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Abstract. Many fluctuation phenomena, in physics and other fields, can be
modeled by Fokker–Planck or stochastic differential equations whose coefficients,
associated with drift and diffusion components, may be estimated directly from
the observed time series. Its correct characterization is crucial to determine the
system quantifiers. However, due to the finite sampling rates of real data, the
empirical estimates may significantly differ from their true functional forms. In
the literature, low-order corrections, or even no corrections, have been applied
to the finite-time estimates. A frequent outcome consists of linear drift and
quadratic diffusion coefficients. For this case, exact corrections have been recently
found, from Itô–Taylor expansions. Nevertheless, model validation constitutes
a necessary step before determining and applying the appropriate corrections.
Here, we exploit the consequences of the exact theoretical results obtained for the
linear–quadratic model. In particular, we discuss whether the observed finite-
time estimates are actually a manifestation of that model. The relevance of
this analysis is put into evidence by its application to two contrasting real data
examples in which finite-time linear drift and quadratic diffusion coefficients
are observed. In one case the linear–quadratic model is readily rejected while
in the other, although the model constitutes a very good approximation, low-
order corrections are inappropriate. These examples give warning signs about
the proper interpretation of finite-time analysis even in more general diffusion
processes.
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1. Introduction

The dynamics of many natural and man-made complex systems exhibits an interplay of
processes at different scales. The large-scale modes of the dynamics are usually identified
with deterministic forcing (drift), while the small-scale modes, are described by recourse
to stochastic terms (diffusion). In many strategic fields such as medical and biological
sciences, meteorology or social-economic systems, the correct characterization of such
modes is crucial.

For instance, in the biomedical domain, key aspects of brain dynamics are not
captured when focusing only the slowly varying deterministic components. Analysis of
electroencephalographic signals [1] indicates that it is precisely the stochastic dynamical
part that allows one to discriminate between physiological and pathological activities.

Another example, in the realm of ecosystems, is the formation and maintenance of
cirrus clouds. Besides the large-scale synoptic conditions in which the cirrus develop, there
are small-scale processes whose variability is due to different formation mechanisms that
can be regarded as noise [2]. Due to their upmost position in the atmosphere, the cirrus
clouds are critical components of the Earth’s climate, and therefore proper meteorological
predictions call for their accurate modeling.

Comprising man-made complex systems, a prototypical example is the financial
market, constituted of many agents conditioned by diverse sources of information. The
resulting cooperative behavior is driven by the slow varying large-scale aggregated market
information as well as by unforeseen fast varying private information. The analysis of both
components is necessary for characterizing the dynamics of important market quantifiers,
as for instance, risk.

As illustrated in the above examples, in such complex systems the correct quantitative
estimates of the deterministic and stochastic components is a central issue once their
first-principles dynamics equations are not unknown. Therefore, it is useful to resort to
data-driven analysis to find a quantitative description.

For the important class of Markovian processes, which we consider here, the Kramers–
Moyal expansion is the general evolution equation for the conditional probability, which
completely defines a Markov process. Accordingly, the estimation of drift and diffusion
coefficients from their primary definition seems a very natural procedure to obtain them

doi:10.1088/1742-5468/2010/04/P04020 2

http://dx.doi.org/10.1088/1742-5468/2010/04/P04020


J.S
tat.M

ech.
(2010)

P
04020

Validation of drift and diffusion coefficients

from empirical data analysis. Namely, given a time series {Xt} assumed Markovian,
the time evolution for the conditional probability density function (PDF) P (x, t|x0, 0) ≡
P (Xt = x|X0 = x0) can be described by a general evolution equation: the Kramers–Moyal
(KM) expansion ∂tP =

∑
k≥1(−1)k∂k

x(DkP ) [3]. The kth-order KM coefficients Dk can
be numerically computed from the finite-time conditional moments:

D̃k(x, τ) =
1

k!τ
〈[Xt+τ − Xt]

k〉|Xt=x, (1)

with 〈· · ·〉 denoting statistical average and |Xt=x meaning that at time t the stochastic
variable takes the value x. The KM coefficients are obtained by estimating the limit

Dk(x) = lim
τ→0

D̃k(x, τ). (2)

