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We study chaotic orbits of conservative low-dimensional maps and present numerical results
showing that the probability density functions (pdfs) of the sum of N iterates in the large N
limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are
thin and the (positive) maximal Lyapunov exponent is small, long-lasting quasi-stationary states
(QSS) are found, whose pdfs appear to converge to q-Gaussians associated with nonextensive
statistical mechanics. More generally, however, as N increases, the pdfs describe a sequence
of QSS that pass from a q-Gaussian to an exponential shape and ultimately tend to a true
Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes
more uniformly ergodic.
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1. Introduction

As is well-known, invariant closed curves of area-
preserving maps present complete barriers to orbits
evolving inside resonance islands in the two-
dimensional phase space. Outside these regions,

there exist families of smaller islands and invariant
Cantor sets (often called cantori), to which chaotic
orbits are observed to “stick” for very long times.
Thus, at the boundaries of these islands, an “edge
of chaos” develops with vanishing (or very small)
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Lyapunov exponents, where trajectories yield
quasi-stationary states (QSS) that are often very
long-lived. Such phenomena have been thoroughly
studied to date in terms of a number of dynamical
mechanisms responsible for chaotic transport in
area-preserving maps and low-dimensional Hamil-
tonian systems [Mackay et al., 1984; Wiggins, 1992].

In this paper, we study numerically the proba-
bility density functions (pdfs) of sums of iterates
of QSS characterized by nonvanishing Lyapunov
exponents, aiming to understand the connection
between their intricate phase space dynamics and
their time-evolving statistics. Our approach, there-
fore, is in the context of the Central Limit Theorem
(CLT), although in many cases our pdfs do not con-
verge to a single shape but pass through several
ones. One case where convergence is known to
exist is when the dynamics is bounded and uni-
formly hyperbolic (as e.g. in the case of Sinai
billiards) and the associated pdf is a Gaussian.
However, even in nonhyperbolic conservative mod-
els, there are regions where trajectories are essen-
tially ergodic and mixing, so that Gaussians are
ultimately observed, as the number of iterations
grows. In such cases, the maximal Lyapunov expo-
nent is positive and bounded away from zero. What
happens, however, when the motion is “weakly”
chaotic and explores domains with intricate invari-
ant sets, where the maximal (positive) Lyapunov
exponent is very small? It is the purpose of this work
to explore the statistics of such regions and deter-
mine the type of QSS generated by their dynamics.

Recently, there has been a number of interest-
ing studies of such pdfs of one-dimensional maps
[Tirnakli et al., 2007, 2009; Ruiz & Tsallis, 2009;
Afsar & Tirnakli, 2010] and higher-dimensional
conservative maps in precisely “edge of chaos”
domains, where the maximal Lyapunov exponent
either vanishes or is very close to zero. These
studies provide evidence for the existence of q-
Gaussian distributions, in the context of the Central
Limit Theorem. This generated some controversy
[Grassberger, 2009] but, for one-dimensional maps,
the argument has been resolved. In fact, Tirnakli
et al. [2009], Tsallis and Tirnakli [2010] undoubt-
edly showed that, when approaching the critical
point while taking into account a proper scal-
ing relation that involves the vicinity of the crit-
ical point and the Feigenbaum constant δ, the
pdfs of sums of iterates of the logistic map are
approximated by a q-Gaussian far better than the

Lévy distribution suggested in [Grassberger, 2009].
This suggests the need for a more thorough inves-
tigation of these systems within a nonextensive
statistical mechanics framework, based on the non-
additive entropy Sq [Tsallis, 1988, 2010]. Accord-
ing to this approach, the pdfs optimizing (under
appropriate constraints) Sq are q-Gaussian distri-
butions that represent metastable states [Miritello
et al., 2009; Rodriguez et al., 2008; Baldovin et al.,
2004a, 2004b], or QSS of the dynamics.

