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Abstract

The presence of sequences of top and bottom (TB) events in financial series

is investigated for the purpose of characterizing such switching points. They

clearly mark a change in the trend of rising or falling prices of assets to the

opposite tendency, are of crucial importance for the players’ decision and

also for the market stability. Previous attempts to characterize switching

points have been based on the behavior of the volatility and on the definition

of microtrends. The approach used herein is based on the smoothing of

the original data with a Gaussian kernel. The events are identified by the

magnitude of the difference of the extreme prices, by the time lag between

the corresponding events (waiting time), and by the time interval between

events with a minimal magnitude (return time). Results from the analysis of

the inter day Dow Jones Industrial Average index (DJIA) from 1928 through

2011 are discussed. q-Gaussian functions with power law tails are found to
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provide a very accurate description of a class of measures obtained from the

series statistics.

1. Introduction

It is well known that the understanding of financial fluctuations is funda-

mental for appropriate investment management. While financial fluctuations

may represent a source for great gains, they may also be very harmful for

investors, if their financial portfolios are not suitably protected. In this con-

text, several works have tried to understand the dynamics of financial and

economic fluctuations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. A subject of particular

interest for this work has been presented recently [8], where it was proposed

that financial fluctuations may be studied through the so-called return inter-

vals approach, where the return interval is defined by time interval between

two consecutive volatilities above a given threshold.

In this work we call the attention to the fact that another interesting

way to study financial fluctuations is based on the top-bottom (TB) price

approach. Top and bottom prices represent switching points in financial

series that signalize changes of expectations. While a bottom price means

that the asset is being sold by a too low value, a top price means that the asset

is being sold by a too high value. In this context, two entities are significant,

namely the so-called the TB-return and the TB-interval. We define here the

TB-return as the absolute value of the difference between consecutive top

and bottom prices or bottom and top prices of price time series. We also

define the TB-interval as the time interval between the events of consecutive

top and bottom or bottom and top.
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Based on these measures, we proceeded with a statistical characteriza-

tion of the events as function of their magnitudes. Our results show that

the occurrence of TB-returns and TB-intervals follow quite distinct patterns.

Furthermore, in the search for a more comprehensive analysis, we looked

for the existence of memory effects in the series. Long-range analysis in the

time series is presented based on results for TB return-intervals (along some

already quoted ideas [8]), as well the behavior of the correlation function be-

tween TB-returns and TB-intervals. Both analyses of memory effects identify

different behaviors for the two measures, which can be correlated with the

probability distribution patterns.

The advantage of this methodology is that tops and bottoms of financial

time series are important pieces of information for several investors. In par-

ticular, several patterns of technical analysis are based on information that

is extracted from the relative positions of tops and bottoms in price time

series [11]. Furthermore, one should note that TB returns and TB inter-

vals are strongly related and provide important information. The TB return

measures the maximal amount of money that an investor can make/loose in

a given TB interval when the price of the asset rises/falls.

While it is very easy to determine tops (maximums) and bottoms (mini-

mums) in smooth continuous functions, a procedure is necessary to do that

in financial time series. Therefore, in order to determine tops and bottoms in

financial time series we follow Lo et al. [10] that provided a method rooted in

a procedure for smoothing the random time series and the numerical search

of tops and bottoms using the signal of the derivatives. As far as we could

detect in our literature review, the work by Lo et al. was indeed the first one
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in which this smoothing method was used for the analysis of financial series.

It has served as inspiration for many authors aiming to implement those rules

for practical purposes [12, 13]. The current study, however, is focused rather

on the understanding of financial fluctuations and, in this sense, differs from

previous works that were based on Ref. [10].

It is worth mentioning that our work is also very related to recent works

by Preis et al. [14, 15, 16] that has tried to characterize trend switching

processes in financial markets. Using a different approach to determine nu-

merically top and bottom prices (a transaction price is considered to be a top

(bottom) price if there is no higher (lower) price in a given sliding interval

with previously defined size), they study microtrends between these switch-

ing points in financial time series. Furthermore, they pose the issue that the

understanding of these “micro crises” may help to understand large financial

crises that are difficult to model since they are rare events. Although the

focus of our paper is different, the methodology based on Lo et al. [10] used

here can be also be applied in their context.