Here we have assumed stationarity, hence suppressing the time dependence from the
coefficients. The first term of the KM expansion, given by the drift coefficient D1(x),
represents all slow deterministic processes in the dynamics of the system. The second term
represents the stochastic approximation to the fast processes, with the diffusion coefficient
D2(x) controlling the strength of the noisy force. If higher-order coefficients vanish, one
obtains the special case corresponding to a Fokker–Planck equation (FPE), which can be
associated, for instance, with the univariate Itô-stochastic differential equation (SDE):

dx = D1(x) dt +
√

2D2(x) dWt (3)

where Wt is a standardized Wiener process.
Generalized Langevin equations (with a memory kernel like in the Mori–Kubo

equation, or with correlated noise, or even dependent on non-integer moments) can also
describe many dynamical processes. Here, we restrict our analysis to Markovian dynamics
ruled by equation (3). Moreover, although our discussion is based on the one-dimensional
case, a picture similar to the one discussed here is expected to apply in higher dimensions.

In any case, real data are constrained to finite sampling intervals and therefore one
can assess directly only up to a minimal-τ estimate, which may significantly differ from
the actual quantity one is looking for. This is particularly relevant when τ is not very
small compared to the characteristic timescales of the process. To tackle this issue, there
have been efforts in the literature to obtain corrections to finite-time estimates of KM
coefficients [4]–[6]. However, different proposed low-order analytical corrections and τ → 0
extrapolation schemes led to controversies [6, 7] about the true limit Dk. This problem has
been solved in a recent paper [8] for an important class of diffusion models with linear drift
and quadratic diffusion terms. There, we have derived exact formulae that connect the
empirical discrete-time estimates with the actual values. Notice that the addressed class
of processes is frequently encountered for a diversity of systems, in physics [9, 10] as well
as in other fields, such as medical [1, 11], atmospheric [2, 6, 12] or financial systems [13, 14].
The ubiquity of such simple linear and quadratic forms should not be surprising as soon
as they represent a low-order approximation to generic forms of each component.

In the present work, we exploit the exact results as a framework for such data-driven
analysis. As a general outcome, we discuss criteria that allow model validation, that is,
to determine whether the commonly found empirical (finite-time) linear and quadratic
forms are actually a consequence (or not) of the linear–quadratic model. In particular, we
analyze the significance of the results according to the relation between the resolution time
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and the correlation time τc. For instance, as we will show below, arbitrary functional forms
of drift and diffusion coefficients approach specific linear and quadratic forms, respectively,
in the limit of independence, that is, as τ becomes much larger than any characteristic
timescale. Then, the implications of our present results go far beyond the linear–quadratic
model.

The relevance of our approach is shown by the investigation of two contrasting real
data examples: one in which the linear–quadratic model is readily rejected and another
in which the model constitutes a very good approximation. In the latter case, low-order
corrections are not enough and the exact (infinite-order) corrections were successfully
applied to recover the intrinsic hidden values.

2. Empirical assessment of linear drift and quadratic diffusion coefficients

Two exemplary real time series, one from human physiology [15] and another from finance,
were considered as test cases.

The stride intervals of human walking are known to present complex fluctuations [15].
Data of long-term recordings of the stride intervals of both constrained and unconstrained
walking at different rates (slow, normal, fast) are available [15]. Now we have revisited the
fluctuation analysis from the present perspective. We analyzed the logarithmic increments
of consecutive stride intervals of unconstrained normal walking (approx. 3000 data points).
Increments were considered instead of the original series because of its stationarity. We
set τ = 1 as the interval between successive data.

We also considered the time series of the returns (logarithmic increments) of the
Brazilian stock index Ibovespa, in the period from 1 November 2002 to 19 July 2006.
Returns, computed at a 4 min timelag, without overlap, were normalized by its standard
deviation (approx. 8 × 105 return values). In this case, we set 4 min as the unit of time
(τ = 1).

In both cases, Markovianity was checked by means of the Chapman–Kolmogorov
equation [3], for the lowest available timescale, resulting in a good approximation.

Examples of the first two finite-time coefficients, given by equation (1) for each time
series, are depicted in figures 1 and 2, respectively. In these examples, the finite-time drift
and diffusion coefficients follow linear and quadratic forms, respectively.