The validity of a Central Limit Theorem (CLT)
has been verified for deterministic systems [Billings-
ley, 1968; Beck, 1990; Mackey & Tyran-Kaminska,
2006] and, more recently, a q-generalization of the
CLT was published demonstrating that, for cer-
tain classes of strongly correlated random variables,
their rescaled sums approach not a Gaussian, but a
q-Gaussian distribution [Umarov et al., 2008, 2010;
Hahn et al., 2010]. Systems statistically described
by power-law probability distributions (a special
case of which are q-Gaussians) are in fact so ubiqui-
tous [Schroeder, 1992], that some authors claimed
that the normalization technique of a type of data
that characterizes the measurement device is one of
the reasons of their occurrence [Vignat & Plastino,
2009]: This is the case of normalized and centered
sums of data that exhibit elliptical symmetry, but
not necessarily the case of the iterates of determin-
istic maps, as can be inferred by the verification of
a classical CLT for the paradigmatic example of the
fully chaotic logistic map.

In this paper, we follow this reasoning and com-
pute first, in weakly chaotic domains of conservative
maps, the pdf of the rescaled sum of N iterates,
in the large N limit, and for many different initial
conditions. We then connect our results with spe-
cific properties of the phase space dynamics of the
maps and distinguish cases where the pdfs represent
long-lived QSS described by q-Gaussians. We gen-
erally find that, as N grows, these pdfs pass from
a q-Gaussian to an exponential (having a triangu-
lar shape in our semi-log plots), ultimately tending
to become true Gaussians, as “stickiness” to can-
tori apparently subsides in favor of more uniformly
chaotic (or ergodic) motion.

In Sec. 2, we begin our study by a detailed
study of QSS, their pdfs and corresponding dynam-
ics in two-dimensional Ikeda and MacMillan maps.
In Sec. 3, we briefly discuss analogous phenomena
in four-dimensional conservative maps and end with
our conclusions in Sec. 4.
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2. Two-Dimensional
Area-Preserving Maps

Let us consider two-dimensional maps of the form:{
xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
(1)

and treat their chaotic orbits as generators of
random variables. Even though this is not true
for the iterates of a single orbit, we may still
regard as random sequences those produced by
many independently chosen initial conditions. In
[Mackey & Tyran-Kaminska, 2006], the well-known
CLT assumption about the independence of N iden-
tically distributed random variables was replaced by
a weaker property that essentially means asymp-
totic statistical independence. Thus, we may pro-
ceed to compute the generalized rescaled sums of
their iterates xi in the context of the classical CLT
[Billingsley, 1968; Beck, 1990; Mackey & Tyran-
Kaminska, 2006]:

ZN = N−γ
N∑

i=1

(xi − 〈x〉) (2)

where 〈· · ·〉 implies averaging over a large number
of iterations N and a large number of randomly
chosen initial conditions Nic. Due to the possible
nonergodic and nonmixing behavior, averaging over
initial conditions is an important ingredient of our
approach.

For fully chaotic systems (γ = 1/2), the distri-
bution of (2) in the limit (N → ∞) is expected to
be a Gaussian [Mackey & Tyran-Kaminska, 2006].
Alternatively, however, we may define the non-
rescaled variable zN

zN =
N∑

i=1

[xi − 〈x〉] (3)

and analyze the probability density function (pdf)
of zN normalized by its variance (so as to absorb
the rescaling factor Nγ) as follows.

First, we construct the sums S
(j)
N obtained from

the addition of N x-iterates xi (i = 0, . . . , N) of the
map (1)

S
(j)
N =

N∑
i=0

x
(j)
i (4)

where (j) represents the dependence of S
(j)
N on the

randomly chosen initial conditions x
(j)
0 , with j =

1, 2, . . . , Nic. Next, we focus on the centered and
rescaled sums

s
(j)
N ≡ (S(j)

N − 〈S(j)
N 〉)

σN

=


 N∑

i=0

x
(j)
i − 1

Nic

Nic∑
j=1

N∑
i=0

x
(j)
i




σN
(5)

where σN is the standard deviation of the S
(j)
N

σ2
N =

1
Nic

Nic∑
j=1

(S(j)
N − 〈S(j)

N 〉)2

= 〈S(j)2

N 〉 − 〈S(j)
N 〉2. (6)

Next, we estimate the pdf of s
(j)
N , plotting the

histograms of P (s(j)
N ) for sufficiently small incre-

ments ∆s
(j)
N (= 0.05 is used in all cases), so as to

smoothen out fine details and check if they are well
fitted by a q-Gaussian:

P (s(j)
N ) = P (0)(1 + β(q − 1)(s(j)

N )2)
1

1−q (7)

where q is the index of the nonadditive entropy Sq

and β is a “inverse temperature” parameter. Note
that as q → 1 this distribution tends to a Gaus-
sian, i.e. limq→1 P (s(j)

N ) = P (0)e−β(s
(j)
N )2 . From now

on, we write z/σ ≡ s
(j)
N . We also remark that, due

to the projection of the higher-dimensional motion
onto a single axis, the support of our distributions
appears to consist of a dense set of values in z/σ,
although we cannot analytically establish its con-
tinuum nature.

2.1. The Ikeda map

Let us first examine by this approach the well-
known Ikeda map [Alligood et al., 1996]:{

xn+1 = R + u(xn cos τ − yn sin τ)

yn+1 = u(xn sin τ + yn cos τ)
(8)

where τ = C1−C2/(1+x2
n+y2

n), R, u, C1, C2 are free
parameters, and the Jacobian is J(R,u, τ) = u2,
so that (8) is dissipative for u < 1 and area-
preserving for u = 1. This map was proposed as
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(a) (b)

Fig. 1. Phase space plots of the Ikeda map for C1 = 0.4, C2 = 6, R = 1, and representative values of u. When u = 0.9, areas
of the phase plane contract and a strange attractor appears. When u = 1, the map is area-preserving and a chaotic annular
region is observed surrounding a domain about the origin where the motion is predominantly quasiperiodic. We use randomly
chosen initial conditions from a square [0, 10−4] × [0, 10−4] about the origin (0, 0).

a model of the type of cell that might be used in an
optical computer, under some simplifying assump-
tions [Alligood et al., 1996]. Fixing the values of
C1 = 0.4, C2 = 6 and R = 1 we observe that when
u = 0.7, 0.8, 0.9, areas of the phase plane contract
and strange attractors appear. In Fig. 1, we plot two
different structures of the phase space dynamics for
representative values of the parameter, u.

The values of the positive (largest) Lyapunov
exponent Lmax in these cases are listed in Table 1.

Figure 2 shows the corresponding pdf of the
normalized variables (5) obtained for the two values

Table 1. Maximal Lyapunov exponents of the Ikeda map,
with C1 = 0.4, C2 = 6, R = 1 and u = 0.7, 0.8, 0.9, 1.0.

u 0.7 0.8 0.9 1.0

Lmax 0.334 0.344 0.5076 0.118

of the parameter, u = 0.9, 1, in the large N limit.
In fact, we observe that for u = 0.7, 0.8, 0.9, the
system possesses strange chaotic attractors whose
pdfs are well fitted by Gaussians. These numerical
results are not in disagreement with those of

(a) (b)

Fig. 2. Pdfs of the normalized sums of iterates of the Ikeda map, for C1 = 0.4, C2 = 6, R = 1. N represents the number of
(summed) iterates. (a) Nic is the number of randomly chosen initial conditions from the basin of attraction (dissipative case);

black line corresponds to Gaussian function e−β(z/σ)2 , β = 0.5. (b) Nic is the number of randomly chosen initial conditions
from a square [0, 1] × [0, 1] located inside the chaotic annular region of the area-preserving map; black line corresponds to
(q = 5.3)-Gaussian functional.
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Table 2. Maximal Lyapunov exponents of the MacMillan
map, with µ = 0.6 and ε = 0.2, 0.5, 0.9, 1.1, 1.2, 1.8.

ε 0.2 0.5 0.9 1.1 1.2 1.8

Lmax 0.0867 0.082 0.0875 0.03446 0.0513 0.05876

[Tirnakli, 2002], on the two-dimensional Hénon
map, where it was shown that its strange attrac-
tor exhibits nonextensive properties (i.e. q �= 1).
In a fully chaotic domain, nonextensive properties
need not be present and consequently pdfs of the
sum of iterates should be Gaussian distributions.

(a)

(b1) (b2)

Fig. 5. (a) Pdfs of the renormalized sums of N iterates of the (ε = 0.9, µ = 1.6)-MacMillan map, for N ≤ 1016, and Nic

randomly chosen initial condition in a square (0, 10−6) × (0, 10−6); (b1)–(b2) corresponding phase space plots for N = 212

and N = 216.