The rest of this work is organized as follows: in Section 2 we explain

the main steps to the methodology. The discussion of our results is divided

into two sections, where we first present the statistics of TB returns and TB

intervals (Section 3) followed by a discussion of memory effects (Section 4).

Section 5 closes the paper with our concluding remarks.

2. The determination of tops and bottoms

In order to determine the tops and bottoms, we consider a methodology

based on Lo et al. [10], which was introduced for automating technical trading
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rules. This method is based on two steps: (1) to smooth the time series; and

(2) to determine the tops and bottoms using the smoothed time series. In

order to smooth the price time series, one assumes that the price of an asset

is given by

pt = y(t) + ε(t), (1)

where y(t) is a nonlinear fixed smooth function that depends on time t and

ε(t) is the white noise sequence.

We also assume that the estimator ŷ of y is given by

ŷ(t) ≡ 1

T

T∑
s=1

ωs(t)Ps (2)

where the weights ωs are larger for those Ps in which s is close to t and are

smaller otherwise. Furthermore, the functional form of the weights defines

the size of the neighborhood where the average is evaluated, with a clear

tradeoff between large and small sizes. A very large one means that the

weighted average is very smooth. On the other hand, a very small neigh-

borhood implies that the weighted average is subject to frequent changes.

Therefore, using the Gaussian kernel, such as in Lo et al. [10], we assume

that the weights are given by

ωs,h(t) ≡ Kh(t − s)/gh(t) (3)

where

gh(t) ≡ 1

T

T∑
u=1

Kh(t − u) (4)
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and

Kh(x) =
1

h
√

2π
e−x2/2h2

(5)

is the Gaussian kernel and h is the so-called bandwidth – a smoothing pa-

rameter that controls the size of the above-mentioned neighborhood.

Therefore, using the definition of ŷ in Eq. (2) and ω in Eq. (3), one gets

the Nadaraya-Watson kernel estimator

ŷh(t) =
1

T

T∑
s=1

ωs,h(t)Ps =

T∑
s=1

Kh(t − s)Ps

T∑
u=1

Kh(t − u)

(6)

Based on this procedure, contingent to the choice of h, one can generate

a smoothed price time series. The next step is to use this smoothed time

series to find the local extremes. One can identify these local extremes by

finding the dates τ such that Sgn(ŷ′
h(τ)) = −Sgn(ŷ′

h(τ + 1)), where ŷ′
h is the

derivative of ŷhwith respect to τ and Sgn(·) is the signal function. A positive

(negative) value of (ŷ′
h(τ)) followed by a negative (positive) value of (ŷ′

h(τ))

means that we have found a local maximum (minimum) ŷM
h (ŷm

h ) . The local

maximums (minimums) are the tops (bottoms) in this work.

3. Distribution of TB returns and TB intervals

In order to obtain a meaningfully large number of TB events in actual

data sets, it is necessary to work either with very long inter-day series or with

high frequency intra-day records. Therefore, we use our approach to analyze,

in first place, the inter day Dow Jones Industrial Average index (DJIA) in
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the 1928–2010 interval. This choice is mainly based on the fact that this is

a well known data basis, which has been used as benchmark for developing

and validating many other methodologies. Intra-day records are subject to

daily modulation as the accumulation of new information affects the oper-

ations during the first hour after the market opening, while the necessity if

concluding foreseen options usually increases the number of operations just

before market closure. This requires filtering operations to get rid of such

deterministic periodic influence [8]. While we concentrate our discussion on

the results for the DJIA set, it worths mentioning that our method has also

been applied, with equal success, to the New York Stock Exchange Energy

Index (NEI) intra-day data set. Therefore, we also provide a small sample

of these results to further attest the reliability of the developed framework.

In Fig. 1, we show the DJIA evolution of whole series (a). Fig. 1b illus-

trates the time evolution of the logarithm of DJIA (ln(DJIA)). Due to the

large time interval spanned by the series and the fact that the DJIA has been

roughly increased by a factor 10, the distribution p(x) of TB event magni-

tude x becomes more accurate if we take into account the relative magnitude

of a TB event at the time it occurred, what can be obtained by working

with the ln(DJIA) rather than the DJIA series. In the inset we show and a

comparison between the raw and two smoothed data sets obtained according

to the procedure described in the previous section. As already commented,

more (less) smooth data are obtained larger (smaller) values of h.