We are concerned with the empirical evaluation of unknown drift and diffusion
coefficients. If a theoretical ansatz for the functional dependence of the true coefficients
is given, then deviations of the finite-τ estimates can be evaluated from the stochastic
Itô–Taylor expansion of equation (3) [3]. Otherwise, as a first educated guess, one
may assume that the coefficients have the same functional dependence found for their
respective finite-τ estimates. In such a case, the empirical findings illustrated in figures 1
and 2 suggest D1(x) = −a1x and D2(x) = b0 + b2x

2, which define the model we
call linear–quadratic (including state-independent diffusion). If higher-order coefficients
vanish, an SDE (3) associated with the FPE is ẋ = −a1x +

√
2b0 + 2b2x2η1(t) or

equivalently, the linear additive–multiplicative stochastic differential equation [16] ẋ =
−a1x+

√
2b0η1(t)+

√
2b2x η2(t), where η1(t) and η2(t) are (uncorrelated) zero-mean white

noises with unitary variance. By applying the stochastic Itô–Taylor expansion for this class
of processes, it has been shown [8] that the finite-τ coefficients preserve their functional
forms. This is an important finding that legitimates the initial guess. Furthermore, it
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Figure 1. Coefficients D̃1 (a) and D̃2 (b) obtained for the (normalized)
logarithmic increments of a typical time series of normal walking stride
intervals [15]. Solid lines correspond to linear and quadratic least-squares fits,
furnishing (ã1, b̃0, b̃2)τ = (1.39 ± 0.04, 0.30 ± 0.02, 1.08 ± 0.03). The time unit
τ = 1 corresponds to 1 s.

Figure 2. Coefficients D̃1 (a) and D̃2 (b) for normalized 4 min returns of stock
index Ibovespa (filled symbols). Solid lines correspond to linear and quadratic
least-squares fits, furnishing (ã1, b̃0, b̃2)τ = (0.84 ± 0.03, 0.38 ± 0.02, 0.46 ± 0.02).
The time unit τ = 1 corresponds to 4 min. The same finite-τ coefficients
computed for an artificial times series generated with the estimated coefficients
D1 and D2, with (a1, b0, b2)τ = (1.83 ± 0.19, 0.71 ± 0.08, 1.12 ± 0.27) (hollow
symbols).

allows the achievement of the hidden parameters (a1, b0, b2) from their finite-τ counterparts

(ã1, b̃0, b̃2).
Let us summarize the main theoretical expressions [8]. For normalized data (with

unitary variance σ = 1, hence b0 + b2 = a1), one has

ã1(τ) = a1

∑

j≥0

[−a1τ ]j

(j + 1)!
=

1 − e−a1τ

τ
, (4)

b̃0(τ) = b0

∑

j≥0

[−2b0τ ]j

(j + 1)!
=

1 − e−2b0τ

2τ
(5)
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Figure 3. Dependence of finite-τ parameter ã1 on the time resolution τ (black
diamonds), obtained from an artificial series with parameters (a1, b0, b2) =
(2, 1, 1). Also plotted are ã1τ (gray circles) and a1 obtained from equations (6)
and (7) (white squares). Error bars were obtained from error propagation of
the deviation (within symbol size) of fitting parameter ã1. Full and dashed lines
correspond to the theoretical expressions obtained from equation (4). Dotted
lines are drawn as reference of the upper bound of ã1τ and of the exact value of
a1.

and b̃0 + b̃2 = ã1 (thus the fluctuation–dissipation relation also holds for the finite-time

parameters). If data were not normalized, the parameters b0 and b̃0 must be simply
divided by σ2. By inversion, the exact values can be obtained through

−a1τ = ln(1 − ã1τ), (6)

−2b0τ = ln(1 − 2b̃0τ). (7)

Let us remark that equation (4) is valid for arbitrary D2, that is, it is not restricted
to the linear–quadratic model, whilst equation (5) arises from the linearity of D1.