Now, for u = 0.7, 0.8, 0.9, the Ikeda map (8) gener-
ates strange attractors whose maximum Lyapunov
exponent is positive and bounded away from zero
(see Table 1). This means that the motion is
not at the “edge of chaos” but rather in a
chaotic sea and consequently the concepts involved
in Boltzmann–Gibbs statistics are expected to
hold. On the contrary, in the area-preserving case
u = 1, the pdf of the sums of (5) converges to
a non-Gaussian function (see the lower panel of
Fig. 2).

Now, in an “edge of chaos” regime, one might
expect to obtain a q-Gaussian limit distribution
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Fig. 6. (ε = 0.9, µ = 1.6)-MacMillan map partial phase space evolution. The iterates are calculated starting from a randomly
chosen initial condition in a square (0, 10−6) × (0, 10−6). N is the number of plotted iterates. Note the long-standing quasi-
stationary states that sequentially superimpose on phase space plots.
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(q < 3), which generalizes Gaussians and extrem-
izes the nonadditive entropy Sq [Beck, 2001] under
appropriate constraints. Of course, the chaotic
annulus shown in Fig. 1 for u = 1 does not rep-
resent an “edge of chaos” regime, as the maximal
Lyapunov exponent does not vanish (see Table 1)
and the orbit appears to explore this annulus more
or less uniformly. Hence a q-Gaussian distribution
in that case would not be expected. But appear-
ances can be deceiving. The result we obtain is
remarkable, as the central part of our pdf is well
fitted by a q-Gaussian functional with q = 5.3

up to very large N [see Fig. 2(b)]. Although this
is not a normalizable q-Gaussian function (since
q > 3 [Tsallis, 2010]), it is nevertheless striking
enough to suggest that: (a) the motion within the
annular region is not as uniformly ergodic as one
might have expected and (b) Lmax is not large
enough to completely preclude “edge of chaos”
dynamics.

All this motivated us to investigate more
carefully similar phenomena in another class of
area-preserving maps described in the section that
follows.

(a)

(b) (c)

Fig. 7. (a) (ε = 0.9, µ = 1.6)-MacMillan phase space plots for i = 1, . . . , N (N ≥ 223) iterates, starting from a randomly
chosen initial condition in a square (0, 10−6) × (0, 10−6); (b)–(c) corresponding pdfs. Nic is the number of randomly chosen
initial condition in a square (0, 10−6) × (0, 10−6).
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2.2. The MacMillan map

Consider the so-called perturbed MacMillan map,
which may be interpreted as describing the effect
of a simple linear focusing system supplemented by
a periodic sequence of thin nonlinear lenses [Papa-
georgiou et al., 1989]:


xn+1 = yn

yn+1 = −xn + 2µ
yn

1 + y2
n

+ ε(yn + βxn)
(9)

where ε, β, µ are physically important parameters.
The Jacobian is J(ε, β) = 1−εβ, so that (9) is area-
preserving for εβ = 0, and dissipative for εβ > 0.
Here, we only consider the area-preserving case β =
0, so that the only relevant parameters are (ε, µ).

The unperturbed map yields a lemniscate
invariant curve with a self-intersection at the origin
that is a fixed point of saddle type. For ε �= 0, sepa-
ratrices split and the map presents a thin chaotic
layer around two islands. Increasing ε, chaotic
regions spread in the xn, yn plane.

Within these chaotic regions, we have analyzed
the histogram of the normalized sums of (5) for a
wide range of parameters (ε, µ) and have identi-
fied some generic pdfs in the form of q-Gaussians,
and exponentials ∼ e−k|z|, which have a triangular
shape on semi-logarithmic scale and we call for con-
venience triangular distributions. Monitoring their
“time evolution” under increasingly large numbers
of iterations N , we typically observe the occurrence
of different QSS described by these distributions.
We have also computed their Lmax and correspond-
ing phase space plots and summarized our main
results in Figs. 3 and 4. The maximal Lyapunov
exponents for the cases shown in Figs. 3 and 4 are
listed in Table 2.

