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Abstract. A random walk-like model is considered to discuss statistical aspects of tournaments. The model
is applied to soccer leagues with emphasis on the scores. This competitive system was computationally
simulated and the results are compared with empirical data from the English, the German and the Spanish
leagues and showed a good agreement with them. The present approach enabled us to characterize a
diffusion where the scores are not normally distributed, having a short and asymmetric tail extending
towards more positive values. We argue that this non-Gaussian behavior is related with the difference
between the teams and with the asymmetry of the scores system. In addition, we compared two tournament
systems: the all-play-all and the elimination tournaments.

PACS. 89.75.-k Complex systems – 89.20.-a Interdisciplinary applications of physics

1 Introduction

In recent years, scientists have become increasingly in-
terested in the behaviors of complex systems [1,2,3,4].
Finance[5], genetics[6] and religion[7] are just a few ex-
amples of areas recently addressed by statistical physi-
cists. However, many of the systems in such contexts are
not isolated and are sometimes very difficult to describe
quantitatively. Hence, it is common in these studies to
try to capture important features, i.e., universal behav-
iors. In this scenery, simple models whose retaining only
the main relevant ingredients of the original systems have
been shown to give useful information regarding the un-
derlying processes responsible for the observed behavior.
For instance, random walk based models have been used to
study aspects from physics and astronomy[8] to biology[9]
and economy[10].

In this work, concepts of random walks are considered
in order to investigate the dynamics of tournaments with
emphasis on the most popular of them: the soccer tour-
naments. In this direction, there is an increasing interest
to study the dynamics of soccer. For instance, Ref. [11]
proposes a model to evaluate the characteristics of soc-
cer teams such as offensive and defensive strengths. Other
works are focused in predicting the outcome of sporting
contests [12,13,14]. There are also investigations of the
soccer goal distribution[15,16,17,18,19], the existence of a
home advantage[20], the persistence in sequences of match
results[21], the temporal sequence of ball movements[22]
and the network of Brazilian soccer players[23]. As we
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can see, the focus of these works is not to investigate
the supposedly universal features of soccer tournaments.
Our present study attempt to fill this hiatus by using a
random walk-like model which reproduces some of these
important features. We basically employ the statistical
framework based on random walk interpretation of soc-
cer leagues used by Heuer and Rubner[24] (see also Ref.
[25]). In particular, they argue that the team fitness is bet-
ter described by goals difference than number of points.
Here, we do not attain to this difference because we fo-
cus only on wins, draws and defeats (i.e. the number of
points). Thus, in this degree of detail our model does not
take into account any other aspects such as match scores
or dynamic of ball movements that have been related with
Poissonian processes[13,22].

The organization of this paper is as follows. In Section
2 we present our observational data and some statisti-
cal analysis. In Section 3 we present our model for the
scores and compare it with the observational data. We
also explore the model to characterize the soccer leagues.
In Section 4 we look for other observational quantities: the
number of wins, draws and defeats. In section 5, by using
the model, we compare two kinds of tournament system:
the all-play-all system and the elimination tournaments.
Finally, in Section 6, we present a summary and some
concluding comments.

2 Data analysis

As database we have taken the results from the German
Bundesliga[26] in the period from 1965 to 2007 (41 sea-
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Fig. 1. (a) s̄(m) and (c) σs(m) for German Bundesliga (diamonds), English League (squares), Spanish League A (circles) and
Spanish League A (triangles). (b) s̄(m) for several periods of German Bundesliga.

sons, except the season 1991/92 because it contained more
than 18 teams), from the English League[27] (12 seasons,
1995-2007), from the Spanish League A[28] (11 seasons,
1996-2007) and from the Spanish League B[28] (9 seasons,
1998-2007).

In every tournament every team plays against all the
others twice in each season, once at home and once away,
totaling M matches. The standard score system used in
many sports leagues, especially in soccer tournaments,
states 3 points for a win, one point for a draw and no
points for a defeat. However, the score system we found
was different: in the past it stated 2 points for a win,
rather than 3. The year when the “3 points for a win”
was adopted is different for each league. In our data set,
only the results from the German Bundesliga mix the two
score systems. This league adopted the current system in
1995, the year when FIFA (Fédération Internationale de
Football Association) formally adopted the new system,
which became standard in international tournaments, as
well as most national soccer leagues. Hence, to ensure that
our data have a unique score system, we recalculate the
scores from German Bundesliga using the actual scheme.