In figure 3 we show the dependence of the measured parameter ã1 on the resolution τ ,
for an artificial series generated with (a1, b0, b2) = (2, 1, 1). The results are well represented

by equation (4). From equations (6) and (7), it is clear that ã1τ, 2b̃0τ < 1 must hold.
The limits are attained when the resolution τ exceeds the characteristic timescales of the
dynamics, as illustrated in figure 3 for the drift parameter. There, the upper bound for
ã1τ is approached as τ → 1/a1. Moreover, in principle, equations (6) and (7) would allow
us to recover a1 and b0 for whatever resolution τ . However, error propagation leads to
Δa1 = Δã1/(1− ã1τ) and Δb0 = Δb̃0/(1− 2b̃0τ), implying that the deviations of the true
parameters diverge as τ increases. Hence, larger τ would not only enhance uncertainties,
as expected, but may also lead to wrong estimates, as shown in figure 3.

From a theoretical perspective, the upper bound is associated with the limit of
independence, in which P (x′, t + τ |x, t) = P (x′, t + τ). Thus

D̃k(x, τ) =
1

k!τ

∫

dx′ P (x′)[x′ − x]k. (8)
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Figure 4. Dependence of the order n of the correction necessary to obtain the
limiting values of the parameters within the ±5% interval, as a function of ã1τ (or
2b̃0τ). The solid line is a guide to the eyes and the vertical dashed line indicates
the upper bound. Notice the super-linear increase of n for values above 80% of
the upper bound.

Therefore, for standardized data, one obtains

D̃1(x, τ) = −x

τ
and D̃2(x, τ) =

1 + x2

2τ
. (9)

This means that, in the limit of large τ , linear and quadratic finite-time coefficients
with ã1τ = 1 and b̃0τ = b̃2τ = 1/2 are the universal forms of D̃1 and D̃2 for any intrinsic
D1 and D2. As a consequence, when the extreme values are approached, the uncertainty
about the proper functional form signals the lost of significance of the results.

Equations (4) and (5) also contain the information on the nth-order correction
expressions for a1 and b0, by inversion of the series truncated at order n. In figure 4
we plot the order n necessary to obtain the exact values of the parameters (within the

±5% interval), as a function of ã1τ (or 2b̃0τ), assuming their values are precise. Notice

that, even in this case, the required order n diverges as ã1 and b̃0 approach their upper
bound values, thus making low-order corrections unsuitable. The divergent behavior is a
manifestation that the recording time τ is too large to obtain meaningful information.

3. Validation procedure and its application to real data examples

Let us outline the steps to validate the linear–quadratic model and extract the intrinsic
coefficients from the knowledge of their finite-τ estimates. After checking the Markov
property, computing the finite-τ coefficients D̃1 and D̃2 for normalized data, and obtaining
the finite-τ parameters from least-squares fits to the expressions D̃1(x) = −ã1x and

D̃2(x) = b̃2x
2 + b̃0, we should perform the following checks.

(i) A first check is to verify if ã1τ < 1. This condition must hold whenever the drift is of
the form D1 = −a1x. Otherwise, it would be a signature that the model fails. When
ã1τ < 1, one can employ equation (6) to unbury the intrinsic value a1.

(ii) If besides D1 being linear, D2 is quadratic, then it must hold 2b̃0τ < 1 (for unitary
variance). This additional condition will allow us to obtain the intrinsic value b0 by
means of equation (7).

doi:10.1088/1742-5468/2010/04/P04020 7
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(iii) If the two precedent inequalities are verified, b2 can also be calculated from the

fluctuation–dissipation relation. The constraint ã1 = b̃2 + b̃0 must also hold for finite-
time parameters.

(iv) The linear–quadratic modeling requires vanishing higher-order coefficients, but on
the basis of the Pawula theorem (which states that D4 = 0 guarantees Dk = 0
for k ≥ 3) [3], it is enough to analyze the fourth-order coefficient. However,
since finite-τ estimates are generically non-null, it is necessary to check if this
deviation originates from finite-τ effects. The comparison of the empirical D̃4 with
the corresponding analytical finite-τ prediction provides this indispensable check to
validate the linear–quadratic modeling. In the particular case of null b2 (Ornstein–
Ulhenbeck process), an exact expression is available for D̃4(x, τ) [8], which can be
directly compared to numerical estimates. Otherwise, if b2 is significantly non-null,
this check can be performed by comparing the empirical result with D̃4(x, τ) of
artificial series, generated through equation (3), with the exact parameters extracted
from equations (6) and (7).

Naturally, in general, the proposed methodology applies only beyond a minimal
Markovian timescale.

