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Walks with up to two monomers per site on the Bethe lattice: Interpolation between models
with immediate reversals allowed and immediate reversals forbidden
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We generalize earlier calculations of the RA (immediate reversals allowed) and RF (immediate reversals
forbidden) model with multiple monomers per site, including a parameter in the model, so that both cases studied
before are particular cases of the model considered here. Also, we calculate the bulk free energy of the model
using Gujrati’s prescription, which leads to corrections in the localization of coexistence lines and qualitative
changes in the phase diagram of the model. Thus, this calculation provides an example in which the use of the
method of iterating recursion relations starting with natural initial conditions to locate coexistence loci is not
trustworthy and may lead to qualitatively different results. A continuous collapse transition appears in all cases

as a tricritical point.
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I. INTRODUCTION

In the standard model for studying the collapse transition
of linear polymers in poor solvents, the polymeric chains are
represented by self- and mutually avoiding walks on a lattice,
so that monomers are placed on lattice sites and polymer
bonds on edges of the lattice, introducing attractive interactions
between monomers on first-neighbor sites of the lattice that
are not consecutive along a chain [self-attracting self-avoiding
walks (SASAW’s)] [1,2]. In the grand-canonical ensemble,
the fieldlike variables are (i) the fugacity of a monomer z =
exp(Bu), where B = 1/kpT and p is the chemical potential
of a monomer, and (ii) the Boltzmann factor w = exp(Be¢),
where —e is the attractive energy associated with two interact-
ing monomers. At low values of w (high temperatures), a con-
tinuous polymerization transition is observed as the fugacity z
is increased, between a nonpolymerized phase (empty lattice)
and a polymerized phase, whose density of monomers vanishes
and therefore is identified with an extended or coil-like phase.
As the Boltzmann factor is increased (temperature is lowered),
the polymerization transition becomes tricritical and then of
first order, so that the nonpolymerized phase coexists with
a polymerized phase of nonvanishing density of monomers,
which is a collapsed or globular-like phase. In the canonical
situation, the system is always at the border of the region in
the parameter space occupied by the nonpolymerized phase,
as is discussed in [3], and therefore the transition between
the extended and the collapsed phases, which happens at the
tricritical point, is continuous.

Some time ago, an alternative model for the collapse of
polymer chains was proposed by Krawczyc et al. [4], where up
to K > 1 monomers may occupy the same lattice site and the
monomer-monomer interaction is restricted to monomers on
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the same site. Let us call this model MMS (multiple monomers
per site). The model was studied using canonical simulation
for K = 3 on the square and the cubic lattices. Besides the
case without additional restrictions for the walks, another case
was studied in which, once a walk leaves a site to reach a
first-neighbor site, it is not allowed to return immediately to the
original site. These two versions of the model were called RA
(immediate reversals allowed) and RF (immediate reversals
forbidden), respectively. The only case for which the authors
found an extended-collapse transition in the simulations was
for the RF model on the cubic lattice, and this transition
apparently is continuous in part of the border between the
phases and discontinuous in the remaining part of this border,
with both lines meeting at a tricritical point. The absence of
a transition in two dimensions and for the RA model is a
puzzling result.

A series of studies of these models on hierarchical lattices,
such as the Bethe and Husimi lattices, were realized to find
out the thermodynamic behavior of the MMS model, which
emerges from the exact solutions on these lattices, which may
be seen as approximate solutions of the same model on regular
lattices [5]. Both versions of the MMS model were solved on
the Bethe lattice for K = 2 [6], and a diagram that resembles
the one for the SASAW’s model was found for the RF model,
although an additional polymerized phase appeared with a
predominance of double-occupied sites. Some differences
were observed in the thermodynamic behavior of the RA model
on the Bethe lattice, where no tricritical point was found. Here
we correct and extend the results of that paper, introducing an
additional parameter in the model that allows us to interpolate
between both models studied there. Also, we do obtain the bulk
free energy per site for the model using a prescription originally
presented by Gujrati [7], which enables us to find better
results for the coexistence loci as compared to the original
ones, obtained using the recursion relations with natural initial
conditions [8]. These changes lead to different phase diagrams,
and for all cases studied here we obtain results that are similar
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to the phase diagram of SASAW’s discussed earlier. Thus, our
calculations show for the present model that the method used
by us to obtain the former results may lead to results that differ
from the correct ones. The model will be defined in Sec. II,
and its solution in terms of recursion relations, as well as the
calculation of the bulk free energy per site, are given. The
thermodynamic behavior is discussed in Sec. III.