Below, we discuss the time-evolving statistics
of two examples of the MacMillan map, which rep-
resent respectively: (1) One set of cases with a “fig-
ure eight” chaotic domain whose distributions pass
through a succession of pdfs before converging to an
ordinary Gaussian (Fig. 3), (2) a set with more com-
plicated chaotic domains extending around many
islands, where q-Gaussian pdfs dominate the statis-
tics for very long times and convergence to a
Gaussian is not observed (Fig. 4).

2.2.1. (ε = 0.9, µ = 1.6)-MacMillan map

The (0.9, 1.6)-MacMillan map is a typical example
producing time-evolving pdfs. As shown in Fig. 3,

the corresponding phase space plots yield a seem-
ingly simple chaotic region in the form of a “figure
eight” around two islands, yet the correspond-
ing pdfs do not converge to a single distribution,
but pass from a q-Gaussian-looking function to a
triangular distribution.

Analyzing carefully the time evolution of these
pdfs, we observed that there exist at least three
long-lived QSS, whose iterates mix in the two-
dimensional phase space to generate superimposed
pdfs of the corresponding sums (5). Consequently,
for i = 1, . . . , N = 216, a QSS is produced whose
pdf is close to a pure (q = 1.6)-Gaussian whose β
parameter increases as N increases and the den-
sity of phase space plot grows (see Fig. 5). This
kind of distribution, in a fully chaotic region, is
affected not only by a Lyapunov exponent being
close to zero, but also by a “stickiness” effect around
islands of regular motion. In fact, the boundaries of
these islands is where the “edge of chaos” regime is
expected to occur in conservative maps [Zaslavskii
et al., 1991].

Figures 5 and 6 show some phase space plots
for different numbers of iterates N . Note that for

Fig. 8. Plots of the q-logarithm (inverse function of the q-
exponential (7)) versus (z/σ)2 applied to our data of the
normalized pdf of the (ε = 0.9, µ = 1.6)-MacMillan map. N
is the number of iterates, starting from Nic randomly cho-
sen initial condition in a square (0, 10−6) × (0, 10−6). For
q-Gaussians this graph is a straight line, whose slope is −β
for the right value of q. Note that the pdfs approach a true
Gaussian (with β = 1) since q tends to 1 as N increases.

1250208-10

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
E

N
T

R
O

 B
R

A
SI

L
E

IR
O

 D
E

 P
E

SQ
U

IS
A

S 
FI

SI
C

A
S 

on
 0

6/
20

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



October 3, 2012 7:58 WSPC/S0218-1274 1250208

σ

β

σ

σ

σ

σ

β

σ

σ

β
β

σ

β

σ

σ

σ

σ

β

σ

σ

β

σ

σ

F
ig

.
9
.

D
et

a
il
ed

ev
o
lu

ti
o
n

o
f
th

e
p
d
fs

o
f
th

e
M

a
cM

il
la

n
m

a
p

fo
r

ε
=

0
.9

,
µ

=
1
.6

,
a
s

N
in

cr
ea

se
s

fr
o
m

2
1
2

to
2
2
6
,
re

sp
ec

ti
v
el

y.

1250208-11

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
E

N
T

R
O

 B
R

A
SI

L
E

IR
O

 D
E

 P
E

SQ
U

IS
A

S 
FI

SI
C

A
S 

on
 0

6/
20

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



October 3, 2012 7:58 WSPC/S0218-1274 1250208

G. Ruiz et al.

N = 1, . . . , 216, our plots depict first a “figure eight”
chaotic region that evolves essentially around two
islands (Fig. 5). However, for N > 216, a more
complex structure emerges: Iterates stick around
new islands, and a change of QSS is evident from
q-Gaussian to exponentially decaying shapes (see
Fig. 6).