Therefore, we consider herein two distinct distributions: (a) the distribu-

tion of TB log-return pR
h (x), where x = |ŷM

h − ŷm
h | and ŷM

h and ŷm
h are two

consecutive extreme values of the smoothed series of the ln(DJIA); (b) the
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Figure 1: Time dependence of DJIA series from 1928 through 2011. Due to the very

large time span, effects of both inflation and economic growth are evident. Comparison

between panels (a) and (b) makes it evident that the ln(DJIA) series is more suitable

for the analysis of TB returns. Panel (c) illustrates the effect of distinct values of h in

the smoothing kernel in comparison with the original data (solid line): h = 3 (h = 7)

corresponds to long (short) dashes.
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distribution of TB interval pI
h(x), where x is defined as above but ŷM

h and

ŷm
h refer to the days when the consecutive extreme values of the smoothed

series of the ln(DJIA) were observed.

Working with three distinct values h = 3, 5, and 7 we obtain the corre-

sponding total number of events Nh
e = 1512, 906, and 664. Note that such

numbers are almost equal to what is obtained if the search for extreme values

is performed on the DJIA series (respectively 1508, 902, and 664), hinting

at the reliability of the used method for extreme identification. To obtain

a more precise information on the functional dependence of p(x) on x, we

prefer to work with a histogram free method, what amounts to evaluate the

integrated distributions Ph(x > X) and P h(x > X) defined as:

Ph(x > X) =

∫ ∞

X

p(x)dx (7)

P h(x > X) =
1

x

∫ ∞

X

p(x)dx (8)

Though both of them distinguish properly exponential from power-law

behavior, Ph(x > X) (P h(x > X)) is more adequate to provide the cor-

rect values of the exponential constant (power law exponent). Intermediate

decaying behavior such as stretched exponential behavior [8] can also be

inferred from both distributions.

In Fig. 2 we show the behavior of P
R

h (x > X) for the three quoted values

of h. The obtained curves strongly suggest an asymptotic power law decay.

Since it is well known that the generalized q-exponential functions defined

by

expq(x) = [1 + (1 − q)x]
1/(1−q)
+ , (9)
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Figure 2: Integrated distribution Ph(x > X) for TB returns obtained from the DJIA series

for three distinct values of h = 3 (a), 5 (b), and 7 (c). Circles indicate results from the

data points. The solid lines correspond to the q-Gaussian function F (x) = expq(−βx2).

q = 1.8 for all values of h. β = 540, 350, and 250 for, respectively, h = 3, 5, and 7.

with [p]+ := max{p, 0}, have been successfully used to deal with interesting

issues in economics [17, 18, 19, 20, 21, 22, 23, 24], we looked for best fits to
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the data points in terms of these functions. As clearly evidenced in Fig. 2, it

turns out that the curves for the q-Gaussian expq(−βx2) accurately explains

all the points of the evaluated distribution. The value q = 1.8 (independently

obtained from the three curves) assigns a power law decay for the distribution

tail described by the exponent 2.5. The value of β, which is related to the

inverse time scale between TB events, increases monotonically as h decreases.

��

��

��

�

Figure 3: Integrated distribution P I
h (x > X) for TB intervals obtained from the DJIA

series for three distinct values of h = 3 (circles), 5 (squares), and 7 (triangles). Unlike for

the data in Fig. 2, the data cannot be well adjusted by q-Gaussians. The log-linear graph

hints that the tail follow an exponential decrease.

On the other hand, the distribution of TB intervals has a completely

distinct behavior, as shown by the curves for P I
h (x > X) in Fig. 3. They
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suggest an exponential decay for all values of h, with exception of the very

short time scales where a plateau similar to those in Fig. 2 is formed.

