.

Theorem. Let S be a composable entropy, with a group
law defined by (6) for a certain function G. Then for two
statistically independent systems A and B we have

IG(A ∪ B) = IG(A) + IG(B). (14)

Moreover, the information functional IG satisfies the fol-
lowing further properties.

Continuity: IG is continuous respect to its arguments;

Maximum principle: IG is maximized on the uniform
distribution;

Expansibility: The addition of a zero–probability event
do not change the value of IG.

Proof. Observe indeed that

IG(A∪B) = G−1(SG(A∪B)) = G−1 (Φ(SG(A), SG(B)))

= G−1
{

G
[

G−1(SG(A)) +G−1(SG(B))
]}

= IG(A) + IG(B). (15)

All other properties of the functional IG derive from the
properties of SG imposed by the generalized SK axioms
and from the strict monotonicity of G.
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Therefore all composable entropies possess an associ-
ated information functional which is additive and can be
constructed directly through the function G. Observe
that the strict monotonicity of G (and therefore of G−1)
implies that S(A) < S(B) ⇒ IG(A) < IG(B), coherently
with the fact that the entropic forms allowed by the ax-
ioms above do possess indeed an information content (see
for example [9, 33] for the study of the Tsallis entropic
form as information functional and its application).
Observe also that Rényi entropy fits naturally in our

scheme. Indeed, for SR
α , G(t) = t, then the associated in-

formation functional IR
α coincides with the entropic func-

tional, i.e.

SR
α (A) +→ IR

α (A) ≡ SR
α (A). (16)

The previous identity holds also in the α → 1 limit, i.e.,
in the BG case. In other words, the BG entropy and the
Rényi entropy are stable with respect to definition (12):
the associated group-theoretical information functional
coincides with the corresponding entropy. If we consider
instead the Tsallis entropy, we see that

ST
q (A) +→ IT

q (A) ≡ SR
q (A), (17)

i.e., the information functional associated to ST
q is the

Rényi entropic functional with parameter 1 − q. Again,
this result is not surprising, being the Rényi entropy
the only information functional that satisfy the additiv-
ity requirement and has the structure of a Kolmogorov–
Nagumo mean [22]. However, as explained above, our
formalism goes beyond the requirement of a Kolmogorov–
Nagumo structure and it holds, indeed, for all non-trace
form admissible entropies, having a more general form
for the corresponding information functional. For a large
classe of non-trace form entropies (for example for the
entropic functionals discussed in [24]), the analitic ex-
pression of the information functional is of the type

SG(A) +→ IG(A) =
∑

i

ciS
R
αi
(A), (18)

where the parameters ci and αi depend on the parameters
appearing in the entropy SG.
Finally, the presented group-theoretical approach al-

lows to generalize easily the Einstein principle, and to
connect it with information theory in a natural way.
Given an entropy SG, whose associated group law is (6),
we introduce the likelihood function

WG(A) =: eIG(A) = eG
−1(SG(A)). (19)

The motivation for this definition is twofold. First, it
relates the Einstein likelihood function directly with the
group-theoretical information functional. Second, it gen-
eralizes Einstein’s relations [15, 16] in the case of inde-
pendent systems for all composable entropies. Indeed,
let S be a composable entropy, whose group law is given

by (6). Then Einsten’s likelihood principle (1) follows
immediately from the additivity property of the infor-
mation functional (12). In the case of the multiplicative
group (9), we recover the likelihood function recently in-
troduced in [16]. Once again, for generalized entropies
composable only over the uniform distribution, just a
weak formulation of the principle holds. Needless to say,
this situation is not very satisfactory,

In the light of the whole analysis of this paper, we con-
clude that the composability axiom allows a potentially
fruitful interpretation of generalized entropies in informa-
tion theory. Indeed, composable entropies both possess
an information theoretical content and satisfy the Ein-
stein principle, which is a crucial statement for any phys-
ical application of the notion of entropy. As a byproduct
of our analysis, it emerges that also non-trace form but
composable entropies can play an important role in sta-
tistical mechanics.

The authors are grateful to Constantino Tsallis for use-
ful discussions. G.S. acknowledges the financial support
of the John Templeton Foundation. The research of P.T.
has been partly supported by the project FIS2011–22566,
Ministerio de Ciencia e Innovación, Spain.

∗ sicuro@cbpf.br
† p.tempesta@fis.ucm.es

[1] C. Shannon, The Bell System Technical Journal 27, 379
(1948).

[2] A. Khinchin, Mathematical Foundations of Information
Theory, Dover Books on Mathematics (Dover Publica-
tions, 1957).

[3] E. T. Jaynes, Physical Review 106, 620 (1957).
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