We will represent the score of the rank m in the sea-
son i in the round number r as si(m, r). This quantity is
like a microscopic measurement, and therefore is subject
to fluctuations. In order to minimize the fluctuations, we
start investigating the average of this quantity over the

seasons in the final round rf , i.e.,

s̄(m) =
1

N

N
∑

i=1

si(m, rf ), (1)

where N is the number of seasons. Figure 1a shows s̄(m)
for all the empirical data set. We can see that s̄(m) presents
a similar shape for all leagues, even though the number of
teams is different. Someone could argue about a possible
time-dependent behavior of this shape. In order to verify
it we calculated s̄(m) over four distinct periods of Ger-
many Bundesliga and, as shown in Figure 1b, the shape
does not change significantly.

Next, we investigate the standard-deviation of the vari-
able si(m, rf ) as a rank function:

σ2
s(m) =

1

N − 1

N
∑

i=1

[si(m, rf )− s̄(m)]2. (2)

Figure 1c shows this quantity for all empirical data. Again,
we found a similar shape for all leagues. Note that these
fluctuations are larger for both extremal ranks. A simi-
lar result has been recently reported for the average win
fraction of baseball[29].

This analysis can be extended to a microscopic point
of view if we consider the soccer or any other leagues as
set of erratic trajectories. A possible manner to establish
this correspondence is supposing that the teams are like
particles and the scores are the positions. The “motion” is
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Fig. 2. Statistical analysis of Germany Bundesliga; observational data (diamonds), minimalist model (circles) and non-identical
team model (squares). (a) Variance σ2(r). (b) Probability distribution of scores (PDF) compared with a Gaussian (continuous
line). The coefficient of (c) kurtosis and (d) skewness versus r. The error bars are calculated via bootstrap resampling method
[30].

governed by the match result. At each round (time) a team
(particle) can jump three units of length to the right (if the
team wins) or one unit of length to the right (if the team
draws) or stay in the same position (if the team loses). We
have, therefore, a random walk-like process: for each team,
at the first round, there are only 3 allowed “positions”
(0, 1, 3), at the second round there are 6 (0, 1, 2, 3, 4, 6),
and so on.

This type of analysis needs a larger number of data.
Thus, we will use the results from Germany Bundesliga,
because it has more data. We start investigating the standard-
deviation over all seasons as a function of the round num-
ber r, given by

σ2(r) =
1

NT − 1

N
∑

i=1

T
∑

m=1

(si(m, r) − µ(r))2 , (3)

where

µ(r) =
1

NT

N
∑

i=1

T
∑

m=1

si(m, r)

and T is the number of teams. Figure 2a shows σ2/r2

versus 1/r. In this representation, the diffusive process
can be interpreted as usual random walk with a drift, i.e.,

σ2(r)

r2
= a+

b

r
(4)

where a and b are essentially variances related with the
teams’ fitness and statistical fluctuations[24]. Here we have
a ≈ 0.075 and b ≈ 1.55.

We also evaluate the probability distribution function
(PDF) of the scores (for the collapsed data, i.e., all sea-
sons of the Germany Bundesliga with all rounds together)
and compare it with a Gaussian distribution as shown in
Figure 2b. This result indicates that the scores are not
normally distributed, having a short and asymmetric tail
extending towards more positive values. This feature be-
comes more evident when we look for the kurtosis (Figure
2c) and skewness (Figure 2d) coefficients[31]. The asym-
metric tail reflects the asymmetry in the score system, i.e.,
the 3 points for a win. We will see that (from our simu-
lations results) if the winner sums 2 points rather than 3
the skewness tends to zero.

3 Modelling

In the previous session, we presented some observational
features of the soccer leagues. Now, we will firstly present
a minimalist model and subsequently another one which
reproduces these observational behaviors very well.
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3.1 A minimalist model

As a first attempt to model the previous results, we can
use a mean-field-like approximation. In this approach, we
consider that all teams are identical and that the match
results are obtained from a simulation algorithm. The pro-
cedure to simulate a match between two teams i and j
starts drawing two uniform random numbers, xi and xj ,
in the interval [0,1]. Thus, we use them in the following
algorithm:

IF |xi − xj | ≤ δ
the game ends in a draw;

ELSE
IF xi > xj

the winner is the team i;
ELSE

the winner is the team j;

(5)

of which the outcome of the game emerges. If we were
considered other tournaments (for instance, basketball)
where there are no draws, the first step of this algorithm
would have to be eliminated.