Fig. 4 illustrates that a similar behavior is observed for P
R

h (x > X) when

we analyze high frequency NEI intra-day data. For the current analysis, we

sampled the series at 5 minute interval and followed the same procedure used

before [8] to eliminate the daily trend. We have found a smaller value q = 1.5

which, as in the DJIA results, remain constant for all values of β. This value

corresponds to a steeper asymptotic power law decay with exponent 4. The

found values of β are much larger, indicating that smaller number of 5-minute

intervals between TB events. The shown similarity between results for intra-

day NEI series and inter day DJIA series is not restricted to the results shown

in Figs. 2 and 4. Indeed, NEI series lead to the same exponential dependence

for the distribution of TB intervals as one that displayed in Fig. 3 for DJIA

series (not shown).

4. Memory effects in TB returns and TB intervals

It is important to look for evidence of predictability among TB events in

the analyzed data. A positive answer to this question means that one can

learn from TB past history and make decisions to protect and increase profits

in his/her investments. To address this question we undertook two distinct

procedures: in the first one we evaluated the usual time correlation function

of the fluctuations about the mean value x:

C(τ) =
1

T

1

A

T∑
e=1

(x(e) − x)(x(e + τ) − x), (10)
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Figure 4: Integrated distribution Ph(x > X) for TB returns obtained from the intra-day

NEI series sampled at 5 minute intervals for three distinct values of h = 3 (a), 5 (b), and 7

(c). Circles indicate results from the data points. As in Fig. 2, the solid lines correspond

to the q-Gaussian, but now q = 1.5 for all values of h. The corresponding values of β are

5000, 3000, and 2500 for, respectively, h = 3, 5, and 7.
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where A =
∑T

e=1(x(e)−x)2. Note that we used the argument e (for event) to

stress the fact that events occur at different time intervals, and time does not

seem to be, at the first place, the proper variable to measure the dependence

of the correlations.

Fig. 5 shows the behavior of the correlation function for the TB interval

and TB log-return series, respectively CI(τ) and CR(τ). As observed in the

results of the previous section, the behavior is rather robust with respect to

changes in the values of h. They indicate complete absence of correlation for

the TB intervals, and a noticeable correlation of TB log-returns that lasts

for some 150 events. It is interesting to observe a small peak around the

value 130, recovering from a minimum observed at 80 events. The presence

(absence) of correlation are in agreement with the observed distinct behavior

of the event distribution shown in the previous section. Similar features have

been observed also for the NEI time series, as illustrated in Fig. 5c for the TB

log-returns. Much as illustrated in Fig. 5a, the NEI CI(τ) function displays

no correlation.

In the second approach, we investigated the distribution of time intervals

between TB return events of magnitude larger than a given threshold Mg.

Previous analyses of switching events [8, 14], where the definition of such

events differs from the one adopted herein, revealed that the distribution of

return times decays slower than exponentially. Here we have evaluated such

distribution as function of time intervals (TI) as a function of the number

of events (NE) between TB events larger than Mg. If we set Mg = 0, the

distribution P
TI

h (x > X) becomes identical to that of P
I

h(x > X) discussed

in the previous section. When we increase the value of Mg, it is expected

14



�

�

�
�

Figure 5: Time dependence of the correlation function CI(τ) for TB intervals (a) and

CR(τ) for TB returns (b and c). In (a), CI(τ) for DJIA data shows to pure noise behavior,

in agreement with the former findings in Figs. 3. Results for NEI series (not show) are

alike. Correlated patterns for CR(τ) are observed when DJIA (b) and NEI (c) data are

taken into account. The weaker correlation in (c) agrees with the steeper power law tail

shown in Fig. 4 as compared to that in Fig. 2.
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that the distributions will differ more and more from pI
h(x).
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Figure 6: Integrated distributions P
TI

h (x > X) and P
NE

h (x > X) for return times of TB

ln(DJIA) events as a function of actual time interval (a) and number of events (b). In (a),

the curves have a tendency to combine an initially flat behavior followed by fat tails that

can be described by functions A exp−βxγ

q . In (b), curves decay much faster and cannot be

accurately described either or q-exponential functions nor by usual exponentials.
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In Fig. 6 we show the behavior of the corresponding integrated distribu-

tions P
TI

h (x > X) and P
NE

h (x > X). Holding h = 3, we note that when Mg

is increased, the departure of P
TI

h (x > X) from the distribution P
I

h(x > X)