Clearly, therefore, for ε = 0.9 (and other similar
cases with ε = 0.2, 1.8) more than one QSS coexist

Fig. 10. Structure of phase space plots of the MacMillan map for parameter values ε = 1.2 and µ = 1.6, starting from a
randomly chosen initial condition in a square (0, 10−6) × (0, 10−6), and for N iterates.

whose pdfs are the superposition of their corre-
sponding (q �= 1)-Gaussians. Note in Fig. 7 that
this superposition of QSS occurs for 1018 ≤ N ≤ 221

and produces a mixed distribution where the cen-
tral part is still well described by a (q = 1.6)-
Gaussian. However, as we continue to iterate the
map to N = 223, this q-Gaussian is hidden by
a superposition of intermediate states, which pass
through a triangular distribution. From here on, as
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N > 223, the central part of the pdfs is close to a
Gaussian (see Figs. 8 and 9) and a true Gaussian
is expected in the limit (N → ∞). The evolution
of this sequence of successive QSS as N increases is
shown in detail in Fig. 9.

2.2.2. (ε = 1.2, µ = 1.6)-MacMillan map

Let us now analyze the behavior of the (1.2, 1.6)-
MacMillan map, whose maximum Lyapunov expo-
nent is Lmax ≈ 0.05, smaller than that of the ε = 0.9
case (Lmax ≈ 0.08). As is clearly seen in Fig. 10, a
diffusive behavior sets in here that extends outward
in phase space, enveloping a chain of islands of an
order 8 resonance, where the orbits “stick” as the
number of iterations grows to N = 219.

Again, chaotic motion starts by encircling the
same “figure eight” as in the ε = 0.9 case and
the central part of the corresponding pdf attains a
(q = 1.6)-Gaussian form for N ≤ 216 (see the upper
panel of Fig. 11). No transition to a different type of
QSS is detected, until the orbits diffuse to a wider
chaotic region in phase space, for 216 ≤ N ≤ 218.
Let us observe in Fig. 11, the corresponding pdfs of
the rescaled sums of iterates, where even the tail of
the pdf appears to converge to a (q = 1.6)-Gaussian
(lower panel of Fig. 11). For larger N , further dif-
fusion ceases as orbits “stick” to the outer islands,
where the motion stays from there on. This only

affects the tail of the distribution, which now fur-
ther converges to a true (q = 1.6)-Gaussian repre-
senting this QSS up to N = 220.

The remaining cases of Figs. 3 and 4 can be
viewed from a similar perspective. Indeed, the above
analysis of the ε = 1.2 example can serve as a guide
for the (ε = 0.5, µ = 1.6)- and (ε = 1.1, µ = 1.6)-
MacMillan maps, as well. In every case, the small-
ness of Lmax but also the details of the diffusion
process seem to play a key role in explaining the
convergence of pdfs to a q-Gaussian. What differs
is the particular phase space picture that emerges
and the number of iterations required to achieve the
corresponding QSS.

We conclude, therefore, that the dynamics of
the MacMillan map for µ = 1.6 and ε = 0.2, 0.9, 1.8,
where chaotic orbits evolve around the two islands
of a single “figure eight” chaotic region possess
pdfs which pass rather quickly from a q-Gaussian
shape to exponential to Gaussian. By contrast, the
cases with ε = 0.5, 1.1, 1.2 possess a chaotic domain
that is considerably more convoluted around many
more large islands and hence apparently richer in
“stickiness” phenomena. This higher complexity of
the dynamics may very well be the reason why
these latter examples have QSS with q-Gaussian-
like distributions that persist for very long. Even
though we are not at an “edge of chaos” regime
where Lmax = 0, we suggest that it is the detailed

(a) (b)

Fig. 11. Pdfs of the rescaled sums of iterates of the MacMillan map for ε = 1.2 and µ = 1.6 are seen to converge to a
(q = 1.6)-Gaussian. This is shown in (a) for the central part of the pdf (for N < 218) and in (b) for the tail part (N > 218).
Nic is the number of initial conditions that have been randomly chosen from a square (0, 10−6) × (0, 10−6).
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structure of chaotic regions, with their network of
islands and invariant sets of cantori, that is respon-
sible for obtaining QSS with long-lived q-Gaussian
distributions in these systems.

3. Four-Dimensional Conservative
Maps

We now briefly discuss some preliminary results on
the occurrence of QSS and nonextensive statistics
in a four-dimensional symplectic mapping model of
accelerator dynamics [Bountis & Kollmann, 1994].