II. DEFINITION OF THE MODEL AND SOLUTION
IN TERMS OF RECURSION RELATIONS

Since the definition of the model and the method of its
solution on the Bethe lattice are similar to the case discussed
in [6], we will not include many details here for brevity. The
model is defined on a Cayley tree with coordination number ¢;
the end point of the chains are placed on the surface of this tree.
Each site of the tree may be visited at most two times, that is,
up to K = 2 monomers may occupy each site. Figure 1 in [6]
shows a contribution that has some immediate returns and thus
does not contribute to the partition function of the RF model.
The statistical weight of a site is equal to 1 if the site is empty
and w;k/ if i monomers are placed on the site and j immediate
returns (hairpin configurations) are present at the site. When
« = 1, this model reduces to the RA model, and for « = 0, no
hairpin configurations are present and therefore the RF model
is recovered. The statistical weight of a configuration is the
product of the contributions of all sites of the lattice. As was
done in [6], we assume the monomers located at the same
site to be distinguishable. In later studies of related models
on hierarchical lattices [3,9], this convention was changed to
allow a direct comparison with the simulations.

To solve the model, as usual we consider rooted subtrees
and define their partial partition functions (PPF’s) g; for
fixed configurations of the root edge and site, indicated by
k. The operation of connecting ¢ — 1 subtrees to a new root
site and edge, obtaining a subtree with one more generation,
leads to recursion relations for the PPF’s; this operation is
illustrated in Fig. 2 of [6]. For the present model, we need
to consider six different root configurations (k = 0,1, ...,5),
which are the same as those defined for the RA model in [6].
The recursion relations for the PPF’s associated with these
root configurations are similar to the ones of the RA model
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FIG. 1. (Color online) Phase diagram for the model. Lines at
higher values of w, correspond to the RF model x = 0 (black), the
other lines to the RA model k = 1 (blue online), and the dot-dashed
(red) line is the tricritical line as « is varied. Solid lines are continuous
transitions, dashed lines are lines of equal free energies.

PHYSICAL REVIEW E 83, 012101 (2011)

studied before, but we need to keep track of the number of
hairpins in the root site for each contribution. Let us use a
particular contribution as an example, namely the third term in
the recursion relation for g (the prime denotes the additional
generation), corresponding to expressions (2c) for the RF
model and (7c) for the RA model in [6]. For the case we
are considering here, this contribution is

, q—l q-3
gia=2(", | x2Q+0mel g1 e M

since there are two ways to connect the incoming bonds with
no hairpin and one with one hairpin at the root site. We notice
that expressions (2c) and (7c) in [6] are recovered for k = 0
and 1, respectively. We then proceed to define the ratios of the
PPF’s exactly as was done for the RA model in [6], dividing
the other PPF’s by go. Since g3 and g4 appear in the recursion
relations only as the combination g3 + 2g4, we need to define
four ratios only, the same as were defined for the RA model
in [6]. The results for the recursion relations are
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Equations (2) and (3) for « =1 reduce to the recursion
relations for the RA model described by Eqgs. (11) and (12)
in [6]. For « =0, Eq. (2d) leads to R4y = 0. The value R3
also has hairpin configurations in the contributions to the
nominator, so it also vanishes. With these constraints, the
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recursion relations Egs. (2a) and (2b) and (3) for x = 0 are
identical to Egs. (4) and (5) for the RF model given in Ref. [6].