Employing this procedure, we simulated an entire sea-
son 105 times. This minimalist model has only one pa-
rameter δ associated with the draws. We incrementally
update the values of δ to minimize, via the method of
least squares, the difference between the simulated values
of s̄(m) and the observational ones. The best values for
this parameter are close together: δ = 0.11 for German
Bundesliga and the Spanish League A; δ = 0.15 for the
Spanish League B and δ = 0.10 for the English League.

A comparison between simulated and observational data
is shown in Figure 3 and, as we can see, this minimalist
model can not explain the behavior of s̄(m) found in the
empirical data. The discrepancy between model and sim-
ulation is larger in the English League and smaller in the
Spanish League B. We will see that these discrepancies are
related with the difference between the teams, which are
greater in the English League than in the Spanish League
B. We also evaluate σ2

s (m) from this model and, as shown
in Figure 4, it only describes the data behaviour qualita-
tively.

For completeness, we also evaluate the standard-devia-
tion σ(r), the PDF and the coefficients of kurtosis and
skewness shown in Figure 2. Since this model is a mean-
field-like approximation, we do not expect it to reproduce
the non-Gaussian behavior present in the data. In fact, for
this case, the central limit theorem states that the PDF
of the sum of many independent random variables tends
to a normal distribution. This fact becomes evident if we
note that kurtosis and the skewness tend to the normal
values (see Figures 2c and 2d).

3.2 A non-identical team model

Now, we need some additional ingredients to describe the
discrepancies previously indicated. Evidently, in a soccer
match, the final result is governed by many unforeseen

effects which are generally very difficult to model. Thus,
we effectively focus our attention on the difference be-
tween the teams. It is common sense that the teams are
non-identical; for example, they have different offensive
and defensive strengths. But how to model these differ-
ences? For instance, one soccer report could suggest that
the teams are divided into two groups: the small and the
big teams.

In this work, as a first approximation, we suppose that
each team is fully characterized by only one parameter Q,
i.e., a single quality factor. Recently, by considering the
Bundesliga, a careful investigation pointed that the qual-
ity of a team is better described by goal difference than
the number of points and that it is constant over each
season[24]. However, due to minimalist approach desired
in this work, our model does not take some particular in-
gredients into account, such as, temporal variations over
the seasons, home advantage, team-specific characteriza-
tion, and specific details about the quality factor (e.g.,
goals difference instead of number of points). Moreover, we
emphasize that Q refers to an average behavior of several
championships, therefore Q is not related with a specific
team nor with its rank within a particular tournament.

It is desirable to employ a functional form of Q with
few parameters in contrast with the many parameters (the
number of teams) necessary to fully specify Q. In this
direction, we note that our data (see Figures 1a and 1c)
remember the shape of f(x) ∼ −|x|α shifted. Thus, in
order to take these aspects into account and to overcome
possible divergences, our guess is to assume that Q versus
rank (m) has the very adjustable functional form

Q(m) = 2 +
T − 2m− ǫ− β/2

T

×

∣

∣

∣

∣

∣

(

T − 2m− ǫ− β/2

T

)α−1
∣

∣

∣

∣

∣

, (6)

where ǫ is a very small number (ǫ ≪ 1), α ≥ 0 and β are
parameters that dictate the Q(m) form. When α is zero
the teams are distributed into two groups (Q1 = 1 and
Q2 = 3). The increasing of α begins to distinguish the
teams in a continuum. The curve translates to the right if
β < 0 or to the left if β > 0 and, when β = 0, the function
Q(m)− 2 is odd with respect to m = T/2.

In the direction of a simple model, we would like to
emphasize that the choice of Q(m) via eq. (6) is an at-
tempt, motivated by the data, to promote a good adjust-
ment of the model by using a minimal number of param-
eters. Of course, other forms for Q(m) may be employed,
for instance, we could also consider it based on a normal
distribution, log-normal distribution[32] or linear combi-
nation of two normal distributions[24]. When considering
our data, these possibilities do not give a significant im-
provement in the results.