Let us apply the above checks to our two test time series. The results of computing the
first KM coefficients and performing linear and quadratic fits, of the forms here considered,
are shown in figures 1 and 2, respectively. Let us proceed with step (i).

For the stride dynamics, the result shown in figure 1 might lead us to naively conclude
that the drift is linear. However notice that ã1τ > 1, thus forbidding the calculation of
a1. This means that the model fails, in particular, that the drift is not of the linear
form here considered. Also, it might be that the Markov property was not strictly valid.
Actually, in this case, the model is not expected to apply because of the non-trivial
correlations previously observed in gait dynamics [15], with anti-correlated increments,
while the linear–quadratic model yields exponentially decaying correlations. As this
counter-example shows, the emergence of linear and quadratic forms from finite-time
analysis is not exclusive of the linear–quadratic model. Therefore, it would be interesting
to look more closely if some cases in which linear and quadratic coefficients were also
found belong to this class of counter-examples too.

The outcomes of financial index returns, shown in figure 2, give ã1τ < 1, 2b̃0τ < 1
and ã1 = b̃2 + b̃0 within error bars, allowing the calculation of the limiting parameters.
Furthermore, according to figure 4, the values obtained for finite-time parameters require
at least a fourth-order correction. Then, contrary to the assertion in [6], the drift term
cannot be safely extracted from the finite-time estimate unless τ is sufficiently small. In the
present case application of equations (6) and (7) is useful, yielding the values indicated
in the caption of figure 2. Artificial series generated with those values reproduce the
empirical results of the first and second coefficients, as shown in figure 2.

Then, for this example it is worth considering step (iv) and compare the finite-time
fourth-order coefficient for real and synthetic data. As exhibited in figure 5, the outcome
of artificial series is very close to the empirical one, supporting that its non-null character
can be attributed to finite-τ deviations, thus sustaining the FPE description.

One can proceed with extra checks by performing statistical analysis of the
distributions and correlations predicted by the theoretical model and comparing them with
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Figure 5. Coefficient D̃4 obtained for the same data of figure 2 (filled symbols).
Fourth finite-τ coefficient computed for an artificial time series generated with
the coefficients D1 and D2 obtained by means of the exact parameters extracted
from equations (6) and (7) (hollow symbols).

Figure 6. Linear auto-correlation C(t) function versus time for the same data of
figure 2 (filled circles). Theoretical functions exp(−a1t) (full line) and exp(−ã1t)
(dashed line). Inset: log–linear representation.

the empirical results. For instance, in figure 6, we observe an excellent agreement between
the empirical linear auto-correlations and the theoretical prediction given by exp(−a1t).
Conversely, the finite-τ parameter ã1 leads to overestimation of the linear correlation.
From the above analysis, the linear–quadratic model constitutes a good description in this
case and one can infer the actual parameters of the system from finite-τ measurements.

4. Concluding remarks

We have exploited the exact corrections for the linear–quadratic forms of first and second
finite-time KM coefficients. Practical criteria arise that allow us to validate this model.
The outcomes of our analysis go beyond the linear–quadratic paradigm. In particular, the
results for the deterministic component are also valid for an arbitrary noisy component
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as soon as the drift is linear. That is, even in some cases where the Markov property is
not strictly satisfied, for instance, if the noise is colored, the present strategy can still be
used to disclose the deterministic component of the dynamics [17].

We investigated two real-world examples in which linear drift and quadratic diffusion
coefficients are observed. However, in the former case, the linear–quadratic model fails.
This shows that care must be taken when interpreting linear and quadratic forms arising
from finite-time analysis, because they are not exclusive of the linear–quadratic model.
Conversely, in the latter example, the linear–quadratic model is suitable, but the finite-
time estimates significantly differ from the true values. In this case, low-order corrections
are not enough and the exact corrections were successfully applied.

Our findings suggest that the analysis of observed linear and quadratic forms might
be revised under the light of the present approach, both to check the model and to apply
the appropriate corrections. We have also pointed out that those forms can emerge for
arbitrary drift and diffusion coefficients when the independence limit is approached. All
these warnings concern finite-time analysis of Markovian diffusion processes with generic
forms of drift and diffusion coefficients (not necessarily polynomial) as well as in more
general processes, even non-Markovian.
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