The partition function of the model on the Cayley tree may
be obtained if we consider the operation of attaching g subtrees
to the central site of the lattice. The result is

q
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In the thermodynamic limit, the solution of a model on the
Cayley tree usually shows a behavior that is quite different
from the one expected on regular lattices, since the number
of surface sites represents a nonzero fraction of the total
number of sites. Therefore, we study mean values calculated
at the central site of the tree. The behavior of a model in the
thermodynamic limit and in the central region of the Cayley
tree has been named the Bethe lattice solution of this model [5].
Using the partition functions shown earlier, we then proceed
to calculate the densities at the central site of the tree. The
density of monomers is given by
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where

P=uw [(‘2’) R+ q2j| , (7a)
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+ 6(3) R2R; + 4(3) RyRs + 4(‘2’>K,R1R4]. (7b)

Itis supposed in the preceding expressions for the density of
monomers at the central site that the ratios R; have fixed-point
values, so that the thermodynamic limit results are obtained.
Since P and Q are non-negative, the density of monomers
will be in the interval [0,2], as expected. The probability that
the central site is occupied by a single monomer will be p; =
P/(1+ P + Q), and the probability to find two monomers
at the central site is po = Q/(1 + P + Q). Finally, we may
obtain the bulk grand-canonical free energy per site ¢, on the
tree using an argument proposed by Gujrati [7], and since it is
discussed in [3] we refer the reader to that paper for the details.
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The result is

b = By = (g —2)Iny], ®)

where y = 1 4+ P + Q and D are calculated at the fixed point
of the recursion relations.
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III. THERMODYNAMIC PROPERTIES OF THE MODEL

As discussed earlier, the thermodynamic properties of the
model on the Bethe lattice are determined by the fixed-point
values of the ratios, defined by the recursion relations, for
fixed values of the parameters w;, w,, and k. As explained in
Ref. [6], the nonpolymerized (NP) phase has the fixed-point

values R(NP) R(Np) R(NP) 0 and
RND _ _ Ker 9
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These values for the ratios actually correspond to p = 0, as
may be seen using Eq. (6) for the density of monomers. The
stability limit of the NP phase is obtained requiring that the
largest eigenvalue of the Jacobian of the recursion relations,
calculated at the fixed-point values of the ratios shown earlier,
has an absolute value equal to 1. This leads to the following
condition:

[1—2(g — Dwnl[1 +4(g — D3]
1-2[(g —1)—«(g — 2)]w

Another fixed point of the recursion relations reported in
Ref. [6] for the RF model is the double-occupied (DO) fixed
point REDO) = 0Oand R;DO) # 0. This fixed point exists only for
the RF model, and it disappears for « > 0. However (see later
in the text), it does not correspond to a thermodynamic phase.

A third fixed point of the recursion relations Egs. (2), which
we may associate with the regular polymerized phase (P),
corresponds to all ratios at nonzero values. The stability limits
of the NP and the P phase are the same for small values of w,,
henceforth the transition between these phases is continuous
in this region. For larger values of w;, this transition becomes
discontinuous. A tricritical line is found when a)(T ) is given by
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Eq. (10) and w(zTC)(K) is a root of the polynomial of degree 7,
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The roots of this polynomial are evaluated numerically,
except for the RF model x = 0, where the tricritical point
is located at the values of w; and w, given by Eq. (24)
in [6]. We may search for a DO fixed point, which should
have the values Ry = R4 =0 and R,,R3; # 0. However,
for this fixed point, we reach the unphysical conclusion
Ry = —k w1 /[2(q — D)wy] < 0, indicating that the DO fixed
point does not appear for k # 0.

The phase diagram for the model is shown in Fig. 1. The
first-order transition lines were calculated as the line where the
two coexisting phases have the same free energy; for a detailed
discussion, see Ref. [3]. In Ref. [6], we adopted an alternative
procedure [8], iterating the recursion relations starting with
the physical values for the partial partition functions for a
subtree of generation “zero.” In particular, for the RA model
we learn that the natural initial conditions procedure may lead
us to wrongly conclude that the DO phase, which is never the
phase of minimum free energy, is stable in part of the phase
diagram. The conclusion that the transition was discontinuous
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for all nonzero values of w, was reached since we verified
that the stability limit of the NP phase was coincident with
the coexistence curve only at w, = 0, found using the natural
initial conditions method. This is not true if the Gujrati ansatz
is used, as is shown here, where for sufficiently low values of
ws, the polymerized phase that coexists with the NP phase has
vanishing density, characterizing a critical line. As established
in Ref. [3], both methods are not equivalent, and the correct
first-order phase transition line must be obtained from the free
energy of the model.
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