In order to use this quality factor, we make a change
in the previous simulation algorithm (5). The two random
numbers xi and xj are now respectively distributed in the
interval [0, Q(i)] and [0, Q(j)], where Q(i) is the quality
factor of the team i and Q(j) is the same for the team j,
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Fig. 3. Average rank score: a comparison between observational data (diamonds), minimalist model (circles) and non-identical
team model (squares) for (a) German Bundesliga, (b) English League, (c) Spanish League A and (d) Spanish League B.
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Fig. 4. Standard-deviation of the rank scores: a comparison between observational data (diamonds), minimalist model (circles)
and non-identical team model (squares) for (a) German Bundesliga, (b) English League, (c) Spanish League A and (d) Spanish
League B.
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Fig. 5. (a) The quality factors Q(m) that emerge from non-identical team model for German Bundesliga (diamonds), English
League (squares), Spanish League A (circles) and Spanish League B (triangles). (b) A comparative presentation of Q(m)
(diamonds) and rank average for 10 rounds (triangles) and 100 rounds (circles).

Table 1. The best values for the parameters.

League Period α β δ

German Bundesliga 1965-2007 2,10 -8,29 0,40
German Bundesliga 1997-2007 2,08 -12,00 0,42
English League 1995-2007 2,99 -17,29 0,45
Spanish League A 1996-2007 2,33 -6,94 0,41
Spanish League B 1998-2007 5,18 -3,30 0,40

in addition, to relativize the parameter δ we replaced it

for δ′ = δ Q(i)
Q(j) with i > j. Thus, we are working with the

constrained random walk

s(i, r + 1) = s(i, r) + ξi , (7)

where ξi = 3 (1 or 0) if the team i wins (draws or defeats)
at (r + 1)th round and for the team j we have ξj = 0 (1
or 3) due to the constraint.

We performed the simulation varying the model pa-
rameters (α, β and δ) to minimize, via the method of
least squares, the difference between the simulated val-
ues of s̄(m) and the data set ones. The best values for
the parameters are shown in Table 1. Note that, besides
the changes of statistical properties of German Bundesliga
during more than 40 years, the parameters α and δ corre-
sponding to the last decade (1997-2007) are similar. This
model not only reproduces s̄(m) very well (see Figure 3),
but it also correctly describes the behavior of the standard-
deviation σ2

s (see Figure 4).
Further aspects of the random walk-like process de-

scribed in Section 2 are in very good agreement with the
present model. In fact, as shown in Figure 2, the present
model explains the behavior of the variance σ2(r), kurto-
sis, skewness and the PDF.

From our fit, we have obtained the functional form of
Q(m) shown in Figure 5a. This function gives us some
information about the championship competitiveness. In
the previous section, we saw that the minimalist model
gives a better agreement for the Spanish League B data.
Now, we can note that the shape of Q(m) for this case

has more teams in the same baseline than all others. This
result indicates that the Spanish League B is the most
balanced league from all the empirical data set. On the
other hand, the English League presents the most differ-
ent shape. Note that the quality factors of the first ranks
are substantially greater than the others. Therefore, the
minimalist model gives poor agreement for this league.
This result suggests that in this league there are some
teams which are very strong. In fact, from 1995 to 2007,
only three teams won this championship1, unlike there are
eleven different champions in the same period of the Span-
ish League B2. Finally, we remark some aspects about the
quality factor Q(m) and mean number of points s̄(m).
Note that s̄(m) is the mean obtained from a very large
number of tournaments, which does not coincide with the
mean of a tournament with a very large number of rounds.
For instance, in a hypothetical tournament with two (iden-
tical or not) teams playing only one game without draw
we always have s̄(1) = 3 and s̄(2) = 0; in contrast, we
obtain s̄(1) = 1.5 and s̄(2) = 1.5 when the number of
matches goes to infinity for identical teams[25].

Notice also that the result of a match depends on the
quality of the involved teams, thus each s̄(m) would be
function of all quality factors. Therefore, each Q(m) is a
function of all s̄(m). Unfortunately, is not an easy task
to obtain a close form of Q(m) in terms of s̄(m) due the
non-linearity of the system of equations to be inverted.
However, their shapes are in general similar, for exam-
ple, Figure 5b shows this fact for the German Bunsdesliga
when r → ∞. We also do not have a direct expression for
the parameters a and b in eq. (4) in terms of Q(m).