(Mg = 0) occurs in a progressive way. When Mg is restricted to the inter-

val [0.02, 0.10], the obtained points are amenable to be adjusted by a the

function A exp−βxγ

q , which leads to a flat behavior when z is small and a tail

∼ xγ/(1−q), a qualitatively similar behavior to that obtained in the data of

the previous section. The adjusted values for q and β respectively change,

in a monotonic way, from 1.2 and 0.015 to 1.8 and 0.002 when Mg goes from

the lower to the upper limit of the quoted interval. On the other hand, the

value γ � 1.52 is subject to only small fluctuations in the same interval of

Mg values. Regarding the distribution P
NE

h (x > X), let us remark that it

consists of one single point when Mg = 0, since all TB events are separated

by just one event. When Mg is increased, the distribution starts to be built.

However, NE starts to extend itself over larger values only when Mg is close

to 0.10. At this limit, the distribution does not seem to follow an exponential

decay, although the precise dependence could not be identified in terms of

q-exponentials. The results for NEI series are quite qualitatively similar to

those shown in Fig. 6, although the values of adjusted parameters depend on

the series.

Finally note that, as the value of Mg increases, the number of TB events

larger than Mg decreases. Therefore, the number of points in the distribu-

tions shown in Fig. 6 decreases monotonically from 1511 (Mg = 0) to 194

(Mg = 0.10). For this reason we do not increase the value of Mg beyond this

limit.
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5. Final remarks

In this work we presented a detailed characterization of switching points

on financial series based on the identification of top and bottom events of

a smoothed curve obtained from the original data. We used the Nadaraya-

Watson smoothing kernel introduced by Lo et al. [10], and focused our anal-

yses on the behavior of TB log-returns and TB intervals, time correlations,

and return times. We reported results obtained by the developed method in

the analysis of the very large inter-day DJIA series in the period 1928-2010.

We also tested the method for the NEI intra-day data in the period 2010-

2011, and have explicitly shown, for two different measures that the method

leads to qualitative similar results, although the quantitative values of the

distributions do depend on the data.

We have first shown TB log-returns and TB intervals obey different be-

have differently. The probability distribution of TB log-returns have a power

law tail, while that of TB intervals follow an exponential decay. We have

adjusted the distribution of event magnitude with the help of q-Gaussian

functions. The least squares fit for values of q lead to a constant value

q = 1.8, independently of the the width h. However, the value of h influences

the parameter β, which is related to the inverse of time scale between TB

events. These results hint that the method is robust with respect to the

width h of the smoothing kernel. The same features have been observed for

the NEI data, although the value q = 1.5 indicates a steeper decay in the

probability distribution. The larger values of β indicate that the time scale

of the NEI series in the 5 minute sampling interval is comparatively shorter

than that of the inter-day DJIA series.
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Persistence of distinct types of behavior was found both when we kept

intact the time structure of the series and probed it for correlation and return

times. TB intervals have shown to be uncorrelated, while TB log-returns are

correlated both for DJIA as well as for NEI series.

Finally, the results for the return time do depend on whether we consider

the time difference between TB events of a given magnitude Mg, or when we

consider the number of smaller TB events between them. In the first case we

can adjust integrated distribution as function of time in terms of q−stretched

exponential functions. Now, the value of the exponent γ does not depend

on Mg, while q changes from q = 1 to q = 2 as Mg increases. By way of

contrast, the distribution of TB events as function of the number of smaller

events does seem to follow such simple dependency.

We would like to comment that a previous analysis of switching points

properties, where the set of points were identified by observing the behavior

of volatility, indicated that the distribution of event magnitudes could be

explained by stretched exponential functions. The different properties found

in the current work suggest that distinct definitions of switching events lead

to different properties. In turn, this indicates that a close comparison of

different definitions urges a clear understanding of this class of events.
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Highlights

� Top-bottom approach based on a Gaussian kernel to characterize switching points. 

� Characterizes the magnitude of the difference between successive extreme prices. 

� Provides statistics of waiting time, i.e., time lag between events. 

� Considers also return time, time lag between events with a minimal magnitude. 

� Distribution probabilities have been accurately adjusted by q-Gaussians. 