This model describes the effects of sextupole non-
linearities on a hadron beam passing through a cell
composed of a dipole and two quadrupole magnets
that focuses the particles’ motion in the horizon-
tal (x)- and vertical (y)-directions [Bountis & Tom-
paidis, 1991]. After some appropriate scaling, the
equations of the mapping are written as follows:{

xn+1 = 2cxxn − xn−1 − ρx2
n + y2

n

yn+1 = 2cyyn − yn−1 + 2xnyn

(10)

where ρ = βxsx/βysy, cx,y ≡ cos (2πqx,y) and
sx,y ≡ sin (2πqx,y), qx,y is the so-called betatron

Fig. 12. The xn, xn+1 (first column) and yn, yn+1 (second column) projections of a chaotic orbit of (10), with qx = 0.21,
qy = 0.24, x0 = −0.0049 and initial conditions x1 = −0.5329, y0 = 0.0001 and y1 = 0 (case II of Table 3). N represents the
number of plotted iterates.
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Table 3. Estimation of (ymax)-coordinate after the diffusion
process occurred along N = 106 iterations, for different
y-motion initial conditions y0. In all cases, qx = 0.21,
qy = 0.24, x0 = −0.0049, x1 = −0.5329, and y1 = 0.

Case y0 ymax

I 0.00001 0.00002
II 0.0001 0.0003
III 0.001 0.004
IV 0.01 0.015

frequencies and βx,y are the betatron functions of
the accelerator. As in [Bountis & Kollmann, 1994],
we assume that βx,y are constant and equal to their
mean values, i.e. proportional to q−1

x,y (qx = 0.21,
qy = 0.24) and place our initial conditions at a par-
ticular point in four-dimensional space associated
with weak diffusion phenomena in the y-direction.

In particular, our (x0, x1) = (−0.0049,−0.5329)
coordinates are located within a thin chaotic layer
surrounding the islands around a 5-order resonance
in the xn, xn−1 plane of a purely horizontal beam,
with yn = yn−1 = 0. We then place our initial y1, y0

coordinates very close to zero and observe the evo-
lution of the yns indicating the growth of the beam
in the vertical direction as the number of iterations
N grows.

Let us observe this evolution in Fig. 12 sep-
arately in the xn+1, xn (first column) and yn+1, yn

(second column) two-dimensional projections of our
chaotic orbits. Clearly the behavior of these projec-
tions is very different: In the x-plane the motion
keeps evolving in a thin chaotic layer around five
islands, “feeding” as it were the (yn, yn+1) oscilla-
tions, which show an evidently slow diffusive growth
of their amplitude.

Fig. 13. Pdfs of the normalized sums of iterates of the y-chaotic orbit of the four-dimensional map (10), for different y0. In
all cases, qx = 0.21, qy = 0.24, x0 = −0.0049, x1 = −0.5329 and y1 = 0. The number of (summed) iterates is N = 219, and
the number of randomly chosen initial conditions within an interval [0.9y0, y0] is Nic = 105.
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In Table 3 we list, for different initial values
of y0 (y1 = 0), the maximum amplitude of the y-
oscillations, ymax, while Fig. 13 shows the corre-
sponding pdfs of the normalized sums of iterates
of the yn-variable. Note that, just as in the case of
two-dimensional maps, these distributions are ini-
tially of the q-Gaussian type, evolving slowly into
triangular-like distributions, which finally approach
Gaussians. In Fig. 13 we follow this evolution by
performing four computations of N = 219 iterates
using a y0 which increases every time by a factor
of 10.

The similarity with the two-dimensional case
makes us suspect that the orbits of our four-
dimensional map also follow a sequence of weakly
chaotic QSS, whose time-evolving features are evi-
dent in plots of the y-motion in Fig. 12 (second
column), for increasing N . Note, for example, that
one such QSS with a maximum amplitude of about
0.00001 is observed up to N > N = 219, diffusing
slowly in the y-direction. The pdf of this QSS is
shown in the upper left panel of Fig. 13 and has
the shape of a q-Gaussian up to this value of N .
However, for higher values of y0, due to the sud-
den increase of the yn amplitudes at N = 220, the
“legs” of the pdf are lifted upward and the distri-
bution assumes a more triangular shape.