4 Number of wins, draws and losses.

Until now, we have analyzed only the teams’ scores. An-
other perspective is to analyze the number of wins, draws

1 Manchester United, Arsenal and Chelsea.
2 Las Palmas, Sporting B, Cacereño, Getafe, Universidad

LPGC, Atlético B, Barakaldo, Universidad LPGC, Ponteve-
dra, Real Madrid B and Pontevedra.
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Fig. 6. Number of wins (circles), draws (squares) and losses (diamonds) versus rank from observational data (not filled markers)
and non-identical team model (filled markers) for (a) German Bundesliga, (b) English League, (c) Spanish League A and (d)
Spanish League B.

and defeats. In order to do this, we evaluate the mean
value of these quantities over all the empirical data set and
the emerging results from the non-identical team model.
These results were obtained through simulations of an en-
tire season using the best fit parameters (Table 1). In each
simulation we counted (at the final round) the number of
wins, draws and defeats of the rank m and them we took
an average over 105 simulated seasons. A comparison be-
tween these two data can be found in Figure 6. Although
the model is based on the scores, it gives a good agree-
ment with the observational data. However, we observe
that these variables fluctuate more than the scores. This
behavior is plausible, since the scores are constructed as
a linear combination of this three variables.

We can see that the numbers of wins and defeats have
a well defined hierarchical form. For instance, in the case
of the number of wins, it is greater for the first ranks and
small for the last ones. However, this hierarchical form is
not clear when we look at the number of draws. The data
behavior suggested that the number of draws is almost
constant over the rank positions.

5 Comparison between tournament systems:

an application

When dealing with sports tournaments, one can ask about
what kind of tournament system is better: the all-play-all

or the elimination tournaments? Here, we make an appli-
cation of our model and compare these tournament sys-
tems from a quantitative point of view.

In this context, we take the 16 best teams’ quality fac-
tors which emerge from model after the adjustment. Then,
we use them to simulate an entire season 105 times from
both tournament systems. Here, an entire season of the
elimination tournaments consists of 4 rounds: the eight-
finals, quarter-finals, semi-finals and the final. In this kind
of tournaments the loser of each match is immediately
eliminated from the championship, for this reason, it is
also referred to as “sudden death” tournament. Employing
this procedure and counting how many times a given team
won the championship, we get the probability of winning
P (Q(m)) in the two tournament systems. Figure 7a shows
this probability as a function of the rank position by con-
sidering the German Bungesliga. Note that the teams with
great quality factors are considerably more likely to win
in an all-play-all system than in an elimination one. On
the other hand, teams with small quality factor are more
likely to win in an elimination tournament. This result in-
dicates that an elimination tournament has more random-
ness which enables less prepared teams to win. Unlike it,
the all-play-all system has more games and the random-
ness decreases which makes it less likely for a team with
small quality factor to win.

We also investigated the asymmetric tail characterized
by positive skewness. More specifically, we evaluated the
mean value of the skewness over 105 simulated seasons for
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Fig. 7. (a) Winning probability of a team with quality factor Q(m) in an all-play-all (diamonds) tournament and in an
elimination (squares) tournament. We used the model parameters that emerge from the German Bundesliga data. (b) Mean
skewness versus number of points for a win, p, for δ = 0.2 (squares), δ = 0.4 (circles) and δ = 0.4 (diamonds).

several numbers of points for a win, p (as already pointed,
p = 3 corresponds to the current system). In this simula-
tion we use the identical team approach and some values
of δ, as shown in Figure 7b. These results indicate that
the asymmetric tail is caused by the different score inter-
vals between all possible results. In the most symmetric
way, i.e., no points for a defeat, 1 point for a draw and
2 for a win, the skewness is approximately 0 for all val-
ues of δ. As p increases, skewness also increases. However,
for large values of p the mean skewness is approximately
constant. When p is large compared with 1 (point for a
draw), it dominates the score results and consequently the
mean skewness saturates. We can note that this plateau
depends on the values of the parameter δ, i.e., the plateau
is larger for larger values of δ.

6 Summary

In this work we investigated statistical aspects of soccer
tournaments. The dynamics of these competitive systems
was simulated by a simple probabilistic model, which re-
tains relevant aspects of the leagues, such as the average
rank score and the standard-deviations. Our results were
compared with data from the German, the English and the
Spanish soccer leagues and showed to be in good agree-
ment with them. Also, from these known data, the time
evolution of the scores was studied as a random walk-like
process. These results indicated that the scores are not
normally distributed, due to the difference between the
teams and the asymmetry of the scores system. In addi-
tion, by using our model, we compared two tournament
systems: the all-play-all and the elimination tournaments.
This comparison indicated that the eliminatory systems
have more randomness, which enables less prepared teams
to win the tournament. In the all-play-all systems, the ran-
domness is smaller making the victory of the best teams
more likely. In a more general context, due to a high de-
gree of agreement between empirical data and the model,
we expect that the random walk-like model employed here
may be useful to discuss other kind of tournaments.
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