This rise of the pdf “legs” to a triangular shape
is shown in more detail in Fig. 14, for initial con-
ditions y0 = 10−5, 10−4, as the number of itera-
tions grows to N = 220. Clearly, the closer we
start to y0 = y1 = 0 the more our pdf resem-
bles a q-Gaussian, while as we move further out in
the y0-direction our pdfs tend more quickly towards
a Gaussian-like shape. This sequence of distribu-
tions is reminiscent of what we found for the two-
dimensional MacMillan map at (ε = 0.9, µ = 1.6).
Recall that, in that case also, a steady slow diffusion
was observed radially outward, similar to what was
observed for the four-dimensional map (10), which
does not appear to be limited by a closed invariant
curve in the xn, yn plane.

One might wonder if it is possible to obtain
for the four-dimensional map (10) also, long-lived
q-Gaussian pdfs of the type we found in the two-
dimensional MacMillan map. The likelihood of
this occurrence is small, however, as all orbits we
computed for the accelerator map (10) eventually
escaped to infinity! This implies that stickiness phe-
nomena on island boundaries and sets of cantori
are more dominant and tend to slow down diffusion
more in two-dimensional maps like the MacMillan
map than the four-dimensional space of the acceler-
ator map. It would, therefore, be very interesting to

(a) (b)

Fig. 14. Pdfs of the normalized sums of iterates of the y-chaotic orbit of the four-dimensional map, for different initial
conditions y0 and numbers of (summed) iterates N . Nic is the number of randomly chosen initial conditions from an interval
[0.9y0, y0]. In all cases, qx = 0.21, qy = 0.24, x0 = −0.0049, x1 = −0.5329, and y1 = 0.
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study, in a future paper, higher-dimensional maps
whose chaotic orbits never escape to infinity (e.g.
coupled standard maps) and compare their statis-
tics with what we have discovered for the examples
treated in the present paper.

4. Conclusions

Our work serves to connect different types of statis-
tical distributions of chaotic orbits (in the context of
the Central Limit Theorem) with different aspects
of dynamics in the phase space of conservative sys-
tems. What we have found, in several examples
of the MacMillan and Ikeda two-dimensional area
preserving maps as well as one case of a four-
dimensional symplectic accelerator map, is that
q-Gaussians approximate well quasi-stationary
states (QSS), which are surprisingly long-lived,
especially when the orbits evolve in complicated
chaotic domains surrounding many islands. This
may be attributed to the fact that the maximal
Lyapunov exponent in these regions is small and
the dynamics occurs close to the so-called “edge of
chaos” where stickiness effects are important near
the boundaries of these islands.

On the other hand, in simpler-looking chaotic
domains (surrounding e.g. only two major islands)
the observed QSS passes, as time evolves, from
a q-Gaussian to an exponential pdf and may in
fact become Gaussian, as the number of itera-
tions becomes arbitrarily large. Even in these cases,
however, the successive QSS are particularly long-
lasting, so that the Gaussians associated with uni-
formly ergodic motion are practically unobservable.

Interestingly enough, similar results have been
obtained in N -dimensional Hamiltonian systems
[Antonopoulos et al., 2010; Leo et al., 2010] describ-
ing FPU particle chains near nonlinear normal
modes which have just turned unstable as the total
energy is increased. Since these models evolve in a
multidimensional phase space, the q-Gaussian pdfs
last for times typically of the order 106, then pass
quickly through the triangular stage and converge
to Gaussians, as chaotic orbits move away from thin
layers to wider “seas”, where Lyapunov exponents
are much larger. However, as long as the motion
evolves near an “edge of chaos” region the distri-
butions are q-shaped for long times, exactly as we
found in the present paper.

These conclusions are closely related to results
obtained by other authors [Baldovin et al., 2004a,

2004b], who also study QSS occurring in low-
dimensional Hamiltonian systems like 2-D and 4-D
maps, but not from the viewpoint of sum distri-
butions. They define a variance of momentum dis-
tributions representing a temperature-like quantity
T (t) and show numerically that T (t) follows a “sig-
moid” curve starting from small values and con-
verging to a final value, which they identify as the
Boltzmann–Gibbs (BG) state. Although their ini-
tial conditions are spread over a wide domain and
do not start from a precise location in phase space
as in our studies, they also discover many examples
of QSS which remain at the initial temperature for
very long times, before finally converging to the BG
state.
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